共查询到20条相似文献,搜索用时 15 毫秒
1.
Here we demonstrate for the first time that cannabidiol (CBD) acts to protect synaptic plasticity in an in vitro model of Alzheimer’s disease (AD). The non-psycho active component of Cannabis sativa, CBD has previously been shown to protect against the neurotoxic effects of beta amyloid peptide (Aβ) in cell culture and cognitive behavioural models of neurodegeneration. Hippocampal long-term potentiation (LTP) is an activity dependent increase in synaptic efficacy often used to study cellular mechanisms related to memory. Here we show that acute application of soluble oligomeric beta amyloid peptide (Aβ1–42) associated with AD, attenuates LTP in the CA1 region of hippocampal slices from C57Bl/6 mice. Application of CBD alone did not alter LTP, however pre-treatment of slices with CBD rescued the Aβ1–42 mediated deficit in LTP. We found that the neuroprotective effects of CBD were not reversed by WAY100635, ZM241385 or AM251, demonstrating a lack of involvement of 5HT1A, adenosine (A2A) or Cannabinoid type 1 (CB1) receptors respectively. However in the presence of the PPARγ antagonist GW9662 the neuroprotective effect of CBD was prevented. Our data suggests that this major component of Cannabis sativa, which lacks psychoactivity may have therapeutic potential for the treatment of AD. 相似文献
2.
Alzheimer’s disease is a progressive neurodegenerative disease that entails impairments of memory, thinking and behavior and culminates into brain atrophy. Impaired glucose uptake (accumulating into energy deficits) and synaptic plasticity have been shown to be affected in the early stages of Alzheimer’s disease. This study examines the ability of lipoic acid to increase brain glucose uptake and lead to improvements in synaptic plasticity on a triple transgenic mouse model of Alzheimer’s disease (3xTg-AD) that shows progression of pathology as a function of age; two age groups: 6 months (young) and 12 months (old) were used in this study. 3xTg-AD mice fed 0.23% w/v lipoic acid in drinking water for 4 weeks showed an insulin mimetic effect that consisted of increased brain glucose uptake, activation of the insulin receptor substrate and of the PI3K/Akt signaling pathway. Lipoic acid supplementation led to important changes in synaptic function as shown by increased input/output (I/O) and long term potentiation (LTP) (measured by electrophysiology). Lipoic acid was more effective in stimulating an insulin-like effect and reversing the impaired synaptic plasticity in the old mice, wherein the impairment of insulin signaling and synaptic plasticity was more pronounced than those in young mice. 相似文献
3.
Lipoprotein lipase (LPL) is involved in regulation of fatty acid metabolism, and facilitates cellular uptake of lipoproteins, lipids and lipid-soluble vitamins. We evaluated LPL distribution in healthy and Alzheimer’s disease (AD) brain tissue and its relative levels in cerebrospinal fluid. LPL immunostaining is widely present in different neuronal subgroups, microglia, astrocytes and oligodendroglia throughout cerebrum, cerebellum and spinal cord. LPL immunoreactivity is also present in leptomeninges, small blood vessels, choroid plexus and ependymal cells, Schwann cells associated with cranial nerves, and in anterior and posterior pituitary. In vitro studies have shown presence of secreted LPL in conditioned media of human cortical neuronal cell line (HCN2) and neuroblastoma cells (SK-N-SH), but not in media of cultured primary human astrocytes. LPL was present in cytoplasmic and nuclear fractions of neuronal cells and astrocytes in vitro. LPL immunoreactivity strongly associates with AD-related pathology, staining diffuse plaques, dystrophic and swollen neurites, possible Hirano bodies and activated glial cells. We observed no staining associated with neurofibrillary tangles or granulovacuolar degeneration. Granule cells of the dentate gyrus and the associated synaptic network showed significantly reduced staining in AD compared to control tissue. LPL was also reduced in AD CSF samples relative to those in controls. 相似文献
4.
Nature has gifted mankind with a plethora of flora-bearing fruits, vegetables and nuts. The diverse array of bioactive nutrients present in these natural products plays a pivotal role in prevention and cure of various neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease and other neuronal dysfunctions. Accumulated evidence suggests that naturally occurring phyto-compounds, such as polyphenolic antioxidants found in fruits, vegetables, herbs and nuts, may potentially hinder neurodegeneration, and improve memory and cognitive function. Nuts such as walnut have also demonstrated neuroprotective effect against AD. The molecular mechanisms behind the curative effects rely mainly on the action of phytonutrients on distinct signalling pathways associated with protein folding and neuroinflammation. The neuroprotective effects of various naturally occurring compounds in AD is evaluating in this review. 相似文献
6.
Autophagy is an essential degradation pathway in clearing abnormal protein aggregates in mammalian cells and is responsible for protein homeostasis and neuronal health. Several studies have shown that autophagy deficits occurred in early stage of Alzheimer’s disease (AD). Autophagy plays an important role in generation and metabolism of β-amyloid (Aβ), assembling of tau and thus its malfunction may lead to the progress of AD. By considering the above evidences, autophagy may be a new target in developing drugs for AD. So far, a number of mammalian target of rapamycin (mTOR)-dependent and independent autophagy modulators have been identified to have positive effects in AD treatment. In this review, we summarized the latest progress supporting the role for autophagy deficits in AD and the potential therapeutic effects of autophagy modulators in AD. 相似文献
7.
