首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The biosynthesis of the physiological messenger nitric oxide (*NO) in neuronal cells is thought to depend on a glial-derived supply of the *NO synthase substrate arginine. To expand our knowledge of the mechanism responsible for this glial-neuronal interaction, we studied the possible roles of peroxynitrite anion (ONOO-), superoxide anion (O2*-), *NO, and H2O2 in L-[3H]arginine release in cultured rat astrocytes. After 5 min of incubation at 37 degrees C, initial concentrations of 0.05-2 mM ONOO- stimulated the release of arginine from astrocytes in a concentration-dependent way; this effect was maximum from 1 mM ONOO- and proved to be approximately 400% as compared with control cells. ONOO(-)-mediated arginine release was prevented by arginine transport inhibitors, such as L-lysine and N(G)-monomethyl-L-arginine, suggesting an involvement of the arginine transporter in the effect of ONOO-. In situ xanthine/xanthine oxidase-generated O2*- (20 nmol/min) stimulated arginine release to a similar extent to that found with 0.1 mM ONOO-, but this effect was not prevented by arginine transport inhibitors. *NO donors, such as sodium nitroprusside, S-nitroso-N-acetylpenicillamine, or 1-[2-(2-aminoethyl)-N-(2-ammonioethyl)amino]diazen-1-ium+ ++-1,2-diolate, and H2O2 did not significantly modify arginine release. As limited arginine availability for neuronal *NO synthase activity may be neurotoxic due to ONOO- formation, our results suggest that ONOO(-)-mediated arginine release from astrocytes may contribute to replenishing neuronal arginine, hence avoiding further generation of ONOO- within these cells.  相似文献   

2.
Neurochemical Research - Astrocytes have a prominent role in metabolic homeostasis of the brain and can signal to adjacent neurons by releasing glutamate via a process of regulated exocytosis....  相似文献   

3.
Phenylketonuria (PKU) is neuropathologically characterized by neuronal cell loss, white matter abnormalities, dendritic simplification, and synaptic density reduction. The neuropathological effect may be due to the ‘toxicity’ of the high concentration of phenylalanine, while little is known about the related treatments to block this effect. In this study, we reported that brain-derived growth factor (BDNF) protected neurons from phenylalanine-induced apoptosis and inhibition of Trk receptor by K252a or downregulation of TrkB abrogated the effect of BDNF. We further demonstrated that phenylalanine-induced RhoA activation and myosin light chain phosphorylation were inhibited by pretreatment with BDNF, while phenylalanine activates the mitochondria-mediated apoptosis through the RhoA/Rho-associated kinase pathway. Thus our studies indicate that the protective effect of BDNF against phenylalanine-induced neuronal apoptosis is probably mediated by suppression of RhoA signaling pathway via TrkB receptor. Taken together, these findings suggest a potential neuroprotective action of BDNF in prevention and treatment of PKU brain injury.  相似文献   

4.
Abstract: Differentiation and survival of neurons induced by neurotrophins have been widely investigated, but little has been reported about the long-term effect of brain-derived neurotrophic factor (BDNF) on synaptic transmission. Among many steps of neurotransmission, one important step is regulated release of transmitters. Therefore, the release of glutamate and GABA from cortical neurons cultured for several days with or without BDNF was measured by an HPLC-fluorescence method. Although BDNF had little effect on the basal release of glutamate, high K+-evoked release was greatly increased by BDNF. BDNF also tended to increase evoked release of GABA. Recently, several proteins involved in the step of "regulated release" have been identified. Thus, the effect of BDNF on the levels of these proteins was then investigated. Neurons were cultivated with or without BDNF, collected, and electrophoresed for western blotting. BDNF increased levels of synaptotagmin, synaptobrevin, synaptophysin, and rab3A, which were known as vesicle protein. Levels of syntaxin, SNAP-25, and β-SNAP were also increased by BDNF. In addition, the numbers of cored and clear vesicles in nerve terminals or varicosities were also increased by BDNF. These results raise the possibility that BDNF increases regulated release of neurotransmitters through the up-regulation of secretory mechanisms.  相似文献   

