首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Demyelination due to oligodendrocytes loss occurs after traumatic spinal cord injury (TSCI). Several studies have suggested the therapeutic potential of vitamin D (VitD) in demyelinating diseases. However, experimental evidence in the context of TSCI is limited, particularly in the presence of prior VitD-deficiency. In the present study, a contusion and a transection TSCI rat model were used, representing mild and severe injury, respectively. Motor recovery was assessed in rats with normal VitD level or with VitD-deficiency after 8 weeks'' treatment post-TSCI (Cholecalciferol, 500 IU/kg/day). The impact on myelin integrity was examined by transmission electron microscopy and studied in vitro using primary culture of oligodendrocytes. We found that VitD treatment post-TSCI effectively improved hindlimb movement in rats with normal VitD level irrespective of injury severity. However, cord-transected rats with prior deficiency did not seem to benefit from VitD supplementation. Our data further suggested that having sufficient VitD was essential for persevering myelin integrity after injury. VitD rescued oligodendrocytes from apoptotic cell death in vitro and enhanced their myelinating ability towards dorsal root axons. Enhanced myelination was mediated by increased oligodendrocyte precursor cells (OPCs) differentiation into oligodendrocytes in concert with c-Myc downregulation and suppressed OPCs proliferation. Our study provides novel insights into the functioning of VitD as a regulator of OPCs differentiation as well as strong preclinical evidence supporting future clinical testing of VitD for TSCI.  相似文献   

2.
Specimens of brain tissue obtained at autopsy from three patients suffering from progressive multifocal leukoencephalopathy (PML) were examined by electron microscopy. In specimens from all three cases particles similar to those of the papova virus group were present, confirming previous observations. By the negative staining method it was possible to define the morphological characteristics of the particles more precisely and it was shown that they are structurally similar to virions of the polyoma-SV40-K type. The need is emphasized for obtaining fresh unfixed diseased tissue from persons suffering from PML in order that the biological properties of the particles can be investigated.  相似文献   

3.
The pathogenesis of inflammatory demyelinating diseases of the central nervous system (CNS) is complex and in part reflects the contribution of multiple cellular and molecular factors. Determining whether these factors are primary or secondary to lesion development or are pathogenic versus protective or reparative represents a major research challenge and will be critical in the development of effective therapeutic strategies. The recent development of experimental procedures that permit the stable germline transmission in mice (so-called transgenic mice) of specific genes with expression targeted to the intact CNS offers a powerful new approach for tackling this problem. In this paper we discuss our experience in the application of genetic engineering to develop transgenic mice with the astrocyte-targeted expression of the key mediators of the host response, the cytokines. Cytokines are a large family of pluripotent mediators with specific classes of these molecules being incriminated in the pathogenesis of inflammatory demyelinating diseases. Transgenic mice were developed in which the expression of the cytokines interleukin-6 or interleukin-3 was targeted to astrocytes using a glial fibrillary acidic protein genomic expression vector. Depending on which cytokine was expressed, these animals developed white matter disease with distinct patterns of demyelination associated with different pathologic features. Here we will describe the procedural details associated with the development of these transgenic models, focusing on three general themes: (i) production of transgenic animals, (ii) analysis of transgene expression, and (iii) characterization of the transgenic mouse phenotype.  相似文献   

4.
Abstract: Although the specificity of multiple sclerosis (MS) brain immunoglobulins (lgs) remains unknown, the incubation of these lgs with human myelin can lead to myelin basic protein (MBP) degradation mediated by neutral proteases. In this study, we demonstrate that monoclonal antibodies (mAbs) specific to myelin components such as the CNS-specific myelin oligodendrocyte glycoprotein (MOG) and galactocerebroside (GalC) are found to induce a significant loss of MBP mediated by neutral proteases in myelin. By contrast, antibodies to periaxonal and structural components of myelin, such as MBP and myelin-associated glycoprotein, are ineffective in inducing such MBP degradation. Among the 11 different anti-MOG mAbs directed to externally located epitopes of MOG, only two were found to induce a significant degradation of MBP, suggesting that antibody-induced MBP degradation is not only antigen specific but also epitope specific. Based on the inhibition of MBP degradation in the presence of EGTA and the analysis of the degradation products obtained following incubation of myelin with mAbs to GalC and MOG (8-18C5), the neutral protease involved in this antibody-induced degradation of MBP could be calcium-activated neutral protease. Taken together, these results suggest that antibodies to GalC and MOG can play a major role in destabilizing myelin through MBP breakdown mediated by neutral proteases and thus have an important role to play in the pathogenesis of MS.  相似文献   

