首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
There are several systemic and intracerebral pathologic conditions, which limit provision and utilization of energy precursor metabolites in neuronal cells. Energy deficits cause excessive depolarization of neuronal cells triggering glutamate-zinc evoked excitotoxic cascade. The intracellular zinc excess hits several intraneuronal targets yielding collapse of energy balance and impairment functional and structural impairments cholinergic neurons. Disturbances in metabolism of acetyl-CoA, which is a direct precursor for energy, acetylcholine, N-acetyl-l-aspartate and acetylated proteins synthesis, play an important role in these pathomechanisms. Disruption of brain homeostasis activates slow accumulation of amyloid-β 1?42 , which extra and intracellular oligomeric deposits disrupt diverse transporting and signaling processes in all membrane structures of the cell. Both neurotoxic signals may combine aggravating detrimental effects on neuronal cell. Different neuroglial and neuronal cell types may display differential susceptibility to similar pathogenic insults depending on specific features of their energy and functional parameters. This review, basing on findings gained from cellular and animal models of Alzheimer’s disease, discusses putative energy/acetyl-CoA dependent mechanism in early and late stages of neurodegeneration.  相似文献   

2.
Gintonin is a novel ginseng-derived lysophosphatidic acid (LPA) receptor ligand. Oral administration of gintonin ameliorates learning and memory dysfunctions in Alzheimer’s disease (AD) animal models. The brain cholinergic system plays a key role in cognitive functions. The brains of AD patients show a reduction in acetylcholine concentration caused by cholinergic system impairments. However, little is known about the role of LPA in the cholinergic system. In this study, we used gintonin to investigate the effect of LPA receptor activation on the cholinergic system in vitro and in vivo using wild-type and AD animal models. Gintonin induced [Ca2+]i transient in cultured mouse hippocampal neural progenitor cells (NPCs). Gintonin-mediated [Ca2+]i transients were linked to stimulation of acetylcholine release through LPA receptor activation. Oral administration of gintonin-enriched fraction (25, 50, or 100 mg/kg, 3 weeks) significantly attenuated scopolamine-induced memory impairment. Oral administration of gintonin (25 or 50 mg/kg, 2 weeks) also significantly attenuated amyloid-β protein (Aβ)-induced cholinergic dysfunctions, such as decreased acetylcholine concentration, decreased choline acetyltransferase (ChAT) activity and immunoreactivity, and increased acetylcholine esterase (AChE) activity. In a transgenic AD mouse model, long-term oral administration of gintonin (25 or 50 mg/kg, 3 months) also attenuated AD-related cholinergic impairments. In this study, we showed that activation of G protein-coupled LPA receptors by gintonin is coupled to the regulation of cholinergic functions. Furthermore, this study showed that gintonin could be a novel agent for the restoration of cholinergic system damages due to Aβ and could be utilized for AD prevention or therapy.  相似文献   

3.
Amyloid precursor protein cleavage through β- and γ-secretases produces β-amyloid peptide, which is believed to be responsible for death of neurons and dementia in Alzheimer’s disease. Levels of β- and γ-secretase are increased in sensitive areas of the Alzheimer’s disease brain, but the mechanism of this process is unknown. In this review, we prove that brain ischemia generates expression and activity of both β- and γ-secretases. These secretases are induced in association with oxidative stress following brain ischemia. Data suggest that ischemia promotes overproduction and aggregation of β-amyloid peptide in brain, which is toxic for ischemic neuronal cells. In our review, we demonstrated the role of brain ischemia as a molecular link between the β- and the γ-secretase activities and provided a molecular explanation of the possible neuropathogenesis of sporadic Alzheimer’s disease.  相似文献   

4.

