首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Motivation

Paired-end sequencing protocols, offered by next generation sequencing (NGS) platforms like Illumia, generate a pair of reads for every DNA fragment in a sample. Although this protocol has been utilized for several metagenomics studies, most taxonomic binning approaches classify each of the reads (forming a pair), independently. The present work explores some simple but effective strategies of utilizing pairing-information of Illumina short reads for improving the accuracy of taxonomic binning of metagenomic datasets. The strategies proposed can be used in conjunction with all genres of existing binning methods.

Results

Validation results suggest that employment of these “Binpairs” strategies can provide significant improvements in the binning outcome. The quality of the taxonomic assignments thus obtained are often comparable to those that can only be achieved with relatively longer reads obtained using other NGS platforms (such as Roche).

Availability

An implementation of the proposed strategies of utilizing pairing information is freely available for academic users at https://metagenomics.atc.tcs.com/binning/binpairs.  相似文献   

2.

Background

Horizontal gene transfer (HGT) has been widely identified in complete prokaryotic genomes. However, the roles of HGT among members of a microbial community and in evolution remain largely unknown. With the emergence of metagenomics, it is nontrivial to investigate such horizontal flow of genetic materials among members in a microbial community from the natural environment. Because of the lack of suitable methods for metagenomics gene transfer detection, microorganisms from a low-complexity community acid mine drainage (AMD) with near-complete genomes were used to detect possible gene transfer events and suggest the biological significance.

Results

Using the annotation of coding regions by the current tools, a phylogenetic approach, and an approximately unbiased test, we found that HGTs in AMD organisms are not rare, and we predicted 119 putative transferred genes. Among them, 14 HGT events were determined to be transfer events among the AMD members. Further analysis of the 14 transferred genes revealed that the HGT events affected the functional evolution of archaea or bacteria in AMD, and it probably shaped the community structure, such as the dominance of G-plasma in archaea in AMD through HGT.

Conclusions

Our study provides a novel insight into HGT events among microorganisms in natural communities. The interconnectedness between HGT and community evolution is essential to understand microbial community formation and development.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1720-0) contains supplementary material, which is available to authorized users.  相似文献   

3.
4.
5.
6.

Background

Horizontal gene transfer (HGT) is a vexing fact of life for microbial phylogeneticists. Given the substantial rates of HGT observed in modern-day bacterial chromosomes, it is envisaged that ancient prokaryotic genomes must have been similarly chimeric. But where can one find an ancient prokaryotic genome that has maintained its ancestral condition to address this issue? An excellent candidate is the cyanobacterial endosymbiont that was harnessed over a billion years ago by a heterotrophic protist, giving rise to the plastid. Genetic remnants of the endosymbiont are still preserved in plastids as a highly reduced chromosome encoding 54 – 264 genes. These data provide an ideal target to assess genome chimericism in an ancient cyanobacterial lineage.

Results

Here we demonstrate that the origin of the plastid-encoded gene cluster for menaquinone/phylloquinone biosynthesis in the extremophilic red algae Cyanidiales contradicts a cyanobacterial genealogy. These genes are relics of an ancestral cluster related to homologs in Chlorobi/Gammaproteobacteria that we hypothesize was established by HGT in the progenitor of plastids, thus providing a 'footprint' of genome chimericism in ancient cyanobacteria. In addition to menB, four components of the original gene cluster (menF, menD, menC, and menH) are now encoded in the nuclear genome of the majority of non-Cyanidiales algae and plants as the unique tetra-gene fusion named PHYLLO. These genes are monophyletic in Plantae and chromalveolates, indicating that loci introduced by HGT into the ancestral cyanobacterium were moved over time into the host nucleus.

Conclusion

Our study provides unambiguous evidence for the existence of genome chimericism in ancient cyanobacteria. In addition we show genes that originated via HGT in the cyanobacterial ancestor of the plastid made their way to the host nucleus via endosymbiotic gene transfer (EGT).
  相似文献   

7.

