首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Sirtuin family: therapeutic targets to treat diseases of aging   总被引:2,自引:0,他引:2  
Sirtuins have emerged as therapeutic targets to treat age-related diseases. There are seven human Sirtuins (SIRT1-7) that display diversity in cellular localization and function. Growing evidence suggests that small-molecule activators of SIRT1 may counteract age-related afflictions such as type 2 diabetes. Alternatively, inhibitors of SIRT2 may be useful in the treatment of neurodegenerative diseases such as Parkinson's disease. Recent discoveries of small-molecule and protein modulators of Sirtuin deacetylation activity have provided enormous insight into the biological and molecular functions of Sirtuins and have validated their potential as therapeutics.  相似文献   

2.
3.
4.
Cancer and inflammation are strongly interconnected processes. Chronic inflammatory pathologies can be at the heart of tumor development; similarly, tumor-elicited inflammation is a consequence of many cancers. The mechanistic interdependence between cancer and inflammatory pathologies points toward common protein effectors which represent potential shared targets for pharmacological intervention. Epigenetic mechanisms often drive resistance to cancer therapy and immunomodulatory strategies. The bromodomain and extraterminal domain (BET) proteins are epigenetic adapters which play a major role in controlling cell proliferation and the production of inflammatory mediators. A plethora of small molecules aimed at inhibiting BET protein function to treat cancer and inflammatory diseases have populated academic and industry efforts in the last 10 years. In this review, we will discuss recent pharmacological approaches aimed at targeting a single or a subset of the eight bromodomains within the BET family which have the potential to tease apart clinical efficacy and safety signals of BET inhibitors.  相似文献   

5.
6.
Extracellular acidification occurs not only in pathological conditions such as inflammation and brain ischemia, but also in normal physiological conditions such as synaptic transmission. Acid-sensing ion channels (ASICs) can detect a broad range of physiological pH changes during pathological and synaptic cellular activities. ASICs are voltage-independent, proton-gated cation channels widely expressed throughout the central and peripheral nervous system. Activation of ASICs is involved in pain perception, synaptic plasticity, learning and memory, fear, ischemic neuronal injury, seizure termination, neuronal degeneration, and mechanosensation. Therefore, ASICs emerge as potential therapeutic targets for manipulating pain and neurological diseases. The activity of these channels can be regulated by many factors such as lactate, Zn2+, and Phe-Met-Arg-Phe amide (FMRFamide)-like neuropeptides by interacting with the channel’s large extracellular loop. ASICs are also modulated by G protein-coupled receptors such as CB1 cannabinoid receptors and 5-HT2. This review focuses on the physiological roles of ASICs and the molecular mechanisms by which these channels are regulated. [BMB Reports 2013; 46(6): 295-304]  相似文献   

7.
8.
9.
Advances in our understanding of the cellular and molecular mechanisms in rheumatic disease fostered the advent of the targeted therapeutics era. Intense research activity continues to increase the number of potential targets at an accelerated pace. In this review, examples of promising targets and agents that are at various stages of clinical development are described. Cytokine inhibition remains at the forefront with the success of tumor necrosis factor blockers, and biologics that block interleukin-6 (IL-6), IL-17, IL-12, and IL-23 and other cytokines are on the horizon. After the success of rituximab and abatacept, other cell-targeted approaches that inhibit or deplete lymphocytes have moved forward, such as blocking BAFF/BLyS (B-cell activation factor of the tumor necrosis factor family/B-lymphocyte stimulator) and APRIL (a proliferation-inducing ligand) or suppressing T-cell activation with costimulation molecule blockers. Small-molecule inhibitors might eventually challenge the dominance of biologics in the future. In addition to plasma membrane G protein-coupled chemokine receptors, small molecules can be designed to block intracellular enzymes that control signaling pathways. Inhibitors of tyrosine kinases expressed in lymphocytes, such as spleen tyrosine kinase and Janus kinase, are being tested in autoimmune diseases. Inactivation of the more broadly expressed mitogen-activated protein kinases could suppress inflammation driven by macrophages and mesenchymal cells. Targeting tyrosine kinases downstream of growth factor receptors might also reduce fibrosis in conditions like systemic sclerosis. The abundance of potential targets suggests that new and creative ways of evaluating safety and efficacy are needed.  相似文献   

