共查询到20条相似文献,搜索用时 28 毫秒
1.
2.
3.
Alzheimer's disease (AD) is one key medical challenge of the aging society and despite a great amount of effort and a huge collection of acquired data on molecular mechanisms that are associated with the onset and progression of this devastating disorder, no causal therapy is in sight. The two main hypotheses of AD, the amyloid cascade hypothesis and the Tau hypothesis, are still in the focus of AD research. With aging as the accepted main risk factor of the most important non familial and late onset sporadic forms of AD, it is now mandatory to discuss more intensively aspects of cellular aging and aging biochemistry and its impact on neurodegeneration. Since aging is accompanied by changes in cellular protein homeostasis and an increasing demand for protein degradation, aspects of protein folding, misfolding, refolding and, importantly, protein degradation need to be linked to AD pathogenesis. This is the purpose of this short review. 相似文献
4.
Christopher A. Hostage Kingshuk Roy Choudhury Pudugramam Murali Doraiswamy Jeffrey R. Petrella for the Alzheimer’s Disease Neuroimaging Initiative 《PloS one》2013,8(2)
Objective
To investigate whether there is a specific dose-dependent effect of the Apolipoprotein E (APOE) ε4 and ε2 alleles on hippocampal volume, across the cognitive spectrum, from normal aging to Alzheimer’s Disease (AD).Materials and Methods
We analyzed MR and genetic data on 662 patients from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database–198 cognitively normal controls (CN), 321 mild-cognitive impairment (MCI) subjects, and 143 AD subjects–looking for dose-dependent effects of the ε4 and ε2 alleles on hippocampal volumes. Volumes were measured using a fully-automated algorithm applied to high resolution T1-weighted MR images. Statistical analysis consisted of a multivariate regression with repeated-measures model.Results
There was a dose-dependent effect of the ε4 allele on hippocampal volume in AD (p = 0.04) and MCI (p = 0.02)–in both cases, each allele accounted for loss of >150 mm3 (approximately 4%) of hippocampal volume below the mean volume for AD and MCI subjects with no such alleles (Cohen’s d = −0.16 and −0.19 for AD and MCI, respectively). There was also a dose-dependent, main effect of the ε2 allele (p<0.0001), suggestive of a moderate protective effect on hippocampal volume–an approximately 20% per allele volume increase as compared to CN with no ε2 alleles (Cohen’s d = 0.23).Conclusion
Though no effect of ε4 was seen in CN subjects, our findings confirm and extend prior data on the opposing effects of the APOE ε4 and ε2 alleles on hippocampal morphology across the spectrum of cognitive aging. 相似文献5.
Dendritic spines are tiny protrusions along dendrites, which constitute major postsynaptic sites for excitatory synaptic transmission. These spines are highly motile and can undergo remodeling even in the adult nervous system. Spine remodeling and the formation of new synapses are activity-dependent processes that provide a basis for memory formation. A loss or alteration of these structures has been described in patients with neurodegenerative disorders such as Alzheimer's disease (AD), and in mouse models for these disorders. Such alteration is thought to be responsible for cognitive deficits long before or even in the absence of neuronal loss, but the underlying mechanisms are poorly understood. This review will describe recent findings and discoveries on the loss or alteration of dendritic spines induced by the amyloid beta (Abeta) peptide in the context of AD. 相似文献
6.
Our goal is to understand the neural basis of functional impairment in aging and Alzheimer’s disease (AD) to be able to characterize clinically significant decline and assess therapeutic efficacy. We used frequency-tagged ERPs to word and motion stimuli to study the effects of stimulus conditions and selective attention. ERPs to word or motion increase when a task-irrelevant 2nd stimulus is added, but decrease when the task is moved to that 2nd stimulus. Spectral analyses show task effects on response power without 2nd stimulus effects. However, phase coherence shows both 2nd stimulus and task effects. Thus, power and coherence are dissociably modulated by stimulus and task effects. Task-dependent phase coherence successively declines in aging and AD. In contrast, task-dependent spectral power increases in aging, only to decrease in AD. We hypothesize that age-related declines in signal coherence, associated with increased power generation, stresses neurons and contributes to the loss of response power and the development of functional impairment in AD. 相似文献
7.