5.
6.
Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathy with the majority of cases involving demyelination of peripheral nerves. The pathogenic mechanisms of demyelinating CMT remain unclear, and no effective therapy currently exists for this disease. The discovery that mutations in different genes can cause a similar phenotype of demyelinating peripheral neuropathy raises the possibility that there may be convergent mechanisms leading to demyelinating CMT pathogenesis. Increasing evidence indicates that ErbB receptor-mediated signaling plays a major role in the control of Schwann cell-axon communication and myelination in the peripheral nervous system. Recent studies reveal that several demyelinating CMT-linked proteins are novel regulators of endocytic trafficking and/or phosphoinositide metabolism that may affect ErbB receptor signaling. Emerging data have begun to suggest that dysregulation of ErbB receptor trafficking and signaling in Schwann cells may represent a common pathogenic mechanism in multiple subtypes of demyelinating CMT. In this review, we focus on the roles of ErbB receptor trafficking and signaling in regulation of peripheral nerve myelination and discuss the emerging evidence supporting the potential involvement of altered ErbB receptor trafficking and signaling in demyelinating CMT pathogenesis and the possibility of modulating these trafficking and signaling processes for treating demyelinating peripheral neuropathy.  相似文献   

7.
Epidemiological studies have reported that most of the severe dengue cases occur upon a secondary heterologous infection. Furthermore, babies born to dengue immune mothers are at greater risk of developing severe disease upon primary infection with a heterologous or homologous dengue virus (DENV) serotype when maternal antibodies reach sub-neutralizing concentrations. These observations have been explained by the antibody mediated disease enhancement (ADE) phenomenon whereby heterologous antibodies or sub-neutralizing homologous antibodies bind to but fail to neutralize DENV particles, allowing Fc-receptor mediated entry of the virus-antibody complexes into host cells. This eventually results in enhanced viral replication and heightened inflammatory responses. In an attempt to replicate this ADE phenomenon in a mouse model, we previously reported that upon DENV2 infection 5-week old type I and II interferon (IFN) receptors-deficient mice (AG129) born to DENV1-immune mothers displayed enhancement of disease severity characterized by increased virus titers and extensive vascular leakage which eventually led to the animals’ death. However, as dengue occurs in immune competent individuals, we sought to reproduce this mouse model in a less immunocompromised background. Here, we report an ADE model that is mediated by maternal antibodies in type I IFN receptor-deficient A129 mice. We show that 5-week old A129 mice born to DENV1-immune mothers succumbed to a DENV2 infection within 4 days that was sub-lethal in mice born to naïve mothers. Clinical manifestations included extensive hepatocyte vacuolation, moderate vascular leakage, lymphopenia, and thrombocytopenia. Anti-TNFα therapy totally protected the mice and correlated with healthy hepatocytes. In contrast, blocking IL-6 did not impact the virus titers or disease outcome. This A129 mouse model of ADE may help dissecting the mechanisms involved in dengue pathogenesis and evaluate the efficacy of vaccine and therapeutic candidates.  相似文献   

8.
Newborn striatal neurons induced by middle cerebral artery occlusion (MCAO) can form functional projections targeting into the substantia nigra, which should be very important for the recovery of motor function. Exercise training post-stroke improves motor recovery in clinic patients and increases striatal neurogenesis in experimental animals. This study aimed to investigate the effects of exercise on axon regeneration of newborn projection neurons in adult rat brains following ischemic stroke. Rats were subjected to a transient MCAO to induce focal cerebral ischemic injury, followed by 30 minutes of exercise training daily from 5 to 28 days after MCAO. Motor function was tested using the rotarod test. We used fluorogold (FG) nigral injection to trace striatonigral and corticonigral projection neurons, and green fluorescent protein (GFP)-targeting retroviral vectors combined with FG double labeling (GFP+ -FG+) to detect newborn projection neurons. The results showed that exercise improved the recovery of motor function of rats after MCAO. Meanwhile, exercise also increased the levels of BDNF and VEGF, and reduced Nogo-A in ischemic brain. On this condition, we further found that exercise significantly increased the number of GFP+ -FG+ neurons in the striatum and frontal and parietal cortex ipsilateral to MCAO, suggesting an increase of newborn striatonigral and corticonigral projection neurons by exercise post-stroke. In addition, we found that exercise also increased NeuN+ and FG+ cells in the striatum and frontal and parietal cortex, the ischemic territory, and tyrosine hydroxylase (TH) immunopositive staining cells in the substantia nigra, a region remote from the ischemic territory. Our results provide the first evidence that exercise can effectively enhance the capacity for regeneration of newborn projection neurons in ischemic injured mammalian brains while improving motor function. Our results provide a very important cellular mechanism to illustrate the effectiveness of rehabilitative treatment post-stroke in the clinic.  相似文献   