10.
ObjectiveColorectal cancer (CRC) is one of the leading causes of cancer-related mortality. The bromodomain and extra-terminal domain (BET) inhibitors suppresses the gene expressions of various oncogenes and shows a good efficacy in the preclinical CRC models. We investigate the mechanism of action of BET inhibitors in CRC.MethodsThe effect of BET inhibitor (JQ1) on the HGF-MET signaling was assessed by qPCR, western blot and immunohistochemical staining in CRC and cancer-associated fibroblasts (CAFs). The effect of JQ1 on the CAFs was investigated using the primary CAFs derived from CRC tissues and induced-CAFs derived from isolating foreskin fibroblasts. The effect of JQ1 on the gene expression profile of CAFs was explored by RNA-sequence, qPCR and bioinformatic analysis.ResultsJQ1 decreased the mRNA and protein levels of MET in CRC cells and downregulated the mRNA and protein levels of HGF in both CRC cells and CAFs. JQ1 attenuated the pro-migratory activity of CAFs through downregulation of HGF expression in CAFs. Meanwhile, JQ1 also reduced the ability of contracting collagen gels, decreased the cell proliferation, induced G1 arrest and repressed the pro-inflammatory gene expressions in CAFs. MYC expression was suppressed by JQ1 in CAFs. Knockdown of MYC induced G1 arrest in CAFs.ConclusionOur results demonstrate the inhibitory effect of BET inhibition on the HGF-MET signaling and the pro-tumor activity of CAFs, revealing a new mechanism by which BET inhibition suppresses CRC progression.  相似文献   

11.
The bromodomain and extraterminal (BET) family of proteins play a crucial role in promoting gene expression of critical oncogenes. Novel BET bromodomain inhibitors with excellent potency, drug metabolism and pharmacokinetics (DMPK) properties were in strong need for development. We reported a series of potential BET inhibitors through incorporation of imidazole into pyridine scaffold. Among them, a novel BET inhibitor with 7-methylimidazo[1,5-a]pyrazin-8(7H)-one core, compound 28, was considered to be the most promising for in-depth study. Compound 28 exhibited excellent BRD4-inhibitory activity with IC50 value of 33 nM and anti-proliferation potency with IC50 value of 110 nM in HL-60 (human promyelocytic leukemia) cancer cell lines. Western Blot indicated that compound 28 can effectively trigger apoptosis in BxPc3 cells by modulating the intrinsic apoptotic pathway. In conclusion, these results suggested that compound 28 has merely potential for leukemia treatment.  相似文献   

12.
13.
Receptor for advanced glycation end-products (RAGE) is known to be involved in microvascular complications in diabetes. RAGE is also profoundly associated with macrovascular complications in diabetes through regulation of atherogenesis, angiogenic response, vascular injury, and inflammatory response. The potential significance of RAGE in the pathogenesis of cardiovascular disease appears not to be confined solely to nondiabetic rather than diabetic conditions. Numerous truncated forms of RAGE have recently been described, and the C-terminally truncated soluble form of RAGE has received much attention. Soluble RAGE consists of several forms, including endogenous secretory RAGE (esRAGE), which is a spliced variant of RAGE, and a shedded form derived from cell-surface RAGE. These heterogeneous forms of soluble RAGE, which carry all of the extracellular domains but are devoid of the transmembrane and intracytoplasmic domains, bind ligands including AGEs and can antagonize RAGE signaling in vitro and in vivo. ELISA systems have been developed to measure plasma esRAGE and total soluble RAGE, and the pathophysiological roles of soluble RAGE have begun to be unveiled clinically. In this review, we summarize recent findings regarding pathophysiological roles in cardiovascular disease of RAGE and soluble RAGE and discuss their potential usefulness as therapeutic targets and biomarkers for the disease.  相似文献   

14.
Neurodegenerative diseases (NDs) are a diverse group of disorders characterized by the progressive degeneration of the structure and function of the central or peripheral nervous systems. One of the major features of NDs, such as Alzheimer''s disease (AD), Parkinson''s disease (PD) and Huntington''s disease (HD), is the aggregation of specific misfolded proteins, which induces cellular dysfunction, neuronal death, loss of synaptic connections and eventually brain damage. By far, a great amount of evidence has suggested that TRIM family proteins play crucial roles in the turnover of normal regulatory and misfolded proteins. To maintain cellular protein quality control, cells rely on two major classes of proteostasis: molecular chaperones and the degradative systems, the latter includes the ubiquitin-proteasome system (UPS) and autophagy; and their dysfunction has been established to result in various physiological disorders including NDs. Emerging evidence has shown that TRIM proteins are key players in facilitating the clearance of misfolded protein aggregates associated with neurodegenerative disorders. Understanding the different pathways these TRIM proteins employ during episodes of neurodegenerative disorder represents a promising therapeutic target. In this review, we elucidated and summarized the diverse roles with underlying mechanisms of members of the TRIM family proteins in NDs.  相似文献   

