首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Neuronal Apoptosis Induced by Endoplasmic Reticulum Stress   总被引:5,自引:0,他引:5  
Apoptosis is a conserved active cellular mechanism occurring under a range of physiological and pathological conditions. In the nervous system, apoptosis plays crucial roles in normal development and neuronal degenerating diseases. Various deleterious conditions, including accumulation of the mutant proteins in the endoplasmic reticulum (ER) and inhibition of ER to Golgi transport of proteins, may result in apoptosis. In this study, we examined the downstream events of apoptosis in differentiated PC 12 cells under ER stress induced by brefeldin A, an inhibitor of ER to Golgi protein transport. Activation of NF-B and degradation of I-B were observed within 2 hours, followed by up-regulation of GRP78 protein level in treated cells. Caspase-12 only appeared around 24 hours after brefeldin A treatment, coincident with cell nuclei fragmentation. These results suggest that neuronal apoptosis may be induced by ER stress through a NF-B and caspase related pathway.  相似文献   

2.
3.
4.
内质网应激(Endoplasmic reticulum stress,ERS)的激活与创伤、缺血再灌注等病理刺激引起的神经元凋亡有关,流行性乙型脑炎病毒(JEV)感染能够促进神经元凋亡、激活ERS,但ERS在JEV诱导神经元细胞凋亡中的作用尚不清楚.为了研究ERS在JEV诱导神经元细胞凋亡中的作用及机制,本研究以神经细胞株SH-SY5Y为对象,感染JEV并加用ERS激动剂、ERS抑制剂或转染阴性对照(NC) siRNA、蛋白激酶R样内质网激酶(PERK)siRNA,检测细胞存活率、凋亡率、ERS蛋白PERK、肌醇必需酶-1α(IRE1α)、活化转录因子6(ATF6)及凋亡蛋白C/EBP同源蛋白(CHOP)、含半胱氨酸的天冬氨酸蛋白水解酶12(Caspase-12)、Bcl-2相关X蛋白(Bax)的表达.结果 显示:JEV组SH-SY5Y细胞的凋亡率及PERK、CHOP、Caspase-12、Bax的表达水平高于对照组,存活率低于对照组(P<0.05),IRE1α、ATF6的表达水平与对照组比较无显著差异(P>0.05).与JEV组比较,激动剂组SH-SY5Y细胞的凋亡率及PERK、CHOP、Caspase-12、Bax的表达水平显著增加,存活率显著降低(P<0.05);抑制剂组SH-SY5Y细胞的凋亡率及PERK、CHOP、Caspase-12、Bax的表达水平显著降低,存活率显著增加(P<0.05);与si-NC+JEV组比较,si-PERK+JEV组SH-SY5Y细胞的凋亡率及PERK、CHOP、Caspase-12、Bax的表达水平P显著降低,存活率显著增加(P<0.05).以上结果表明ERS的PERK通路激活与JEV诱导神经元凋亡有关.  相似文献   

5.
目的:通过衣霉素诱导内质网应激建立新生大鼠心肌细胞凋亡模型。方法:不同浓度、不同时间的衣霉素作用于原代培养乳鼠心肌细胞,通过MTT实验和流式细胞术测定心肌细胞的存活率和凋亡率,Western blot检测内质网应激蛋白GRP78,CHOP表达水平。结果:①与阴性对照组相比,衣霉素具有损伤心肌细胞的作用,并呈现剂量与时间依赖关系(P<0.05,n=12)。②通过流式细胞术判断心肌细胞死亡的性质,当衣霉素浓度为100ng/ml,作用72h时,心肌细胞存活率和凋亡率分别为57.4±3.2%(n=12),25.9±5.8%(n=3)。提示衣霉素损伤细胞的形式主要为凋亡性死亡。③内质网应激蛋白GRP78和CHOP表达于6h开始增加,24h达到峰值,随后呈下降趋势。结论:应用衣霉素成功诱导SD乳鼠心肌细胞内质网应激凋亡模型,衣霉素的最佳诱导浓度为100ng/ml,作用时间为72h。  相似文献   