5.
Postpartum depression (PPD) is the most common psychiatric complication observed in women after they give birth. Some women are particularly sensitive to hormonal changes, starting in early menarche, thus increasing their vulnerability to psychological stressing agents that are triggered by environmental and physiological factors throughout their lives. Decreased serum brain-derived neurotrophic factor (BDNF) levels have been associated to different neuropsychiatric conditions and BDNF has been considered as a candidate marker for such dysfunctions. The goal of this study was to compare the levels of BDNF between mothers who suffer from PPD and healthy control mothers as well as to searching for associations between BDNF levels and the severity of PPD. This is a case-control study including 36 mothers with PPD and 36 healthy control mothers. PPD was defined according to the Beck Depression Inventory (BDI). Serum BDNF was assayed with the sandwich ELISA method. Results: Serum levels of BDNF were significantly lower in women with PPD than in control mothers (P?≤?0.03). A significant negative correlation between BDI score and serum BDNF levels was observed (P?≤?0.02 and r?=?-0.29). Our study demonstrated that low BDNF levels are associated with PPD. This result point out to the potential usage of BDNF in the screening of PPD, which could promote early treatment and, therefore, reduce the burden to the PPD women and to the health system.  相似文献   

6.
Abstract: Rat brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) were engineered for expression in a baculovirus-infected Spodoptera frugiperda insect cell system. The BDNF and NT-3 from the culture supernatants were purified by ion-exchange and reverse-phase chromatography to apparent homogeneity. The purification procedure yielded ∼2 mg of pure rat BDNF or NT-3 per liter of culture supernatant. A single N-terminus only was found for either secreted molecule and was analogous to that predicted from the corresponding cDNA sequence. The recombinant neurotrophins obtained were also homogeneous with regard to molecular weight and amino acid sequence. In their native conformation, the insect cell-produced rat BDNF and NT-3 molecules were homodimers consisting of 119 amino acid polypeptide chains. Thus, although the genes transfected into the S. frugiperda cells coded for proBDNF or proNT-3, the BDNF and NT-3 recovered after purification were >95% fully processed, mature protein. Mature recombinant rat BDNF and NT-3 were found not to be significantly glycosylated. Pure, recombinant rat BDNF and NT-3 promoted the survival of embryonic dorsal root ganglion neurons in the low picomolar range. Because recombinant rat BDNF and NT-3 can be obtained in large quantities, purified to near homogeneity, and are identical in amino acid sequence to the corresponding human proteins, they are suitable for evaluation in animal models.  相似文献   

7.
Abstract: Nitric oxide (?NO) synthase (NOS) was induced in cultured rat astrocytes by incubation with lipopolysaccharide (LPS) for 18 h and gap junction permeability was assessed by the scrape-loading/Lucifer yellow transfer technique. Induction of NOS was confirmed by determining either the NG-methyl-l -arginine (NMMA)-inhibitable production of nitrites and nitrates or the conversion of l -[3H]arginine to l -[3H]citrulline. Incubation with LPS dose-dependently inhibited gap junction permeability to 63.3% at 0.05 µg/ml LPS and no further inhibition was observed on increasing the LPS concentration up to 0.5 µg/ml. LPS-mediated gap junction inhibition was irreversible but was prevented by incubation with the NOS inhibitor NMMA and with the superoxide anion (O2??) scavenger superoxide dismutase. Incubation of the cells with both the ?NO donor S-nitroso-N-acetylpenicillamine and the O2??-generating system xanthine/xanthine oxidase inhibited gap junction permeability. These results suggest that the in situ reaction between ?NO and O2??, to form the peroxynitrite anion (ONOO?), may be responsible for the inhibition of gap junction permeability. Scavenging the ONOO? derivative hydroxyl radical (?OH) with either dimethyl sulfoxide or mannitol prevented the LPS-mediated inhibition of gap junction permeability. Finally, exposure of astrocytes to authentic ONOO? caused a dose-dependent inhibition of gap junction permeability (65.7% of inhibition at 0.5 mM ONOO?). The pathophysiological relevance of ONOO?-mediated inhibition of gap junctional communication in astrocytes after NOS induction by LPS is discussed, stressing the possible role played by this mechanism in some neurodegenerative diseases.  相似文献   

8.

