首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
A plasmid carrying the Deinococcus radiodurans recX gene under the control of a lactose promoter decreases the Escherichia coli cell resistance to UV irradiation and γ irradiation and also influences the conjugational recombination process. The D. radiodurans RecX protein functions in the Escherichia coli cells similarly to the E. coli RecX protein. Isolated and purified D. radiodurans RecX and E. coli RecX proteins are able to replace each other interacting with the E. coli RecA and D. radiodurans RecA proteins in vitro. Data obtained demonstrated that regulatory interaction of RecA and RecX proteins preserves a high degree of conservatism despite all the differences in the recombination reparation system between E. coli and D. radiodurans.  相似文献   

2.
Various flavonoid glycosides are found in nature, and their biological activities are as variable as their number. In some cases, the sugar moiety attached to the flavonoid modulates its biological activities. Flavonoid glycones are not easily synthesized chemically. Therefore, in this study, we attempted to synthesize quercetin 3-O-glucosyl (1→2) xyloside and quercetin 3-O-glucosyl (1→6) rhamnoside (also called rutin) using two uridine diphosphate-dependent glycosyltransferases (UGTs) in Escherichia coli. To synthesize quercetin 3-O-glucosyl (1→2) xyloside, sequential glycosylation was carried out by regulating the expression time of the two UGTs. AtUGT78D2 was subcloned into a vector controlled by a Tac promoter without a lacI operator, while AtUGT79B1 was subcloned into a vector controlled by a T7 promoter. UDP-xyloside was supplied by concomitantly expressing UDP-glucose dehydrogenase (ugd) and UDP-xyloside synthase (UXS) in the E. coli. Using these strategies, 65.0 mg/L of quercetin 3-O-glucosyl (1→2) xyloside was produced. For the synthesis of rutin, one UGT (BcGT1) was integrated into the E. coli chromosome and the other UGT (Fg2) was expressed in a plasmid along with RHM2 (rhamnose synthase gene 2). After optimization of the initial cell concentration and incubation temperature, 119.8 mg/L of rutin was produced. The strategies used in this study thus show promise for the synthesis of flavonoid diglucosides in E. coli.  相似文献   

3.

Background

Deinococcus radiodurans R1 is one of the most radiation-resistant organisms known and is able to repair an unusually large amount of DNA damage without induced mutation. Single-stranded DNA-binding (SSB) protein is an essential protein in all organisms and is involved in DNA replication, recombination and repair. The published genomic sequence from Deinococcus radiodurans includes a putative single-stranded DNA-binding protein gene (ssb; DR0100) requiring a translational frameshift for synthesis of a complete SSB protein. The apparently tripartite gene has inspired considerable speculation in the literature about potentially novel frameshifting or RNA editing mechanisms. Immediately upstream of the ssb gene is another gene (DR0099) given an ssb-like annotation, but left unexplored.

Results

A segment of the Deinococcus radiodurans strain R1 genome encompassing the ssb gene has been re-sequenced, and two errors involving omitted guanine nucleotides have been documented. The corrected sequence incorporates both of the open reading frames designated DR0099 and DR0100 into one contiguous ssb open reading frame (ORF). The corrected gene requires no translational frameshifts and contains two predicted oligonucleotide/oligosaccharide-binding (OB) folds. The protein has been purified and its sequence is closely related to the Thermus thermophilus and Thermus aquaticus SSB proteins. Like the Thermus SSB proteins, the SSBDr functions as a homodimer. The Deinococcus radiodurans SSB homodimer stimulates Deinococcus radiodurans RecA protein and Escherichia coli RecA protein-promoted DNA three-strand exchange reactions with at least the same efficiency as the Escherichia coli SSB homotetramer.

Conclusions

The correct Deinococcus radiodurans ssb gene is a contiguous open reading frame that codes for the largest bacterial SSB monomer identified to date. The Deinococcus radiodurans SSB protein includes two OB folds per monomer and functions as a homodimer. The Deinococcus radiodurans SSB protein efficiently stimulates Deinococcus radiodurans RecA and also Escherichia coli RecA protein-promoted DNA strand exchange reactions. The identification and purification of Deinococcus radiodurans SSB protein not only allows for greater understanding of the SSB protein family but provides an essential yet previously missing player in the current efforts to understand the extraordinary DNA repair capacity of Deinococcus radiodurans.
  相似文献   