9.
10.
Abstract: An immunological technique has been employed to identify proteins, separated in polyacrylamide gels, which show changes in brain samples from cases of multiple sclerosis and subacute sclerosing panencephalitis. Sodium dodecylsulphate-treated proteins in particulate and soluble fractions were separated in polyacrylamide slab gels, transferred electrophoretically onto cellulose nitrate sheets, incubated with specific antisera and visualized by an immunoperoxidase method. Protein bands showing changes were identified using antisera raised against the myelin basic and Wolfgram proteins, the neurofilament triplet proteins, tubulin and glial fibrillary acidic protein. In addition to the loss of myelin proteins, decreases in the neurofilament proteins and in tubulin were seen in both multiple sclerosis and subacute sclerosing panencephalitis samples. The distribution of glial fibrillary acidic protein polypeptides in the particulate and soluble fractions of plaque samples appeared to vary according to the degree of fibrosis. Changes in the levels of the myelin-associated glycoprotein, the lower molecular weight component of the Wolfgram protein, albumin and immunoglobulin G, none of which were visualized by protein staining, were also seen. This immunological technique has allowed a closer examination of changes occurring in brain protein spectra in multiple sclerosis and subacute sclerosing panencephalitis.  相似文献   

11.
Rapid and efficient axon remyelination aids in restoring strong electrochemical communication with end organs and in preventing axonal degeneration often observed in demyelinating neuropathies. The signals from axons that can trigger more effective remyelination in vivo are still being elucidated. Here we report the remarkable effect of delayed brief electrical nerve stimulation (ES; 1 hour @ 20 Hz 5 days post-demyelination) on ensuing reparative events in a focally demyelinated adult rat peripheral nerve. ES impacted many parameters underlying successful remyelination. It effected increased neurofilament expression and phosphorylation, both implicated in axon protection. ES increased expression of myelin basic protein (MBP) and promoted node of Ranvier re-organization, both of which coincided with the early reappearance of remyelinated axons, effects not observed at the same time points in non-stimulated demyelinated nerves. The improved ES-associated remyelination was accompanied by enhanced clearance of ED-1 positive macrophages and attenuation of glial fibrillary acidic protein expression in accompanying Schwann cells, suggesting a more rapid clearance of myelin debris and return of Schwann cells to a nonreactive myelinating state. These benefits of ES correlated with increased levels of brain derived neurotrophic factor (BDNF) in the acute demyelination zone, a key molecule in the initiation of the myelination program. In conclusion, the tremendous impact of delayed brief nerve stimulation on enhancement of the innate capacity of a focally demyelinated nerve to successfully remyelinate identifies manipulation of this axis as a novel therapeutic target for demyelinating pathologies.  相似文献   

12.
Abstract. Pelizaeus-Merzbacher disease (PMD) is a dysmyelinating disease resulting from mutations, deletions, or duplications of the proteolipid protein (PLP) gene. Distinguishing features of PMD include pleiotropy and a range of disease severities among patients. Previously, we demonstrated that, when expressed in transfected fibroblasts, many naturally occurring mutant PLP alleles encode proteins that accumulate in the endoplasmic reticulum and are not transported to the cell surface. In the present communication, we show that oligodendrocytes in an animal model of PMD, the msd mouse, accumulate Plp gene products in the perinuclear region and are unable to transport them to the cell surface. Another important aspect of disease in msd mice is oligodendrocyte cell death, which is increased by two- to threefold. We demonstrate in msd mice that this death occurs by apoptosis and show that at the time oligodendrocytes die, they have differentiated, extended processes that frequently contact axons and are expressing myelin structural proteins. Finally, we define a hypothesis that accounts for pathogenesis in most PMD patients and animal models of this disease and, moreover, can be used to develop potential therapeutic strategies for ameliorating the disease phenotype.  相似文献   