Dicoumarol is frequently used as inhibitor of the detoxifying enzyme NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1). In order to test whether dicoumarol may also affect the cellular glutathione (GSH) metabolism, we have exposed cultured primary astrocytes to dicoumarol and investigated potential effects of this compound on the cell viability as well as on the cellular and extracellular contents of GSH and its metabolites. Incubation of astrocytes with dicoumarol in concentrations of up to 100 µM did not acutely compromise cell viability nor was any GSH consumption or GSH oxidation to glutathione disulfide (GSSG) observed. However, unexpectedly dicoumarol inhibited the cellular multidrug resistance protein (Mrp) 1-dependent export of GSH in a time- and concentration-dependent manner with half-maximal effects observed at low micromolar concentrations of dicoumarol. Inhibition of GSH export by dicoumarol was not additive to that observed for the known Mrp1 inhibitor MK571. In addition, dicoumarol inhibited also the Mrp1-mediated export of GSSG during menadione-induced oxidative stress and the export of the GSH–bimane-conjugate (GS–B) that had been generated in the cells after exposure to monochlorobimane. Half-maximal inhibition of the export of Mrp1 substrates was observed at dicoumarol concentrations of around 4 µM (GSH and GSSG) and 30 µM (GS–B). These data demonstrate that dicoumarol strongly affects the GSH metabolism of viable cultured astrocytes by inhibiting Mrp1-mediated export processes and identifies for the first time Mrp1 as additional cellular target of dicoumarol.

  相似文献   

9.
Abstract: The role of oleic acid in the modulation of gap junction permeability was studied in cultured rat astrocytes by the scrape-loading/Lucifer yellow transfer technique. Incubation with oleic acid caused a dose-dependent inhibition of gap junction permeability by 79.5% at 50 µ M , and no further inhibition was observed by increasing the oleic acid concentration to 100 µ M . The oleic acid-mediated inhibition of gap junction permeability was reversible and was prevented by bovine serum albumin. The potency of oleic acid-related compounds in inhibiting gap junction permeability was arachidonic acid > oleic acid > oleyl alcohol > palmitoleic acid > stearic acid > octanol > caprylic acid > palmitic acid > methyloleyl ester. Oleic acid and arachidonic acid, but not methyloleyl ester, increased glucose uptake by astrocytes. Neither oleic acid nor arachidonic acid increased glucose uptake in the poorly coupled glioma C6 cells. These results support that the inhibition of gap junction permeability is associated with the increase in glucose uptake. We suggest that oleic acid may be a physiological mediator of the transduction pathway leading to the inhibition of intercellular communication.  相似文献   

10.
In the present study we have evaluated the effect of a single hemodialysis session on the brain-derived neurotrophic factor levels in plasma [BDNF]pl and in serum [BDNF]s as well as on the plasma isoprostanes concentration [F2 isoprostanes]pl, plasma total antioxidant capacity (TAC) and plasma cortisol levels in chronic kidney disease patients. Twenty male patients (age 69.8?±?2.9?years (mean?±?SE)) with end-stage renal disease undergoing maintenance hemodialysis on regular dialysis treatment for 15?C71?months participated in this study. A single hemodialysis session, lasting 4.2?±?0.1?h, resulted in a decrease (P?=?0.014) in [BDNF]s by ~42?% (2,574?±?322 vs. 1,492?±?327?pg?ml?1). This was accompanied by an increase (P?<?10?4) of [F2-Isoprostanes]pl (38?±?3 vs. 116?±?16?pg?ml?1), decrease (P?<?10?4) in TAC (1,483?±?41 vs. 983?±?35 trolox equivalents, ??mol?l?1) and a decrease (P?=?0.004) in plasma cortisol level (449.5?±?101.2 vs. 315.3?±?196.3?nmol?l?1). No changes (P?>?0.05) in [BDNF]pl and the platelets count were observed after a single dialysis session. Furthermore, basal [BDNF]s in the chronic kidney disease patients was significantly lower (P?=?0.03) when compared to the age-matched control group (n?=?23). We have concluded that the observed decrease in serum BDNF level after hemodialysis accompanied by elevated [F2-Isoprostanes]pl and decreased plasma TAC might be caused by enhanced oxidative stress induced by hemodialysis.  相似文献   

11.
Abstract: We have monitored glial cell line-derived neurotrophic factor (GDNF) secretion from rat C6 glioblastoma cells by ELISA. Representative cytokines, neurotrophins, growth factors, neuropeptides, and pharmacological agents were tested for their ability to modulate GDNF release. Whereas most factors tested had minimal effect, a 24-h treatment with fibroblast growth factor-1, −2, or −9 elevated secreted GDNF protein levels five- to 10-fold. The proinflammatory cytokines interleukin-1β, interleukin-6, tumor necrosis factor-α, and lipopolysaccharide elevated GDNF release 1.5- to twofold. Parallel studies aimed at elucidating intracellular events that may regulate GDNF synthesis/release demonstrated the involvement of multiple signaling pathways. GDNF levels were increased by phorbol 12,13-didecanoate (10 n M ) activation of protein kinase C, the Ca2+ ionophore A23187 (1 µ M ), okadaic acid (10 n M ) inhibition of type-2A protein phosphatases, nitric oxide donors (1 m M ), and H2O2 (1 m M )-induced oxidative stress. Elevation of cyclic AMP levels by either forskolin (10 µ M ) or dibutyryl cyclic AMP (1 m M ) repressed GDNF secretion, as did treatment with the glucocorticoid dexamethasone (1 µ M ). Our results demonstrate that diverse biological factors are capable of modulating GDNF protein levels and that multiple signal transduction systems can regulate GDNF synthesis and/or release.  相似文献   

12.