4.
Nucleotide and amino acid sequences of Corynebacterium glutamicum recA genes, from GenBank, were compared in silico. On the basis of the identity found between sequences, two degenerate primers were designed on the two sides of the deduced open reading frame (ORF) of the recA gene. PCR experiments, for amplifying the recA ORF region, were done. pGEM®-T Easy vector was selected to be used for cloning PCR products. Then recA ORF was placed under the control of Escherichia coli hybrid trc promoter, in pKK388-1 vector. pKK388-1 vector, containing recA ORF, was transformed to E. coli DH5α ΔrecA (recombinant deficient strain), in an attempt to phenotypically complement it. Ultraviolet (u.v.) exposure experiments of the transformed and non-transformed E. coli DH5α ΔrecA cells revealed tolerance of transformed cells up to dose 0.24 J/cm2, while non-transformed cells tolerated only up to dose 0.08 J/cm2. It is concluded that phenotypic complementation of E. coli DH5α ΔrecA with recA ORF of C. glutamicum, could be achieved and RecA activity could be restored.  相似文献   

5.
Oxygen-responsive promoters can be useful for synthetic biology applications, however, information on their characteristics is still limited. Here, we characterized a group of heterologous microaerobic globin promoters in Escherichia coli. Globin promoters from Bacillus subtilis, Campylobacter jejuni, Deinococcus radiodurans, Streptomyces coelicolor, Salmonella typhi and Vitreoscilla stercoraria were used to express the FMN-binding fluorescent protein (FbFP), which is a non-oxygen dependent marker. FbFP fluorescence was monitored online in cultures at maximum oxygen transfer capacities (OTRmax) of 7 and 11 mmol L?1 h?1. Different FbFP fluorescence intensities were observed and the OTRmax affected the induction level and specific fluorescence emission rate (the product of the specific fluorescence intensity multiplied by the specific growth rate) of all promoters. The promoter from S. typhi displayed the highest fluorescence emission yields (the quotient of the fluorescence intensity divided by the scattered light intensity at every time-point) and rate, and together with the promoters from D. radiodurans and S. coelicolor, the highest induction ratios. These results show the potential of diverse heterologous globin promoters for oxygen-limited processes using E. coli.  相似文献   

6.
7.
Deinococcus radiodurans has attracted a great interest in the past decades due to its extraordinary resistance to ionizing radiation and highly efficient DNA repair system. Recent studies indicated that pprM is a putative pleiotropic gene in D. radiodurans and plays an important role in radioresistance and antioxidation, but its underlying mechanisms are poorly elucidated. In this study, pprM mutation was generated to investigate resistance to desiccation and oxidative stress. The result showed that the survival of pprM mutant under desiccation was markedly retarded compared to the wild strain from day 7–28. Furthermore, knockout of pprM increases the intercellular accumulation of ROS and the sensibility to H2O2 stress in the bacterial growth inhibition assay. The absorbance spectrum experiment for detecting the carotenoid showed that deinoxanthin, a carotenoid that peculiarly exists in Deinococcus, was reduced in the pprM mutant in the pprM mutant. Quantitative real time PCR showed decreased expression of three genes viz. CrtI (DR0861, 50%),CrtB (DR0862, 40%) and CrtO (DR0093, 50%), which are involved in deinoxanthin synthesis, and of Dps (DNA protection during starving) gene (DRB0092) relevant to ion combining and DNA protection in cells. Our results suggest that pprM may affect antioxidative ability of D. radiodurans by regulating the synthesis of deinoxanthin and the concentration of metal ions. This may provide new clues for the treatment of antioxidants.  相似文献   

8.
9.
10.
Here we evaluate the origins and relationships of Mexican and Central American Diplazium hybrids derived from crosses involving either D. plantaginifolium or D. ternatum. Based on study of live plants and herbarium specimens, we distinguish D. ×verapax from the similar D. riedelianum and present evidence that the former is a sterile hybrid derived from a cross between D. plantaginifolium and D. werckleanum. We also describe new hybrids, D. ×torresianum and D. ×subternatum from Mexico and northern Central America. Both involve D. ternatum as one parent. Diplazium. cristatum is the other putative parent of D. ×torresianum, and D. plantaginifolium is the second parent of D. ×subternatum. We also designate lectotypes for D. cordovense and D. dissimile.  相似文献   

11.

Objectives

To develop a new vector for constitutive expression in Pichia pastoris based on the endogenous glycolytic PGK1 promoter.

Results

P. pastoris plasmids bearing at least 415 bp of PGK1 promoter sequences can be used to drive plasmid integration by addition at this locus without affecting cell growth. Based on this result, a new P. pastoris integrative vector, pPICK2, was constructed bearing some features that facilitate protein production in this yeast: a ~620 bp PGK1 promoter fragment with three options of restriction sites for plasmid linearization prior to yeast transformation: a codon-optimized α-factor secretion signal, a new polylinker, and the kan marker for vector propagation in bacteria and selection of yeast transformants.