6.
目的观察严重烧伤大鼠心肌细胞内质网应激蛋白表达的改变及其意义,以探讨严重烧伤后心肌损伤与内质网应激的关系。方法建立大鼠30%Ⅲ度烫伤模型,酶联免疫法检测血浆中心肌肌钙蛋白T(cTnT)含量,放射免疫法检测血浆中TNFα的含量,RT-PCR和免疫组化分析GRP94的表达。结果烧伤组大鼠伤后3h血浆中cTnT含量即呈显著升高(P〈0.01),心肌中GRP94 mRNA和蛋白表达于烧伤后3h显著性升高,12h达峰值,24h还呈显著升高;大鼠烧伤后3h心肌中Caspase-3活性开始升高,12h达高峰,48h后仍显著高于对照组。牛磺酸治疗组GRP94的表达和Caspase-3活性较烧伤组均有显著性降低(P〈0.05)。结论严重烧伤可引起心肌细胞内质网应激,牛磺酸对烧伤后早期心肌损害有保护作用。  相似文献   

7.
Although endoplasmic reticulum (ER) stress-induced apoptosis has been associated with pathogenesis of neurodegenerative diseases, the cellular components involved have not been well delineated. The present study shows that matrix metalloproteinase (MMP)-3 plays a role in the ER stress-induced apoptosis. ER stress induced by brefeldin A (BFA) or tunicamycin (TM) increases gene expression of MMP-3, selectively among various MMP subtypes, and the active form of MMP-3 (actMMP-3) in the brain-derived CATH.a cells. Pharmacological inhibition of enzyme activity, small interference RNA-mediated gene knockdown, and gene knock-out of MMP-3 all provide protection against ER stress. MMP-3 acts downstream of caspase-12, because both pharmacological inhibition and gene knockdown of caspase-12 attenuate the actMMP-3 increase, but inhibition and knock-out of MMP-3 do not alter caspase-12. Furthermore, independently of the increase in the protein level, the catalytic activity of MMP-3 enzyme can be increased via lowering of its endogenous inhibitor protein TIMP-1. Caspase-12 causes liberation of MMP-3 enzyme activity by degrading TIMP-1 that is already bound to actMMP-3. TIMP-1 is decreased in response to ER stress, and TIMP-1 overexpression leads to cell protection and a decrease in MMP-3 activity. Taken together, actMMP-3 protein level and catalytic activity are increased following caspase-12 activation during ER stress, and this in turn plays a role in the downstream apoptotic signaling in neuronal cells. MMP-3 and TIMP-1 may therefore serve as cellular targets for therapy against neurodegenerative diseases.  相似文献   

8.
Repeated low-dose exposure to carbofuran exerts its neurotoxic effects by non-cholinergic mechanisms. Emerging evidence indicates that oxidative stress plays an important role in carbofuran neurotoxicity after sub-chronic exposure. The purpose of the present study is to evaluate the role of mitochondrial oxidative stress and dysfunction as a primary event responsible for neurotoxic effects observed after sub-chronic carbofuran exposure. Carbofuran was administered to rats at a dose of 1 mg/kg orally for a period of 28 days. There was a significant inhibition in the activity of acetylcholinesterase (66.6%) in brain samples after 28 days of carbofuran exposure. Mitochondrial respiratory chain functions were assessed in terms of MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide) reduction and activity of succinate dehydrogenase in isolated mitochondria. It was observed that carbofuran exposure significantly inhibited MTT reduction (31%) and succinate dehydrogenase activity (57%). This was accompanied by decrease in low-molecular weight thiols (66.6%) and total thiols (37.4%) and an increase in lipid peroxidation (43.7%) in the mitochondria isolated from carbofuran-exposed rat brain. The changes in mitochondrial oxidative stress and functions were associated with impaired cognitive and motor functions in the animals exposed to carbofuran as compared to the control animals. Based on these results, it is clear that carbofuran exerts its neurotoxicity by impairing mitochondrial functions leading to oxidative stress and neurobehavioral deficits.  相似文献   

9.
Rough endoplasmic reticulum (RER) prepared from bulk-isolated neuronal perikarya of rat brain cortex of different postnatal ages was found to be active in vectorial discharge of nascent proteins through the membrane; this activity increased with the increasing age of animals and reached maximal values in adults. RER isolated from whole cortical tissue (containing all cell types) exhibited vectorial release only up to 18 days of age; the preparation from adult animals was essentially devoid of secretory activity. Controlled proteolysis of various preparations suggested that in neuronal RER of 8-day-old rats the proportion of nascent proteins operationally retained in the intravesicular space was about twice that retained by cortical preparations. For the purpose of comparison, these parameters were studied also in liver RER.  相似文献   