Background

Alzheimer’s disease (AD), the most common cause of dementia in the elderly, has two pathological hallmarks: Aβ plaques and aggregation of hyperphosphorylated tau (p-tau). Aβ is a cleavage product of Amyloid Precursor Protein (APP). Presenilin 1 (PS1) and presenilin 2 (PS2) are the catalytic subunit of γ-secretase, which cleaves APP and mediates Aβ production. Genetic mutations in APP, PSEN1 or PSEN2 can lead to early onset of familial AD (FAD). Although mutations in the tau encoding gene MAPT leads to a subtype of frontotemporal dementia and these mutations have been used to model AD tauopathy, no MAPT mutations have been found to be associated with AD.

Results

To model AD pathophysiology in mice without the gross overexpression of mutant transgenes, we created a humanized AD mouse model by crossing the APP and PSEN1 FAD knock-in mice with the htau mice which express wildtype human MAPT genomic DNA on mouse MAPT null background (APP/PS1/htau). The APP/PS1/htau mice displayed mild, age-dependent, Aβ plaques and tau hyperphosphorylation, thus successfully recapitulating the late-onset AD pathological hallmarks. Selected biochemical analyses, including p-tau western blot, γ-secretase activity assay, and Aβ ELISA, were performed to study the interaction between Aβ and p-tau. Subsequent behavioral studies revealed that the APP/PS1/htau mice showed reduced mobility in old ages and exaggerated fear response. Genetic analysis suggested that the fear phenotype is due to a synergic interaction between Aβ and p-tau, and it can be completely abolished by tau deletion.

Conclusion

The APP/PS1/htau model represents a valuable and disease-relevant late-onset pre-clinical AD animal model because it incorporates human AD genetics without mutant protein overexpression. Analysis of the mice revealed both cooperative and independent effects of Aβ and p-tau.  相似文献   

5.
Regulation of amyloid-β (Aβ) precursor protein (APP) expression is complex. MicroRNAs (miRNAs) are expected to participate in the molecular network that controls this process. The composition of this network is, however, still undefined. Elucidating the complement of miRNAs that regulate APP expression should reveal novel drug targets capable of modulating Aβ production in AD. Here, we investigated the contribution of miR-153 to this regulatory network. A miR-153 target site within the APP 3'-untranslated region (3'-UTR) was predicted by several bioinformatic algorithms. We found that miR-153 significantly reduced reporter expression when co-transfected with an APP 3'-UTR reporter construct. Mutation of the predicted miR-153 target site eliminated this reporter response. miR-153 delivery in both HeLa cells and primary human fetal brain cultures significantly reduced APP expression. Delivery of a miR-153 antisense inhibitor to human fetal brain cultures significantly elevated APP expression. miR-153 delivery also reduced expression of the APP paralog APLP2. High functional redundancy between APP and APLP2 suggests that miR-153 may target biological pathways in which they both function. Interestingly, in a subset of human AD brain specimens with moderate AD pathology, miR-153 levels were reduced. This same subset also exhibited elevated APP levels relative to control specimens. Therefore, endogenous miR-153 inhibits expression of APP in human neurons by specifically interacting with the APP 3'-UTR. This regulatory interaction may have relevance to AD etiology, where low miR-153 levels may drive increased APP expression in a subset of AD patients.  相似文献   

6.
Amyloid-β (Aβ) is produced by the consecutive cleavage of amyloid precursor protein (APP) first by β-secretase, generating C99, and then by γ-secretase. APP is also cleaved by α-secretase. It is hypothesized that reducing the production of Aβ in the brain may slow the progression of Alzheimer disease. Therefore, different γ-secretase inhibitors have been developed to reduce Aβ production. Paradoxically, it has been shown that low to moderate inhibitor concentrations cause a rise in Aβ production in different cell lines, in different animal models, and also in humans. A mechanistic understanding of the Aβ rise remains elusive. Here, a minimal mathematical model has been developed that quantitatively describes the Aβ dynamics in cell lines that exhibit the rise as well as in cell lines that do not. The model includes steps of APP processing through both the so-called amyloidogenic pathway and the so-called non-amyloidogenic pathway. It is shown that the cross-talk between these two pathways accounts for the increase in Aβ production in response to inhibitor, i.e. an increase in C99 will inhibit the non-amyloidogenic pathway, redirecting APP to be cleaved by β-secretase, leading to an additional increase in C99 that overcomes the loss in γ-secretase activity. With a minor extension, the model also describes plasma Aβ profiles observed in humans upon dosing with a γ-secretase inhibitor. In conclusion, this mechanistic model rationalizes a series of experimental results that spans from in vitro to in vivo and to humans. This has important implications for the development of drugs targeting Aβ production in Alzheimer disease.  相似文献   