Conclusions

A new constitutive vector for P. pastoris represents an alternative platform for recombinant protein production and metabolic engineering purposes.
  相似文献   

12.
Escherichia coli does not have the methanol sensing apparatus, was engineered to sense methanol by employing chimeric two-component system (TCS) strategy. A chimeric FlhS/EnvZ (FlhSZ) chimeric histidine kinase (HK) was constructed by fusing the sensing domain of Paracoccus denitrificans FlhS with the catalytic domain of E. coli EnvZ. The constructed chimeric TCS FlhSZ/OmpR could sense methanol by the expression of ompC and gfp gene regulated by ompC promoter. Real-time quantitative PCR analysis and GFP-based fluorescence analysis showed the dynamic response of the chimeric TCS to methanol. The expression of ompC and the gfp fluorescence was maximum at 0.01 and 0.5% of methanol, respectively. These results suggested that E. coli was successfully engineered to sense methanol by the introduction of chimeric HK FlhSZ. This strategy can be employed for the construction of several chimeric TCS based bacterial biosensors for the development of biochemical producing recombinant microorganisms.  相似文献   

13.
In an attempt to develop a high-throughput screening system for screening microorganisms which produce high amounts of malate, a MalKZ chimeric HK-based biosensor was constructed. Considering the sequence similarity among Escherichia coli (E. coli) MalK with Bacillus subtilis MalK and E. coli DcuS, the putative sensor domain of MalK was fused with the catalytic domain of EnvZ. The chimeric MalK/EnvZ TCS induced the ompC promoter through the cognate response regulator, OmpR, in response to extracellular malate. Real-time quantitative PCR and GFP fluorescence studies showed increased ompC gene expression and GFP fluorescence as malate concentration increased. By using this strategy, various chimeric TCS-based bacteria biosensors can be constructed, which may be used for the development of biochemical-producing recombinant microorganisms.  相似文献   

14.
Phylogenetic analyses of a combined DNA data matrix containing ITS, LSU, rpb2 and tub2 sequences of representative Xylariales revealed that the genus Barrmaelia is a well-defined monophylum, as based on four of its described species (B. macrospora, B. moravica, B. oxyacanthae, B. rhamnicola) and the new species B. rappazii. The generic type of Entosordaria, E. perfidiosa, is revealed as the closest relative of Barrmaelia, being phylogenetically distant from the generic type of Clypeosphaeria, C. mamillana, which belongs to Xylariaceae sensu stricto. Entosordaria and Barrmaelia are highly supported and form a distinct lineage, which is recognised as the new family Barrmaeliaceae. The new species E. quercina is described. Barrmaelia macrospora, B. moravica and B. rhamnicola are epitypified and E. perfidiosa is lecto- and epitypified. Published sequences of Anthostomella and several Anthostomella-like species from the genera Alloanthostomella, Anthostomelloides, Neoanthostomella, Pseudoanthostomella and Pyriformiascoma are evaluated, demonstrating the necessity of critical inspection of published sequence data before inclusion in phylogenies. Verified isolates of several species from these genera should be re-sequenced to affirm their phylogenetic affinities. In addition, the generic type of Anthostomella should be sequenced before additional generic re-arrangements are proposed.  相似文献   

15.
Escherichia coliL-asparaginase, an antileukaemic agent in man1, inhibits in vitro mitogen or antigen-induced blastogenesis in man2,3 and in animals (M. Bennett, E. G. Mayhew and T. Han, unpublished data) and suppresses bone-marrow derived antibody precursor cells in the mouse4. We now report that another L-asparaginase preparation—from Erwinia carotovora—also possesses antileukaemic activity5,6 and has a more pronounced immunosuppressive effect on in vitro blastogenesis than the E. coli enzyme.  相似文献   

16.
In this study, we constructed an l-methionine-producing recombinant strain from wild-type Escherichia coli W3110 by metabolic engineering. To enhance the carbon flux to methionine and derepression met regulon, thrBC, lysA, and metJ were deleted in turn. Methionine biosynthesis obstacles were overcome by overexpression of metA Fbr (Fbr, Feedback resistance), metB, and malY under control of promoter pN25. Recombinant strain growth and methionine production were further improved by attenuation of metK gene expression through replacing native promoter by metK84p. Blocking the threonine pathway by deletion of thrBC or thrC was compared. Deletion of thrC showed faster growth rate and higher methionine production. Finally, metE, metF, and metH were overexpressed to enhance methylation efficiency. Compared with the original strain E. coli W3110, the finally obtained Me05 (pETMAFbr-B-Y/pKKmetH) improved methionine production from 0 to 0.65 and 5.62 g/L in a flask and a 15-L fermenter, respectively.  相似文献   