10.
Abstract: Oxidative stress and free radical damage have been implicated in the neurodegenerative changes characteristic of several neurodegenerative diseases, including Alzheimer's disease. There is experimental evidence that the neurotoxicity of β-amyloid is mediated via free radicals, and as the deposition of β-amyloid apparently precedes the formation of paired helical filaments (PHF) in Alzheimer's disease, we have investigated whether subjecting primary neuronal cultures to oxidative stress induces changes in the phosphorylation state of the principal PHF protein τ that resemble those found in PHF-τ. Contrary to causing an increase in τ phosphorylation, treatment of neurones with hydrogen peroxide caused a dephosphorylation of τ and so we conclude that oxidative stress is not the direct cause of τ hyperphosphorylation and hence of PHF formation.  相似文献   

11.
Inherited retinal disorders (IRDs) result in severe visual impairments in children and adults. A challenge in the field of retinal degenerations is identifying mechanisms of photoreceptor cell death related to specific genetic mutations. Mutations in the gene TULP1 have been associated with two forms of IRDs, early-onset retinitis pigmentosa (RP) and Leber congenital amaurosis (LCA). TULP1 is a cytoplasmic, membrane-associated protein shown to be involved in transportation of newly synthesized proteins destined for the outer segment compartment of photoreceptor cells; however, how mutant TULP1 causes cell death is not understood. In this study, we provide evidence that common missense mutations in TULP1 express as misfolded protein products that accumulate within the endoplasmic reticulum (ER) causing prolonged ER stress. In an effort to maintain protein homeostasis, photoreceptor cells then activate the unfolded protein response (UPR) complex. Our results indicate that the two major apoptotic arms of the UPR pathway, PERK and IRE1, are activated. Additionally, we show that retinas expressing mutant TULP1 significantly upregulate the expression of CHOP, a UPR signaling protein promoting apoptosis, and undergo photoreceptor cell death. Our study demonstrates that the ER-UPR, a known mechanism of apoptosis secondary to an overwhelming accumulation of misfolded protein, is involved in photoreceptor degeneration caused by missense mutations in TULP1. These observations suggest that modulating the UPR pathways might be a strategy for therapeutic intervention.  相似文献   

12.
In this article, we show that the endoplasmic reticulum (ER) in Arabidopsis thaliana undergoes morphological changes in structure during ER stress that can be attributed to autophagy. ER stress agents trigger autophagy as demonstrated by increased production of autophagosomes. In response to ER stress, a soluble ER marker localizes to autophagosomes and accumulates in the vacuole upon inhibition of vacuolar proteases. Membrane lamellae decorated with ribosomes were observed inside autophagic bodies, demonstrating that portions of the ER are delivered to the vacuole by autophagy during ER stress. In addition, an ER stress sensor, INOSITOL-REQUIRING ENZYME-1b (IRE1b), was found to be required for ER stress–induced autophagy. However, the IRE1b splicing target, bZIP60, did not seem to be involved, suggesting the existence of an undiscovered signaling pathway to regulate ER stress–induced autophagy in plants. Together, these results suggest that autophagy serves as a pathway for the turnover of ER membrane and its contents in response to ER stress in plants.  相似文献   

13.
We investigated the mechanisms underlying damage to rat small intestine in heat- and shake-induced stress. Eighteen Sprague-Dawley rats were randomly divided into a control group and a 3-day stressed group treated 2 h daily for 3 days on a rotary platform at 35°C and 60 r/min. Hematoxylin and eosin-stained paraffin sections of the jejunum following stress revealed shedding of the villus tip epithelial cells and lamina propria exposure. Apoptosis increased at the villus tip and extended to the basement membrane. Photomicrographs revealed that the microvilli were shorter and sparser; the nuclear envelope invaginated and gaps in the karyolemma increased; and the endoplasmic reticulum (ER) swelled significantly. Gene microarray analysis assessed 93 differentially expressed genes associated with apoptosis, ER stress, and autophagy. Relevant genes were compiled from the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Forty-one genes were involved in the regulation of apoptosis, fifteen were related to autophagy, and eleven responded to ER stress. According to KEGG, the apoptosis pathways, mitogen-activated protein kinase(MAPK) signaling pathway, the mammalian target of rapamycin (mTOR) signaling pathway, and regulation of autophagy were involved. Caspase3 (Casp3), caspase12 (Casp12), and microtubule-associate proteins 1 light chain 3(LC3) increased significantly at the villus tip while mTOR decreased; phosphorylated-AKT (P-AKT) decreased. ER stress was involved and induced autophagy and apoptosis in rat intestinal damage following heat and shake stress. Bioinformatic analysis will help determine the underlying mechanisms in stress-induced damage in the small intestine.  相似文献   