7.
8.
Biochemistry (Moscow) - The incidence of Alzheimer’s disease (AD) increases significantly following chronic stress and brain ischemia which, over the years, cause accumulation of toxic...  相似文献   

9.
10.
Composed of Ginsenoside Rg1 and Geniposide, the herbal medicine TongLuoJiuNao (TLJN) injection liquid has anti-inflammatory properties and can improve learning and memory in mice. Recently, TLJN has been used to treat the patients with cerebral ischemic stroke and vascular dementia, which significantly increase the risk of developing Alzheimer’s disease (AD) in the early human beings. Although beneficial effects of TLJN have been reported in the vascular-associated brain disorders, the roles of TLJN in AD brains are still not clear. In this study, we chronically administered TLJN in amyloid precursor protein (APP) Swedish mutant transgenic mice (APP23) from 6 months old of age, which is at the onset of Aβ plaques, to 12 months old. We found that TLJN significantly decreased Aβ production and deposition in the brain of APP23 mice. Furthermore, we observed that TLJN down-regulated the levels and activity of β-secretase 1 (BACE1) protein as well as the expression levels of γ-secretase complex components: PS1, nicastrin and anterior pharynx-defective 1 (APH1) but not presenilin enhancer 2 (PEN2). The results suggest an inhibitory effect of TLJN on amyloidogenic APP processing by down-regulating the cleavage enzymes BACE1 and γ-secretase.  相似文献   

11.
12.
The perirhinal cortex (area 35) is well-known locus for neurofibrillary tangles (NFT) in initial Alzheimer’s disease (AD) and fully developed AD and may contain tau alterations in non-demented elderly. The topography and location of this vulnerable cortex, however, is difficult to appreciate because of its variable architecture and to deviations imposed by temporal sulcal patterns. We have immunostained human brains with a short duration of dementia using antibody AT8, which recognize abnormally hyperphosphorylated tau, calcium binding protein-parvalbumin and other phenotype markers to more fully appreciate the extent of area 35 before it is obscured by pathology. We have observed in the mildly affected AD tau immunoreactive lesion that extends from the temporopolar/insular region anteriorly to the posterior parahippocampal cortex. In its anterior–posterior course, it covers the medial bank of the collateral sulcus. Although the tau lesion encroaches slightly into the temporopolar cortex (area TG) anteriorly and medially and the ectorhinal cortex (area 36) laterally, area 35 is unambiguously defined. Ventromedial temporal pathology as revealed by AT8 suggests the presence of a relatively large lesion early in AD involving all of the perirhinal cortex and other non-isocortical areas. The present study demonstrated that the early stage AD patients exhibited AT8 immunoreactive cells in the temporopolar, hippocampus, perirhinal, entorhinal, and insular cortices. Special issue article in honor of Dr. George DeVries.  相似文献   