15.
The human epidermal growth factor receptor (HER) family of transmembrane tyrosine kinases regulates diverse cellular functions in response to extracellular ligands. The deregulation of HER signaling through gene amplification or mutation is seen in many human tumors and an abundance of experimental evidence supports the etiological role of these events in cancer pathogenesis. In addition, the fact that they are feasible targets for both antibody and small-molecule therapeutics has made them highly pursued targets for the development of rationally designed anticancer drugs. Several HER-targeting agents have entered clinical practice and this has led to novel discoveries regarding the mechanisms of resistance, which has defined a new generation of challenges for targeted cancer therapies. Here, we review recent advances in our understanding of HER signaling and targeting in cancer.  相似文献   

16.
A large body of evidence supports an important role of bone morphogenic proteins (BMPs) pathways in skeletal development in the embryo. BMPs are also involved in skeletal homeostasis and diseases in the adult. They were first identified as major bone anabolic agents and recent advances indicate that they also regulate osteoclastogenesis and joint components via multiple cross-talks with other signaling pathways. This review attempts to integrate these data in the pathogenesis of bone and joints diseases, such as osteoporosis, fracture healing, osteoarthritis, inflammatory arthritis, or bone metastasis. The use of recombinant BMPs in bone tissue engineering and in the treatment of skeletal diseases, or future therapeutic strategies targeting BMPs signal and its regulators, will be discussed based on these considerations.  相似文献   

17.
To identify new potential therapeutic targets for neurodegenerative diseases, we initiated activity-based protein profiling studies with withanolide A (WitA), a known neuritogenic constituent of Withania somnifera root with unknown mechanism of action. Molecular probes were designed and synthesized, and led to the discovery of the glucocorticoid receptor (GR) as potential target. Molecular modeling calculations using the VirtualToxLab predicted a weak binding affinity of WitA for GR. Neurite outgrowth experiments in human neuroblastoma SH-SY5Y cells further supported a glucocorticoid-dependent mechanism, finding that WitA was able to reverse the outgrowth inhibition mediated by dexamethasone (Dex). However, further GR binding and transactivation assays found no direct interference of WitA. Further molecular modeling analysis suggested that WitA, although forming several contacts with residues in the GR binding pocket, is lacking key stabilizing interactions as observed for Dex. Taken together, the data suggest that WitA-dependent induction of neurite outgrowth is not through a direct effect on GR, but might be mediated through a closely related pathway. Further experiments should evaluate a possible role of GR modulators and/or related signaling pathways such as ERK, Akt, NF-κB, TRα, or Hsp90 as potential targets in the WitA-mediated neuromodulatory effects.  相似文献   

18.
The identification of specific target proteins for any diseased condition involves extensive characterization of the potentially involved proteins. Members of a protein family demonstrating comparable features may show certain unusual features when implicated in a pathological condition. Advancements in the field of computational biology and the use of various bioinformatics tools for analysis can aid researchers to comprehend their system of work in primary stages of research. This initial screening can help to reduce time and cost of testing and experimentation in laboratory. Human matrix metalloproteinase (MMP) family of endopeptidases is one such family of 23 members responsible for the remodeling of extracellular matrix (ECM) by degradation of the ECM proteins. Though their role has been implicated in various pathological conditions such as arthritis, atherosclerosis, cancer, liver fibrosis, cardio-vascular and neurodegenerative disorders, little is known about the specific involvement of members of the large MMP family in diseases. A comparative in silico characterization of the MMP protein family has been carried out to analyze their physico-chemical, secondary structural and functional properties. Based on the observed patterns of occurrence of atypical features, we hypothesize that cysteine rich and highly thermostable MMPs might be key players in diseased conditions. Thus, a plausible grouping of disease responsive MMPs that might be considered as promising clinical targets may be done. This study can be used as a fundamental approach to characterize, analyze and screen large protein families for the identification of signature patterns.  相似文献   

19.
20.
The ubiquitous cell membrane proteins called aquaporins are now firmly established as channel proteins that control the specific transport of water molecules across cell membranes in all living organisms. The aquaporins are thus likely to be of fundamental significance to all facets of plant growth and development affected by plant–water relations. A majority of plant aquaporins have been found to share essential structural features with the human aquaporin and exhibit water-transporting ability in various functional assays, and some have been shown experimentally to be of critical importance to plant survival. Furthermore, substantial evidence is now available from a number of plant species that shows differential gene expression of aquaporins in response to abiotic stresses such as salinity, drought, or cold and clearly establishes the aquaporins as major players in the response of plants to conditions that affect water availability. This review summarizes the function and regulation of these genes to develop a greater understanding of the response of plants to water insufficiency, and particularly, to identify tolerant genotypes of major crop species including wheat and rice and plants that are important in agroforestry. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号