17.
The gene encoding the xlnR xylanolytic activator of the heterologous fungus Aspergillus niger was incorporated into the Penicillium canescens genome. Integration of the xlnR gene resulted in the increase in a number of activities, i.e. endoxylanase, β-xylosidase, α-L-arabinofuranosidase, α-galactosidase, and feruloyl esterase, compared to the host P. canescens PCA 10 strain, while β-galactosidase, β-glucosidase, endoglucanase, and CMCase activities remained constant. Two different expression constructs were developed. The first consisted of the nucleotide sequence containing the mature P. canescens phytase gene under control of the axhA promoter region gene encoding A. niger (1,4)-β-D-arabinoxylan-arabinofuranohydrolase. The second construct combined the P. canescens phytase gene and the bgaS promoter region encoding homologous β-galactosidase. Both expression cassettes were transformed into P. canescens host strain containing xlnR. Phytase synthesis was observed only for strains with the bgaS promoter on arabinose-containing culture media. In conclusion, the bgaS and axhA promoters were regulated by different inducers and activators in the P. canescens strain containing a structural tandem of the axhA promoter and the gene of the xlnR xylanolytic activator.  相似文献   

18.
The yajC gene (Lbuc_0921) from Lactobacillus buchneri NRRL B-30929 was identified from previous proteomics analyses in response to ethanol treatment. The YajC protein expression was increased by 15-fold in response to 10 % ethanol vs 0 % ethanol. The yajC gene encodes the smaller subunit of the preprotein translocase complex, which interacts with membrane protein SecD and SecF to coordinate protein transport and secretion across cytoplasmic membrane in Escherichia coli. The YajC protein was linked to sensitivity to growth temperatures in E. coli, involved in translocation of virulence factors during Listeria infection, and stimulating a T cell-mediated response of Brucella abortus. In this study, the L. buchneri yajC gene was over-expressed in E. coli. The strain carrying pET28byajC that produces YajC after isopropyl β-d-1-thiogalactopyranoside induction showed tolerance to 4 % ethanol in growth media, compared to the control carrying pET28b. This is the first report linking YajC to ethanol stress and tolerance.  相似文献   

19.

Objectives

To evaluate the crystallinity index of the cellulose produced by Escherichia coli Nissle 1917 after heterologous expression of the cellulose synthase subunit D (bcsD) gene of Gluconacetobacter xylinus BPR2001.

Results

The bcsD gene of G. xylinus BPR2001 was expressed in E. coli and its protein product was visualized using SDS-PAGE. FTIR analysis showed that the crystallinity index of the cellulose produced by the recombinants was 0.84, which is 17% more than that of the wild type strain. The increased crystallinity index was also confirmed by X-ray diffraction analysis. The cellulose content was not changed significantly after over-expressing the bcsD.

Conclusion

The bcsD gene can improve the crystalline structure of the bacterial cellulose but there is not any significant difference between the amounts of cellulose produced by the recombinant and wild type E. coli Nissle 1917.
  相似文献   

20.
We previously demonstrated efficient transformation of the thermophile Geobacillus kaustophilus HTA426 using conjugative plasmid transfer from Escherichia coli BR408. To evaluate the versatility of this approach to thermophile transformation, this study examined genetic transformation of various thermophilic Bacillus and Geobacillus spp. using conjugative plasmid transfer from E. coli strains. E. coli BR408 successfully transferred the E. coliGeobacillus shuttle plasmid pUCG18T to 16 of 18 thermophiles with transformation efficiencies between 4.1 × 10?7 and 3.8 × 10?2/recipient. Other E. coli strains that are different from E. coli BR408 in intracellular DNA methylation also generated transformants from 9 to 15 of the 18 thermophiles, including one that E. coli BR408 could not transform, although the transformation efficiencies of these strains were generally lower than those of E. coli BR408. The conjugation was performed by simple incubation of an E. coli donor and a thermophile recipient without optimization of experimental conditions. Moreover, thermophile transformants were distinguished from abundant E. coli donor only by high temperature incubation. These observations suggest that conjugative plasmid transfer, particularly using E. coli BR408, is a facile and versatile approach for plasmid introduction into thermophilic Bacillus and Geobacillus spp., and potentially a variety of other thermophiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号