Alzheimer’s disease (AD) is a major cause of dementia in the elderly. Pathologically, AD is characterized by the accumulation of insoluble aggregates of Aβ-peptides that are proteolytic cleavage products of the amyloid-β precursor protein (“plaques”) and by insoluble filaments composed of hyperphosphorylated tau protein (“tangles”). Familial forms of AD often display increased production of Aβ peptides and/or altered activity of presenilins, the catalytic subunits of γ-secretase that produce Aβ peptides. Although the pathogenesis of AD remains unclear, recent studies have highlighted two major themes that are likely important. First, oligomeric Aβ species have strong detrimental effects on synapse function and structure, particularly on the postsynaptic side. Second, decreased presenilin function impairs synaptic transmission and promotes neurodegeneration. The mechanisms underlying these processes are beginning to be elucidated, and, although their relevance to AD remains debated, understanding these processes will likely allow new therapeutic avenues to AD.Alzheimer’s disease (AD) is a common neurodegenerative disease of the elderly, first described by the physician-pathologist Alois Alzheimer in 1907 ( Maurer and Maurer 2003). Clinically, AD is characterized by progressive impairment of memory (particularly short-term memory in early stages) and other cognitive disabilities, personality changes, and ultimately, complete dependence on others. The most prevalent cause of dementia worldwide, AD afflicts >5 million people in the United States and >25 million globally (Alzheimer’s Association, http://www.alz.org). Age is the most important risk factor, with the prevalence of AD rising exponentially after 65 ( Blennow et al. 2006). However, many cases of so-called AD above 80 yr of age may result from a combination of pathological dementia processes ( Fotuhi et al. 2009). The apolipoprotein E (ApoE) gene is the most important genetic susceptibility factor for AD, with the relatively common ApoE4 allele (prevalence ∼16%) increasing the risk for AD threefold to fourfold in heterozygous dose ( Kim et al. 2009).The histopathological hallmarks of AD are amyloid plaques (extracellular deposits consisting largely of aggregated amyloid beta [Aβ] peptide that are typically surrounded by neurons with dystrophic neurites) and neurofibrillary tangles (NFTs, intracellular filamentous aggregates of hyperphosphorylated tau, a microtubule-binding protein) ( Blennow et al. 2006). The development of amyloid plaques typically precedes clinically significant symptoms by at least 10–15 yr. Amyloid plaques are found in a minority of nondemented elderly patients, who may represent a “presymptomatic” AD population. As AD progresses, cognitive function worsens, synapse loss and neuronal cell death become prominent, and there is substantial reduction in brain volume, especially in the entorhinal cortex and hippocampus. The best correlation between dementia and histopathological changes is observed with neurofibrillary tangles, whereas the relationship between the density of amyloid plaques and loss of cognition is weaker ( Braak and Braak 1990; Nagy et al. 1995). In addition to amyloid plaques and neurofibrillary tangles, many AD cases exhibit widespread Lewy body pathology. (Lewy bodies are intracellular inclusion bodies that contain aggregates of α-synuclein and other proteins.) Particularly in very old patients, considerable overlap between AD, frontotemporal dementia, Lewy body dementia, and vascular disease is observed, and pure AD may be rare ( Fotuhi et al. 2009). 相似文献
8.
Alzheimer’s disease (AD) is the most common form of dementia among the elderly. Neuritic plaques whose primary component is amyloid beta peptide (Aβ) and neurofibrillary tangles which are composed of hyperphosphorylated tau, are known to be the neuropathological hallmarks of AD. In addition, impaired synaptic plasticity in neuronal networks is thought to be important mechanism underlying for the cognitive deficits observed in AD. Although various causative factors, including excitotoxicity, mitochondrial dysregulation and oxidative damage caused by Aβ, are involved in early onset of AD, fundamental therapeutics that can modify the progression of this disease are not currently available. In the present study, we investigated whether phloroglucinol (1, 3, 5—trihydroxybenzene), a component of phlorotannins, which are plentiful in Ecklonia cava, a marine brown alga species, displays therapeutic activities in AD. We found that phloroglucinol attenuates the increase in reactive oxygen species (ROS) accumulation induced by oligomeric Aβ 1–42 (Aβ 1–42) treatment in HT-22, hippocampal cell line. In addition, phloroglucinol was shown to ameliorate the reduction in dendritic spine density induced by Aβ 1–42 treatment in rat primary hippocampal neuron cultures . We also found that the administration of phloroglucinol to the hippocampal region attenuated the impairments in cognitive dysfunction observed in 22-week-old 5XFAD (Tg6799) mice, which are used as an AD animal model. These results indicate that phloroglucinol displays therapeutic potential for AD by reducing the cellular ROS levels. 相似文献
9.