Background

Mycobacterium tuberculosis is one of the most dangerous human pathogens, the causative agent of tuberculosis. While this pathogen is considered as extremely clonal and resistant to horizontal gene exchange, there are many facts supporting the hypothesis that on the early stages of evolution the development of pathogenicity of ancestral Mtb has started with a horizontal acquisition of virulence factors. Episodes of infections caused by non-tuberculosis Mycobacteria reported worldwide may suggest a potential for new pathogens to appear. If so, what is the role of horizontal gene transfer in this process?

Results

Availing of accessibility of complete genomes sequences of multiple pathogenic, conditionally pathogenic and saprophytic Mycobacteria, a genome comparative study was performed to investigate the distribution of genomic islands among bacteria and identify ontological links between these mobile elements. It was shown that the ancient genomic islands from M. tuberculosis still may be rooted to the pool of mobile genetic vectors distributed among Mycobacteria. A frequent exchange of genes was observed between M. marinum and several saprophytic and conditionally pathogenic species. Among them M. avium was the most promiscuous species acquiring genetic materials from diverse origins.

Conclusions

Recent activation of genetic vectors circulating among Mycobacteria potentially may lead to emergence of new pathogens from environmental and conditionally pathogenic Mycobacteria. The species which require monitoring are M. marinum and M. avium as they eagerly acquire genes from different sources and may become donors of virulence gene cassettes to other micro-organisms.
  相似文献   

8.
9.
10.
The ability of Mycobacterium tuberculosis (M. tuberculosis) to accumulate lipid-rich molecules as an energy source obtained from host cell debris remains interesting. Additionally, the potential of M. tuberculosis to survive under different stress conditions leading to its dormant state in pathogenesis remains elusive. The exact mechanism by which these lipid bodies generated in M. tuberculosis infection and utilized by bacilli inside infected macrophage for its survival is still not understood. In this, during bacillary infection, many metabolic pathways are involved that influence the survival of M. tuberculosis for their own support. However, the exact energy source derived from infecting host cells remain elusive. Therefore, this study highlights several alternative energy sources in the form of triacylglycerol (TAG) and fatty acids, i.e. oleic acids accumulation, which are essential in dormancy-like state under M. tuberculosis infection. The prominent stage in tuberculosis (TB) infection is re-establishment of M. tuberculosis under stress conditions and deployment of a confined strategy to utilize these biomolecules for its persistence survival. So, growing in our understanding of these pathways will help us in accelerating therapies, which could reduce TB prevalence world widely.  相似文献   

11.

Background

Tuberculosis remains a major world-wide health threat which demands the discovery and characterisation of new drug targets in order to develop future antimycobacterials. The regeneration of methionine consumed during polyamine biosynthesis is an important pathway present in many microorganisms. The final step of this pathway, the conversion of ketomethiobutyrate to methionine, can be performed by aspartate, tyrosine, or branched-chain amino acid aminotransferases depending on the particular species examined.

Results

The gene encoding for branched-chain amino acid aminotransferase in Mycobacterium tuberculosis H37Rv has been cloned, expressed, and characterised. The enzyme was found to be a member of the aminotransferase IIIa subfamily, and closely related to the corresponding aminotransferase in Bacillus subtilis, but not to that found in B. anthracis or B. cereus. The amino donor preference for the formation of methionine from ketomethiobutyrate was for isoleucine, leucine, valine, glutamate, and phenylalanine. The enzyme catalysed branched-chain amino acid and ketomethiobutyrate transamination with a Km of 1.77 – 7.44 mM and a Vmax of 2.17 – 5.70 μmol/min/mg protein, and transamination of ketoglutarate with a Km of 5.79 – 6.95 mM and a Vmax of 11.82 – 14.35 μmol/min/mg protein. Aminooxy compounds were examined as potential enzyme inhibitors, with O-benzylhydroxylamine, O-t-butylhydroxylamine, carboxymethoxylamine, and O-allylhydroxylamine yielding mixed-type inhibition with Ki values of 8.20 – 21.61 μM. These same compounds were examined as antimycobacterial agents against M. tuberculosis and a lower biohazard M. marinum model system, and were found to completely prevent cell growth. O-Allylhydroxylamine was the most effective growth inhibitor with an MIC of 78 μM against M. marinum and one of 156 μM against M. tuberculosis.