Objectives

Brain-derived neurotrophic factor (BDNF) plays important roles in neuronal survival and differentiation; however, the effects of BDNF on mood disorders remain unclear. We investigated BDNF from the perspective of various aspects of systems biology, including its molecular evolution, genomic studies, protein functions, and pathway analysis.

Methods

We conducted analyses examining sequences, multiple alignments, phylogenetic trees and positive selection across 12 species and several human populations. We summarized the results of previous genomic and functional studies of pro-BDNF and mature-BDNF (m-BDNF) found in a literature review. We identified proteins that interact with BDNF and performed pathway-based analysis using large genome-wide association (GWA) datasets obtained for mood disorders.

Results

BDNF is encoded by a highly conserved gene. The chordate BDNF genes exhibit an average of 75% identity with the human gene, while vertebrate orthologues are 85.9%-100% identical to human BDNF. No signs of recent positive selection were found. Associations between BDNF and mood disorders were not significant in most of the genomic studies (e.g., linkage, association, gene expression, GWA), while relationships between serum/plasma BDNF level and mood disorders were consistently reported. Pro-BDNF is important in the response to stress; the literature review suggests the necessity of studying both pro- and m-BDNF with regard to mood disorders. In addition to conventional pathway analysis, we further considered proteins that interact with BDNF (I-Genes) and identified several biological pathways involved with BDNF or I-Genes to be significantly associated with mood disorders.

Conclusions

Systematically examining the features and biological pathways of BDNF may provide opportunities to deepen our understanding of the mechanisms underlying mood disorders.  相似文献   

13.
Abstract: The release of excitatory amino acids (EAAs) from neuron-free cultures of neocortical astrocytes was monitored using HPLC. The neuroligand bradykinin caused a dose-dependent receptor-mediated increase in release of the EAAs glutamate and aspartate from type 1 astrocyte cell cultures obtained from rat cerebral cortex. Removal of calcium from the extracellular fluid prevented the bradykinin-induced release of EAAs from astrocytes. The addition of the calcium ionophore ionomycin caused a calcium-dependent release of EAAs. Inhibitors of the glutamate transporters p -chloromercuriphenylsulfonic acid, l - trans -pyrrolidine-2,4-dicarboxylate, and dihydrokainate failed to impair the ability of bradykinin to stimulate glutamate release from astrocytes. α-Latrotoxin, an active compound of black widow spider venom, caused a significant increase of the release of glutamate in calcium-containing saline. In calcium-depleted saline, α-latrotoxin produced an initial increase in the concentration of glutamate followed by a decline in the concentration of glutamate indicating stimulation of exocytosis coupled with low calcium-induced inhibition of endocytosis. Taken together, these data suggest that astrocytes may release neurotransmitter through a mechanism that is similar to the neuronal secretory process. Given the important role of glutamate in the induction of long-term potentiation, learning, memory, and excitotoxicity, it will be important to determine external signals that control both the uptake and release of glutamate by astrocytes.  相似文献   

14.
Abstract: Bioactive brain-derived neurotrophic factor (BDNF) and neurotrophin-3 were produced using the baculovirus expression system and purified to homogeneity using ion-exchange and reversed-phase chromatography. Yields of purified neurotrophin-3 (300–500 μg/L) were similar to levels reported for baculovirus-expressed nerve growth factor (NGF), whereas initial yields of BDNF were significantly lower (20–50 μg/L). Improved production of BDNF (150–200 μg/L) was achieved by expressing BDNF from a chimeric prepro-NGF/mature BDNF construct using the Trichoplusia ni insect cell line, Tn-5B1-4. Examination of the distribution of BDNF protein from both the nonchimeric prepro-BDNF and the chimeric prepro-NGF/mature BDNF viruses in Sf-21-and Tn-5B1-4-infected cells suggests a specific deficiency in the Tn-5B1-4 cells in processing the nonchimeric precursor. In addition, the vast majority of the BDNF protein at 2 days after infection was intracellular and insoluble. N-terminal amino acid sequencing of purified recombinant BDNF and neurotrophin-3 demonstrated that the insect cells processed their precursors to the correct N-terminus expected for the mature protein. Bioactivity was characterized in vitro on primary neuronal cultures from the CNS and PNS.  相似文献   