14.
Malathion is a pesticide with high potential for human exposure. However, it is possible that during the malathion metabolism, there is generation of reactive oxygen species (ROS) and malathion may produce oxidative stress in intoxicated rats. The present study was therefore undertaken to determine malathion-induced lipid peroxidation (LPO), protein carbonylation and to determine whether malathion intoxication alters the antioxidant system in brain rats. Malathion was administered intraperitoneally in the acute and chronic protocols in the doses of 25, 50, 100 and 150 mg malathion/kg. The results showed that LPO in brain increased in both protocols. The increased oxidative stress resulted in an increased in the activity of antioxidant enzymes such as superoxide dismutase (SOD) and catalase (CAT), observed in cortex, striatum in the acute malathion protocol and hippocampus in the chronic malathion protocol. Our results demonstrated that malathion induced oxidative stress and modulated SOD and CAT activity in selective brain regions.  相似文献   

15.
16.
Multigenerational evaluation was made in rats on exposure to high fluoride (100 and 200 ppm) to assess neurotoxic potential of fluoride in discrete areas of the brain in terms of lipid peroxidation and the activity of antioxidant enzyme system. The rats were given fluoride through drinking water (100 and 200 ppm) and maintained subsequently for three generations. Fluoride treatment significantly increased the lipid peroxidation and decreased the activity of antioxidant enzymes viz, catalase, superoxide dismutase, glutathione peroxidase, glutathione S-transferase, and glutathione level in first-generation rats and these alterations were more pronounced in the subsequent second and third-generation rats in both the doses tested. Decreased feed and water consumption, litter size and organ (brain) somatic index, marginal drop in body growth rate and mortality were observed in all three generations. Decreased antioxidant enzyme activity and increased malondialdehyde levels found in the present study might be related to oxidative damage that occurs variably in discrete regions of the brain. Results of this study can be taken as an index of neurotoxicity in rats exposed to water fluoridation over several generations.  相似文献   

17.
18.
19.

Background

Our previous research indicated that apoptosis induced atrophy in the hippocampus of post-traumatic stress disorder (PTSD) rats. Endoplasmic reticulum (ER) stress-induced apoptosis has been implicated in the development of several disorder diseases. The aim of this study was to investigate whether endoplasmic reticulum-related pathway is involved in single-prolonged stress (SPS) induces apoptosis in the hippocampus of PTSD rats by examining the expression levels of three important indicators in the ER-related apoptotic pathway: Glucose-regulated protein (GRP) 78, caspase-12 and Ca2+/CaM/CaMkinaseIIα (CaMkIIα).

Methods

Wistar rats were sacrificed at 1, 4 and 7 days after SPS. SPS is a reliable animal model of PTSD. The apoptotic cells in the hippocampus were assessed by TUNEL method and transmission electron microscopy (TEM). Free intracellular Ca2+ concentration was measured. GRP78 expression was examined by immunohistochemistry, western blotting and RT-PCR. mRNA of caspase-12 and CaM/CaMkIIα were determined by RT-PCR.

Results

Our results showed that apoptotic cells were increased in the SPS rats. TEM analysis revealed characteristic morphological changes of apoptosis in these cells. We observed that GRP78 was significantly up-regulated during early PTSD, and then recovered at 7 days after SPS. By RT-PCR, we observed that the change in caspase-12 expression level was similar to that in GRP78. Moreover, the free intracellular Ca2+ concentration was significantly higher at 1 day after SPS and decreased in 7 days. CaM expression increased significantly, while CaMKIIα expression decreased significantly in the hippocampus at 1 day after SPS.

Conclusion

SPS induced change in the expression levels of GRP78, caspase-12 and Ca2+/CaM/CaMkIIα in the hippocampus of PTSD rats indicated that the endoplasmic reticulum pathway may be involved in PTSD-induced apoptosis.  相似文献   

20.
The relationship between selenium (Se) deficiency-induced cardiac malfunction and endoplasmic reticulum (ER) stress is poorly understood. In the present study, 18 weaning Sprague Dawley rats were randomly fed with three different Se diets, and myocardial glutathione peroxidase (GPx) activity was measured by an enzyme activity assay. Cardiac function was evaluated by hemodynamic parameters. ER stress markers immunoglobulin-binding protein (BiP)/glucose-regulated protein 78 (GRP78) and C/EBP homologous protein (CHOP) were detected by western blotting. Our data showed that myocardial GPx activity and cardiac function were conspicuously impaired in Se-deficient rats. Expression of GRP78 and CHOP was significantly upregulated by treatment of Se deficiency. Improvements in myocardial GPx activity and cardiac function, as well as decreases in expression of GRP78 and CHOP, were observed after Se supplementation. Consequently, our data show that ER stress was involved in Se deficiency-induced cardiac dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号