Conclusion

Methionine formation from ketomethiobutyrate is catalysed by a branched-chain amino acid aminotransferase in M. tuberculosis. This enzyme can be inhibited by selected aminooxy compounds, which also have effectiveness in preventing cell growth in culture. These compounds represent a starting point for the synthesis of branched-chain aminotransferase inhibitors with higher activity and lower toxicity.
  相似文献   

12.
Genome-based phylogeny plays a central role in the future taxonomy and phylogenetics of Bacteria and Archaea by replacing 16S rRNA gene phylogeny. The concatenated core gene alignments are frequently used for such a purpose. The bacterial core genes are defined as single-copy, homologous genes that are present in most of the known bacterial species. There have been several studies describing such a gene set, but the number of species considered was rather small. Here we present the up-to-date bacterial core gene set, named UBCG, and software suites to accommodate necessary steps to generate and evaluate phylogenetic trees. The method was successfully used to infer phylogenomic relationship of Escherichia and related taxa and can be used for the set of genomes at any taxonomic ranks of Bacteria. The UBCG pipeline and file viewer are freely available at https://www.ezbiocloud.net/tools/ubcg and https://www.ezbiocloud.net/tools/ubcg_viewer, respectively.  相似文献   

13.
The article draws the attention of chemists to the literature data reporting the discovery of new targets for growth inhibition of Mycobacterium tuberculosis, namely, diterpene cyclase (Rv3377c) and tuberculosinol phosphatase (Rv3378c), which produce diterpenoids of tuberculosinols in the cell membrane of M. tuberculosis, and these diterpenoids ensure the pathogenicity and the virulence of M. tuberculosis. For the first time, by the example of diterpenoid of isosteviol, its binuclear derivatives, triterpenoid betulinic, oleanolic, and ursolic acids, it has been shown by the molecular docking method that the antitubercular activity of natural terpenoids is caused by their ability to bind to the active site of tuberculosinol phosphatase (Rv3378c) of M. tuberculosis. It is suggested that natural and semisynthetic terpenoids represent a promising platform for design of a new generation of antitubercular agents that affect this enzyme.  相似文献   

14.
Screening live mycobacterial vaccine candidates is the important strategy to develop new vaccines against adult tuberculosis (TB). In this study, the immunogenicity and protective efficacy of several avirulent mycobacterial strains including Mycobacterium smegmatis, M. vaccae, M. terrae, M. phlei, M. trivial, and M. tuberculosis H37Ra were compared with M. bovis BCG in BALB/c mice. Our results demonstrated that differential immune responses were induced in different mycobacterial species vaccinated mice. As BCG-vaccinated mice did, M. terrae immunization resulted in Th1-type responses in the lung, as well as splenocytes secreting IFN-γ against a highly conserved mycobacterial antigen Ag85A. M. smegmatis also induced the same splenocytes secreting IFN-γ as BCG and M. terrae did. In addition, M. terrae and M. smegmatis-immunized mice predominantly increased expression of IL-10 and TGF-β in the lung. Most importantly, mice vaccinated with H37Ra and M. vaccae could provide the same protection in the lung against virulent M. tuberculosis challenge as BCG. The result may have important implications in developing adult TB vaccine.  相似文献   

15.
16.
17.

Background

The overall metabolic/functional potential of any given environmental niche is a function of the sum total of genes/proteins/enzymes that are encoded and expressed by various interacting microbes residing in that niche. Consequently, prior (collated) information pertaining to genes, enzymes encoded by the resident microbes can aid in indirectly (re)constructing/ inferring the metabolic/ functional potential of a given microbial community (given its taxonomic abundance profile). In this study, we present Vikodak—a multi-modular package that is based on the above assumption and automates inferring and/ or comparing the functional characteristics of an environment using taxonomic abundance generated from one or more environmental sample datasets. With the underlying assumptions of co-metabolism and independent contributions of different microbes in a community, a concerted effort has been made to accommodate microbial co-existence patterns in various modules incorporated in Vikodak.