15.
Brain-derived neurotrophic factor (BDNF) stimulates peripheral nerve regeneration. However, the origin of BNDF and its precise effect on nerve repair have not been clarified. In this study, we examined the role of BDNF from bone marrow-derived cells (BMDCs) in post-injury nerve repair. Control and heterozygote BDNF knockout mice (BDNF+/−) received a left sciatic nerve crush using a cerebral blood clip. Especially, for the evaluation of BDNF from BMDCs, studies with bone marrow transplantation (BMT) were performed before the injury. We evaluated nerve function using a rotarod test, sciatic function index (SFI), and motor nerve conduction velocity (MNCV) simultaneously with histological nerve analyses by immunohistochemistry before and after the nerve injury until 8 weeks. BDNF production was examined by immunohistochemistry and mRNA analyses. After the nerve crush, the controls showed severe nerve dysfunction evaluated at 1 week. However, nerve function was gradually restored and reached normal levels by 8 weeks. By immunohistochemistry, BDNF expression was very faint before injury, but was dramatically increased after injury at 1 week in the distal segment from the crush site. BDNF expression was mainly co-localized with CD45 in BMDCs, which was further confirmed by the appearance of GFP-positive cells in the BMT study. Variant analysis of BDNF mRNA also confirmed this finding. BDNF+/− mice showed a loss of function with delayed histological recovery and BDNF+/+→BDNF+/− BMT mice showed complete recovery both functionally and histologically. These results suggested that the attenuated recovery of the BDNF+/− mice was rescued by the transplantation of BMCs and that BDNF from BMDCs has an essential role in nerve repair.  相似文献   

16.
This study aimed to observe the regenerative effect of brain-derived neurotrophic factor (BDNF) in a non-human primate furcation defect model. Class II furcation defects were created in the first and second molars of 8 non-human primates to simulate a clinical situation. The defect was filled with either, Group A: BDNF (500 µg/ml) in high-molecular weight-hyaluronic acid (HMW-HA), Group B: BDNF (50 µg/ml) in HMW-HA, Group C: HMW-HA acid only, Group D: empty defect, or Group E: BDNF (500 µg/ml) in saline. The healing status for all groups was observed at different time-points with micro computed tomography. The animals were euthanized after 11 weeks, and the tooth-bone specimens were subjected to histologic processing. The results showed that all groups seemed to successfully regenerate the alveolar buccal bone, however, only Group A regenerated the entire periodontal tissue, i.e., alveolar bone, cementum and periodontal ligament. It is suggested that the use of BDNF in combination with a scaffold such as the hyaluronic acid in periodontal furcation defects may be an effective treatment option.  相似文献   

17.
The distribution of brain-derived neurotrophic factor was examined in the rat mesencephalic trigeminal tract nucleus after transection and crush of the masseteric nerve. In the intact mesencephalic trigeminal tract nucleus, brain-derived neurotrophic factor was detected in small cells with fine processes. These cells and processes were occasionally located adjacent to tyrosine kinase B receptor-immunoreactive sensory neurons. The transection and crush of the masseteric nerve increased expression of brain-derived neurotrophic factor in the nucleus. The number and size of brain-derived neurotrophic factor-immunoreactive cells and processes were dramatically elevated by the nerve injury. As a result, the density of brain-derived neurotrophic factor-immunoreactive profiles in the mesencephalic trigeminal tract nucleus at 7 days after the injury was significantly higher compared with the intact nucleus. Double immunofluorescence method also revealed that brain-derived neurotrophic factor-immunoreactive cells were mostly immunoreactive for OX-42 but not glial fibrillary acidic protein. In addition, the retrograde tracing method demonstrated that brain-derived neurotrophic factor-immunoreactive cells and processes surrounded retrogradely labeled neurons which showed tyrosine kinase B receptor-immunoreactivity. These findings indicate that the nerve injury increases expression of brain-derived neurotrophic factor in microglia within the mesencephalic trigeminal tract nucleus. The glial neurotrophic factor may be associated with axonal regeneration of the injured primary proprioceptor in the trigeminal nervous system.  相似文献   