13.
14.
Animal models of Alzheimer’s disease (AD) are invaluable in dissecting the pathogenic mechanisms and assessing the efficacy of potential new therapies. Here, we used the peroxisome proliferator-activated receptor gamma agonist pioglitazone in an attempt to rescue the pathogenic phenotype in adult (12 months) and aged (>18 months) bitransgenic A/T mice that overexpress a mutated human amyloid precursor protein (APPSwe,Ind) and a constitutively active form of transforming growth factor-β1 (TGF-β1). A/T mice recapitulate the AD-related cognitive deficits, amyloid beta (Aβ) and cerebrovascular pathologies, as well as the altered metabolic and vascular coupling responses to increased neuronal activity. Pioglitazone normalized neurometabolic and neurovascular coupling responses to sensory stimulation, and reduced cortical astroglial and hippocampal microglial activation in both age groups. Spatial learning and memory deficits in the Morris water maze were not rescued by pioglitazone, but reversal learning was improved in the adult cohort notwithstanding a progressing Aβ pathology. While pioglitazone preserved the constitutive nitric oxide synthesis in the vessel wall, it unexpectedly failed to restore cerebrovascular reactivity in A/T mice and even exacerbated the dilatory deficits. These data demonstrate pioglitazone’s efficacy on selective AD hallmarks in a complex AD mouse model of comorbid amyloidosis and cerebrovascular pathology. They further suggest a potential benefit of pioglitazone in managing neuroinflammation, cerebral perfusion and glucose metabolism in AD patients devoid of cerebrovascular pathology.  相似文献   

15.
16.
17.
18.
Amounts of glutamate metabolizing enzymes such as glutamate dehydrogenase (GDH), glutamine synthetase (GS), GS-like protein (GSLP), and phosphate-activated glutaminase (PAG) were compared in prefrontal cortex of control subjects and patients with Alzheimer disease (AD). The target proteins were quantified by ECL-Western immunoblotting in extracts from brain tissue prepared by two different techniques separating enzymes preferentially associated with cytoplasm (GDH I and II isoenzymes, GS, and partially GSLP) and membrane (GDH III, PAG, and partially GSLP) fractions. Amounts of all listed enzymes were found significantly increased in the patient group compared with controls. Some links between the measured values were observed in the control, but not in the AD patient group. The results may suggest for the pathological interruption of regulatory relations between distinct enzymes of glutamate metabolism in brain of AD patients.  相似文献   

19.
Progressive mitochondrial dysfunction contributes to neuronal degeneration in age-mediated disease. An essential regulator of mitochondrial function is the deacetylase, sirtuin 3 (SIRT3). Here we investigate a role for CNS Sirt3 in mitochondrial responses to reactive oxygen species (ROS)- and Alzheimer’s disease (AD)-mediated stress. Pharmacological augmentation of mitochondrial ROS increases Sirt3 expression in primary hippocampal culture with SIRT3 over-expression being neuroprotective. Furthermore, Sirt3 expression mirrors spatiotemporal deposition of β-amyloid in an AD mouse model and is also upregulated in AD patient temporal neocortex. Thus, our data suggest a role for SIRT3 in mechanisms sensing and tackling ROS- and AD-mediated mitochondrial stress.  相似文献   

20.
The current study evaluated amyloid-β oligomers (Aβo) in cerebrospinal fluid as a clinical biomarker for Alzheimer’s disease (AD). We developed a highly sensitive Aβo ELISA using the same N-terminal monoclonal antibody (82E1) for capture and detection. CSF samples from patients with AD, mild cognitive impairment (MCI), and healthy controls were examined. The assay was specific for oligomerized Aβ with a lower limit of quantification of 200 fg/ml, and the assay signal showed a tight correlation with synthetic Aβo levels. Three clinical materials of well characterized AD patients (n = 199) and cognitively healthy controls (n = 148) from different clinical centers were included, together with a clinical material of patients with MCI (n = 165). Aβo levels were elevated in the all three AD-control comparisons although with a large overlap and a separation from controls that was far from complete. Patients with MCI who later converted to AD had increased Aβo levels on a group level but several samples had undetectable levels. These results indicate that presence of high or measurable Aβo levels in CSF is clearly associated with AD, but the overlap is too large for the test to have any diagnostic potential on its own.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号