Results

Validation experiments on over 1400 metagenomic samples have confirmed the utility of Vikodak in (a) deciphering enzyme abundance profiles of any KEGG metabolic pathway, (b) functional resolution of distinct metagenomic environments, (c) inferring patterns of functional interaction between resident microbes, and (d) automating statistical comparison of functional features of studied microbiomes. Novel features incorporated in Vikodak also facilitate automatic removal of false positives and spurious functional predictions.

Conclusions

With novel provisions for comprehensive functional analysis, inclusion of microbial co-existence pattern based algorithms, automated inter-environment comparisons; in-depth analysis of individual metabolic pathways and greater flexibilities at the user end, Vikodak is expected to be an important value addition to the family of existing tools for 16S based function prediction.

Availability and Implementation

A web implementation of Vikodak can be publicly accessed at: http://metagenomics.atc.tcs.com/vikodak. This web service is freely available for all categories of users (academic as well as commercial).  相似文献   

18.

Background

The development of DNA amplification for the direct detection of M. tuberculosis from clinical samples has been a major goal of clinical microbiology during the last ten years. However, the limited sensitivity of most DNA amplification techniques restricts their use to smear positive samples. On the other hand, the development of automated liquid culture has increased the speed and sensitivity of cultivation of mycobacteria. We have opted to combine automated culture with rapid genotypic identification (ARDRA: amplified rDNA restriction analysis) for the detection resp. identification of all mycobacterial species at once, instead of attempting direct PCR based detection from clinical samples of M. tuberculosis only.

Results

During 1998–2000 a total of approx. 3500 clinical samples was screened for the presence of M. tuberculosis. Of the 151 culture positive samples, 61 were M. tuberculosis culture positive. Of the 30 smear positive samples, 26 were M. tuberculosis positive. All but three of these 151 mycobacterial isolates could be identified with ARDRA within on average 36 hours. The three isolates that could not be identified belonged to rare species not yet included in our ARDRA fingerprint library or were isolates with an aberrant pattern.

Conclusions

In our hands, automated culture in combination with ARDRA provides with accurate, practically applicable, wide range identification of mycobacterial species. The existing identification library covers most species, and can be easily updated when new species are studied or described. The drawback is that ARDRA is culture-dependent, since automated culture of M. tuberculosis takes on average 16.7 days (range 6 to 29 days). However, culture is needed after all to assess the antibiotic susceptibility of the strains.
  相似文献   

19.
20.

Background

Species of Paris Sect. Marmorata are valuable medicinal plants to synthesize steroidal saponins with effective pharmacological therapy. However, the wild resources of the species are threatened by plundering exploitation before the molecular genetics studies uncover the genomes and evolutionary significance. Thus, the availability of complete chloroplast genome sequences of Sect. Marmorata is necessary and crucial to the understanding the plastome evolution of this section and facilitating future population genetics studies. Here, we determined chloroplast genomes of Sect. Marmorata, and conducted the whole chloroplast genome comparison.

Results

This study presented detailed sequences and structural variations of chloroplast genomes of Sect. Marmorata. Over 40 large repeats and approximately 130 simple sequence repeats as well as a group of genomic hotspots were detected. Inverted repeat contraction of this section was inferred via comparing the chloroplast genomes with the one of P. verticillata. Additionally, almost all the plastid protein coding genes were found to prefer ending with A/U. Mutation bias and selection pressure predominately shaped the codon bias of most genes. And most of the genes underwent purifying selection, whereas photosynthetic genes experienced a relatively relaxed purifying selection.

Conclusions

Repeat sequences and hotspot regions can be scanned to detect the intraspecific and interspecific variability, and selected to infer the phylogenetic relationships of Sect. Marmorata and other species in subgenus Daiswa. Mutation and natural selection were the main forces to drive the codon bias pattern of most plastid protein coding genes. Therefore, this study enhances the understanding about evolution of Sect. Marmorata from the chloroplast genome, and provide genomic insights into genetic analyses of Sect. Marmorata.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号