18.
Manganese Uptake and Efflux in Cultured Rat Astrocytes   总被引:7,自引:0,他引:7  
Astrocytes play a central role in manganese (Mn) regulation in the CNS. Using primary astrocyte cultures from neonatal rat brains, these studies demonstrate a specific high-affinity transport system for Mn2+. Saturation kinetics are clearly indicated by both 1/v versus 1/s plots (Km = 0.30 +/- 0.03 microM; Vmax = 0.30 +/- 0.02 nmol/mg of protein/min) and plots of v versus [s]. Several divalent cations (Co2+, Zn2+, and Pb2+) failed to inhibit the initial rate of 54Mn2+ uptake. In contrast, extracellular Ca2+ at 10 microM decreased 54Mn2+ uptake. Exchange with extracellular Mn2+ was not obligatory for the efflux of 54Mn2+ into extracellular medium because efflux occurred into Mn(2+)-free extracellular medium, but efflux of 54Mn2+ was enhanced when astrocytes were equilibrated in the presence of unlabeled Mn2+. Efflux of 54Mn2+ was biphasic with both a rapid and a slow component. Efflux was most rapid during the first 10 min of incubation, with 27.5 +/- 2.2% of 54Mn2+ transported extracellularly, and 37.2 +/- 1.2% of preloaded 54Mn2+ was retained by the astrocytes at 120 min. These studies show, for the first time, that mammalian astrocytes can transport Mn via a specific transport system.  相似文献   

19.
Shp2, a protein tyrosine phosphatase possessing SH2 domains, is utilized in the intracellular signaling of various growth factors. Shp2 is highly expressed in the CNS. Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, which also shows high levels of expression in the CNS, exerts neurotrophic and neuromodulatory effects in CNS neurons. We examined how BDNF utilizes Shp2 in its signaling pathway in cultured cerebral cortical neurons. We found that BDNF stimulated coprecipitation of several tyrosine-phosphorylated proteins with anti-Shp2 antibody and that Grb2 and phosphatidylinositol 3-kinase (PI3-K) were coprecipitated with anti-Shp2 antibody in response to BDNF. In addition, both anti-Grb2 and anti-PI3-K antibodies coprecipitated Shp2 in response to BDNF. The BDNF-stimulated coprecipitation of the tyrosine-phosphorylated proteins, Grb2, and PI3-K with anti-Shp2 antibody was completely inhibited by K252a, an inhibitor of TrkB receptor tyrosine kinase. This BDNF-stimulated Shp2 signaling was markedly sustained as well as BDNF-induced phosphorylation of TrkB and mitogen-activated protein kinases. In PC12 cells stably expressing TrkB, both BDNF and nerve growth factor stimulated Shp2 signaling similarly to that by BDNF in cultured cortical neurons. These results indicated that Shp2 shows cross-talk with various signaling molecules including Grb2 and PI3-K in BDNF-induced signaling and that Shp2 may be involved in the regulation of various actions of BDNF in CNS neurons.  相似文献   

20.
Phosphatidylinositol (PI) breakdown represents a powerful system participating in the transduction mechanism of some neurotransmitters and growth factors and producing two second messengers, diacylglycerol and inositol trisphosphate. The transformation of PC12 neuroblastoma cells into neuron-like cells induced by nerve growth factor (NGF) is preceded by a rapid stimulation of PI breakdown; however, it was not known whether PI breakdown mediates actions of other members of the neurotrophin family. The present study analyzed the effects of NGF, brain-derived neurotrophic factor (BDNF), and neurotrophin-3 (NT-3) on PI breakdown in primary cultures of embryonic rat brain cells. Cultures were grown for 7 days; PI was then labeled by incubating cultures with myo-[3H]inositol, which then were exposed acutely to growth factors. BDNF and NT-3, but not NGF, elevated the levels of labeled inositol phosphates within 10-15 min after addition to the cultures in a dose-dependent manner. ED50 values for BDNF and NT-3 were 12.4 and 64.5 ng/ml, respectively. Comparable effects were found in cultures of cortical, striatal, and septal cells. The actions of BDNF and NT-3 probably reflect actions on neurons, because no effects were seen in cultures of nonneuronal cells. In contrast, basic fibroblast growth factor induced a marked stimulation of PI breakdown in cultures of nonneuronal cells. K252b, which selectively blocks neurotrophin actions by inhibiting trk-type receptor proteins, prevented the PI breakdown mediated by BDNF and NT-3. The findings suggest that rapid and specific induction of PI breakdown is involved in the signal transduction of BDNF and NT-3, and they provide evidence that cortical neurons are functionally responsive to BDNF and NT-3 during development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号