Alzheimer’s disease (AD) is rapidly becoming one of the leading causes of disability and mortality in the elderly. As life-expectancy increases, an increasing number of people will rely on modern medicines to treat age-associated disorders. Among these medications, some might benefit, while others might exacerbate, the pathogenesis of AD. We screened 1,600 FDA approved drugs for β-amyloid (Aβ)-modifying activity and identified drugs that can potentially influence amyloid precursor protein processing. In this study, we focused on cardiovascular drugs and demonstrated that some hypertensive medication can differentially modulate Aβ, both in vitro and in vivo. Our study suggests that some commonly prescribed drugs might exert unintended effects and modulate AD and provides the basis for continuing investigation of the role of individual drugs on a case-by-case basis. This line of investigation will lead to the identification of common medications that are potentially beneficial or detrimental to AD as a reference for physicians to consider when prescribing the most appropriate drugs for their patients, particularly for treating chronic disorders among the growing geriatric population. 相似文献
10.
Late onset Alzheimer’s disease (LOAD) etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains. 相似文献
11.
The aim was to investigate the effect of the arborvitae seed on cognitive function and α7-nicotinic acetylcholine receptor (α7nAChR) protein expression of the hippocampus in model rats with Alzheimer’s disease (AD). Thirty-six adult Wistar rats were randomly divided into the control, test, and drug groups. A dose of Aβ 1–40 was injected into the rats’ hippocampus in the test and drug groups and the control rats were injected with the same amount of normal saline. After the model was successful, the rats in the control and test groups were gavaged with sodium carboxymethyl cellulose (500 mg/kg) and the rats in the drug group were gavaged with arborvitae seed powder (500 mg/kg) for 15 days. The Morris water maze test was used for cognitive function. The effect of arborvitae seed on α7nAChR protein immunoreactivity on the hippocampus neurons was studied by the immunohistochemistry method. Behavioral tests showed that the mean escape latencies and search time of the test group were obviously longer than the control and drug groups. The percentage of the search distance of the test group was shorter than that of the control and drug groups. The immunohistochemistry results are as follows: α7nAChR-positive cells and optical density in the hippocampus of the rats in the test group are less than that of the rats in the control and drug groups (all P < 0.01). Arborvitae seed can treat AD by increased expression of α7nAChR. 相似文献
13.
Neurochemical Research - Alzheimer’s disease (AD) is one of the crucial causative factors for progressive dementia. Neuropathologically, AD is characterized by the extracellular accumulation... 相似文献
17.
New insights into how Ca 2+ regulates learning and memory have begun to provide clues as to how the amyloid-dependent remodelling of neuronal Ca 2+ signalling pathways can disrupt the mechanisms of learning and memory in Alzheimer’s disease (AD). The calcium hypothesis
of AD proposes that activation of the amyloidogenic pathway remodels the neuronal Ca 2+ signalling pathways responsible for cognition by enhancing the entry of Ca 2+ and/or the release of internal Ca 2+ by ryanodine receptors or InsP 3 receptors. The specific proposal is that Ca 2+ signalling remodelling results in a persistent elevation in the level of Ca 2+ that constantly erases newly acquired memories by enhancing the mechanism of long-term depression (LTD). Neurons can still
form memories through the process of LTP, but this stored information is rapidly removed by the persistent activation of LTD.
Further dysregulation in Ca 2+ signalling will then go on to induce the neurodegeneration that characterizes the later stages of dementia. 相似文献
20.
Evidence from clinical and experimental studies indicate that oxidative stress is involved in pathogenesis of Parkinson’s
disease. The present study was designed to investigate the neuroprotective potential of lycopene on oxidative stress and neurobehavioral
abnormalities in rotenone induced PD. Rats were treated with rotenone (3 mg/kg body weight, intraperitoneally) for 30 days.
NADH dehydrogenase a marker of rotenone action was observed to be significantly inhibited (35%) in striatum of treated animals.
However, lycopene administration (10 mg/kg, orally) to the rotenone treated animals for 30 days increased the activity by
39% when compared to rotenone treated animals. Rotenone administration increased the MDA levels (75.15%) in striatum, whereas,
lycopene administration to rotenone treated animals decreased the levels by 24.33%. Along with this, significant decrease
in GSH levels (42.69%) was observed in rotenone treated animals. Lycopene supplementation on the other hand, increased the
levels of GSH by 75.35% when compared with rotenone treated group. The activity of SOD was inhibited by 69% in rotenone treated
animals and on lycopene supplementation; the activity increased by 12% when compared to controls. This was accompanied by
cognitive and motor deficits in rotenone administered animals, which were reversed on lycopene treatment. Lycopene treatment
also prevented release of cytochrome c from mitochondria. Collectively, these observations suggest that lycopene supplementation
along with rotenone for 30 days prevented rotenone-induced alterations in antioxidants along with the prevention of rotenone
induced oxidative stress and neurobehavioral deficits. The results provide an evidence for beneficial effect of lycopene supplementation
in rotenone-induced PD and suggest therapeutic potential in neurodegenerative diseases involving accentuated oxidative stress. 相似文献
|