13.
Neurochemical Research - During demyelinating disease such as multiple sclerosis and stroke, myelin is destroyed and along with it, the oligodendrocytes that synthesize the myelin. Thus, recovery...  相似文献   

14.
The optic nerve often suffers regenerative failure after injury, leading to serious visual impairment such as glaucoma. The main inhibitory factors, including Nogo-A, oligodendrocyte myelin glycoprotein, and myelin-associated glycoprotein, exert their inhibitory effects on axonal growth through the same receptor, the Nogo-66 receptor (NgR). Oncomodulin (OM), a calcium-binding protein with a molecular weight of an ∼12 kDa, which is secreted from activated macrophages, has been demonstrated to have high and specific affinity for retinal ganglion cells (RGC) and promote greater axonal regeneration than other known polypeptide growth factors. Protamine has been reported to effectively deliver small interference RNA (siRNA) into cells. Accordingly, a fusion protein of OM and truncated protamine (tp) may be used as a vehicle for the delivery of NgR siRNA into RGC for gene therapy. To test this hypothesis, we constructed OM and tp fusion protein (OM/tp) expression vectors. Using the indirect immunofluorescence labeling method, OM/tp fusion proteins were found to have a high affinity for RGC. The gel shift assay showed that the OM/tp fusion proteins retained the capacity to bind to DNA. Using OM/tp fusion proteins as a delivery tool, the siRNA of NgR was effectively transfected into cells and significantly down-regulated NgR expression levels. More importantly, OM/tp-NgR siRNA dramatically promoted axonal growth of RGC compared with the application of OM/tp recombinant protein or NgR siRNA alone in vitro. In addition, OM/tp-NgR siRNA highly elevated intracellular cyclic adenosine monophosphate (cAMP) levels and inhibited activation of the Ras homolog gene family, member A (RhoA). Taken together, our data demonstrated that the recombinant OM/tp fusion proteins retained the functions of both OM and tp, and that OM/tp-NgR siRNA might potentially be used for the treatment of optic nerve injury.  相似文献   

15.
The exact mechanism of glatiramer acetate (GA, Copaxone®), an FDA-approved immunomodulatory therapy for multiple sclerosis (MS), remains unclear after decades of research. Previously, we have shown that GA therapy of MS induces CD8+ T cell responses that can potentially suppress pathogenic CD4+ T cell responses. Using a murine model of MS, experimental autoimmune encephalomyelitis (EAE), we now demonstrate that CD8+ T cells are necessary in mediating the therapeutic effects of GA. Further, adoptive transfer of GA-induced CD8+ T cells resulted in amelioration of EAE, establishing a role as a viable immunotherapy in demyelinating disease. Generation of these cells required indoleamine-2,3-dioxygenase (IDO), while suppressive function depended on non-classical MHC class I, IFN-γ, and perforin expression. GA-induced regulatory myeloid cells, previously shown to activate CD4+ regulatory T cells in an antigen-independent manner, required CD8+ T cells for disease suppression in vivo. These studies demonstrate an essential role for CD8+ T cells in GA therapy and identify their potential as an adoptive immunotherapeutic agent.  相似文献   

16.
Mao  Z.  Wang  Yu.  Ma  X.  Jiang  H.  Zu  Yu.  Voronin  P. Yu. 《Russian Journal of Plant Physiology》2004,51(4):508-512
A greenhouse experiment, which imitated a short (4-day-long) and progressive (3-week-long) soil drought, was employed to assess, with an IR gas analyzer, leaf CO2 exchange rate (CER) in intact one-year-old seedlings of Betula platyphylla as related to the flux of photosynthetically active radiation ranging from 0 to 1400 E/(m2 s). The registered indices comprised leaf temperature, leaf transpiration conductivity, and the average daily increment of the leaf area. Within a week period following the transition from the short severe soil drought (20% H2O per soil weight) to the conditions of sufficient water content (35–40%), the plants completely regained the initial leaf CER. Under the progressive soil drought, leaf CER was reduced by 30–35%, as compared to the conditions of sufficient water content, evidently due to a 3.7-fold drop in the transpiration conductivity as compared to the control plants. The apparent constant of Rubisco carboxylation and leaf respiration in the light were not affected by the drought period. The rate of leaf growth under the progressive drought was reduced by 64% as compared to the sufficient moisture conditions. Thus, under the progressive drought, the diminished stomatal conductivity reduced CO2 concentration inside the leaf and lowered carbon photosynthetic assimilation. Meanwhile, the leaf source activity considerably increased in spite of diminished photosynthesis.  相似文献   

17.
Although the etiology of multiple sclerosis (MS) is not known, several factors play a role in this disease: genetic contributions, immunologic elements, and environmental factors. Viruses and virus infections have been associated with the initiation and/or enhancement of exacerbations in MS. Theiler’s murine encephalomyelitis virus (TMEV) infection of mice is one of the animal models used to mimic MS. In other animal model systems, DNA vaccination has been used to protect animals against a variety of virus infections. To explore the utility of DNA vaccination, we have constructed eukaryotic expression vectors encoding the TMEV capsid proteins VP1, VP2, and VP3. SJL/J mice were vaccinated intramuscularly once, twice, or three times with the different capsid protein cDNAs. This was followed by intracerebral TMEV infection to determine the effects of DNA vaccination on the course of TMEV-induced central nervous system (CNS) demyelinating disease. We found that vaccination of mice three times with cDNA encoding VP2 led to partial protection of mice from CNS demyelinating disease as determined by a decrease in clinical symptoms and histopathology. Vaccination of mice with cDNA encoding VP3 also led to a decrease in clinical symptoms. In contrast, mice vaccinated with cDNA encoding VP1 experienced a more severe disease with an earlier onset of clinical signs and enhanced histopathology compared with control mice. There was no correlation between anti-TMEV antibody titers and disease course. These results indicate that DNA immunization can modify chronic virus-induced demyelinating disease and may eventually lead to potential treatments for illnesses such as MS.  相似文献   

18.
Characterizing and enumerating cells of the oligodendrocyte lineage (OLCs) is crucial for understanding demyelination and therapeutic benefit in models of demyelinating disease in the central nervous system. Here we describe a novel method for the rapid, unbiased analysis of mouse OLCs using flow cytometry. The assay was optimized to maximize viable yield of OLCs and maintain OLC antigen integrity. Panels of antibodies were assembled for simultaneous analysis of seven antigens on individual cells allowing for characterization of oligodendroglial cells throughout the lineage. We verified the utility of the assay with cultured OLCs and through a time course of developmental myelination. Next we employed the assay to characterize OLC populations in two well-characterized models of demyelination: cuprizone-induced demyelination and experimental autoimmune encephalomyelitis (EAE). In EAE we observed a dramatic loss of mature oligodendrocytes coincident with a dramatic expansion of oligodendrocyte progenitors cells (OPCs) at the onset of disease suggesting an attempt of the host to repair myelin. This expanded OPC pool was maintained through remission and relapse suggesting an arrest in differentiation in the face of the chronic autoimmune T cell-mediated inflammatory response. These robust, reproducible changes in OLCs through disease provide a rapid quantitative global analysis of myelin-producing cells in the adult mouse brain and important information regarding effects of disease on oligodendroglial proliferation/differentiation which is useful for defining the pathogenesis and therapy of MS.  相似文献   

19.
20.
Charcot-Marie-Tooth disease (CMT) is a genetically heterogeneous disease affecting the peripheral nervous system that is caused by either the demyelination of Schwann cells or degeneration of the peripheral axon. Currently, there are no treatment options to improve the degeneration of peripheral nerves in CMT patients. In this research, we assessed the potency of farnesol for improving the demyelinating phenotype using an animal model of CMT type 1A. In vitro treatment with farnesol facilitated myelin gene expression and ameliorated the myelination defect caused by PMP22 overexpression, the major causative gene in CMT. In vivo administration of farnesol enhanced the peripheral neuropathic phenotype, as shown by rotarod performance in a mouse model of CMT1A. Electrophysiologically, farnesol-administered CMT1A mice exhibited increased motor nerve conduction velocity and compound muscle action potential compared with control mice. The number and diameter of myelinated axons were also increased by farnesol treatment. The expression level of myelin protein zero (MPZ) was increased, while that of the demyelination marker, neural cell adhesion molecule (NCAM), was reduced by farnesol administration. These data imply that farnesol is efficacious in ameliorating the demyelinating phenotype of CMT, and further elucidation of the underlying mechanisms of farnesol’s effect on myelination might provide a potent therapeutic strategy for the demyelinating type of CMT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号