Morgan Sheng Bernardo L. Sabatini Thomas C. Südhof 《Cold Spring Harbor perspectives in biology》2012,4(5)
Alzheimer’s disease (AD) is a major cause of dementia in the elderly. Pathologically, AD is characterized by the accumulation of insoluble aggregates of Aβ-peptides that are proteolytic cleavage products of the amyloid-β precursor protein (“plaques”) and by insoluble filaments composed of hyperphosphorylated tau protein (“tangles”). Familial forms of AD often display increased production of Aβ peptides and/or altered activity of presenilins, the catalytic subunits of γ-secretase that produce Aβ peptides. Although the pathogenesis of AD remains unclear, recent studies have highlighted two major themes that are likely important. First, oligomeric Aβ species have strong detrimental effects on synapse function and structure, particularly on the postsynaptic side. Second, decreased presenilin function impairs synaptic transmission and promotes neurodegeneration. The mechanisms underlying these processes are beginning to be elucidated, and, although their relevance to AD remains debated, understanding these processes will likely allow new therapeutic avenues to AD.Alzheimer’s disease (AD) is a common neurodegenerative disease of the elderly, first described by the physician-pathologist Alois Alzheimer in 1907 (Maurer and Maurer 2003). Clinically, AD is characterized by progressive impairment of memory (particularly short-term memory in early stages) and other cognitive disabilities, personality changes, and ultimately, complete dependence on others. The most prevalent cause of dementia worldwide, AD afflicts >5 million people in the United States and >25 million globally (Alzheimer’s Association, http://www.alz.org). Age is the most important risk factor, with the prevalence of AD rising exponentially after 65 (Blennow et al. 2006). However, many cases of so-called AD above 80 yr of age may result from a combination of pathological dementia processes (Fotuhi et al. 2009). The apolipoprotein E (ApoE) gene is the most important genetic susceptibility factor for AD, with the relatively common ApoE4 allele (prevalence ∼16%) increasing the risk for AD threefold to fourfold in heterozygous dose (Kim et al. 2009).The histopathological hallmarks of AD are amyloid plaques (extracellular deposits consisting largely of aggregated amyloid beta [Aβ] peptide that are typically surrounded by neurons with dystrophic neurites) and neurofibrillary tangles (NFTs, intracellular filamentous aggregates of hyperphosphorylated tau, a microtubule-binding protein) (Blennow et al. 2006). The development of amyloid plaques typically precedes clinically significant symptoms by at least 10–15 yr. Amyloid plaques are found in a minority of nondemented elderly patients, who may represent a “presymptomatic” AD population. As AD progresses, cognitive function worsens, synapse loss and neuronal cell death become prominent, and there is substantial reduction in brain volume, especially in the entorhinal cortex and hippocampus. The best correlation between dementia and histopathological changes is observed with neurofibrillary tangles, whereas the relationship between the density of amyloid plaques and loss of cognition is weaker (Braak and Braak 1990; Nagy et al. 1995). In addition to amyloid plaques and neurofibrillary tangles, many AD cases exhibit widespread Lewy body pathology. (Lewy bodies are intracellular inclusion bodies that contain aggregates of α-synuclein and other proteins.) Particularly in very old patients, considerable overlap between AD, frontotemporal dementia, Lewy body dementia, and vascular disease is observed, and pure AD may be rare (Fotuhi et al. 2009). 相似文献
8.
Brain aging and the most diffused neurodegenerative diseases of the elderly are characterized by oxidative damage, redox metals
homeostasis impairment and inflammation. Food polyphenols can counteract these alterations in vitro and are therefore suggested
to have potential anti-aging and brain-protective activities, as also indicated by the results of some epidemiological studies.
Despite the huge and increasing amount of the in vitro studies trying to unravel the mechanisms of action of dietary polyphenols,
the research in this field is still incomplete, and questions about bioavailability, biotransformation, synergism with other
dietary factors, mechanisms of the antioxidant activity, risks inherent to their possible pro-oxidant activities are still
unanswered. Most of all, the capacity of the majority of these compounds to cross the blood–brain barrier and reach brain
is still unknown. This commentary discusses recent data on these aspects, particularly focusing on effects of curcumin, resveratrol
and catechins on Alzheimer’s disease.
Special issue article in honor of Dr. Anna Maria Giuffrida-Stella. 相似文献
9.
Autophagy is an essential degradation pathway in clearing abnormal protein aggregates in mammalian cells and is responsible for protein homeostasis and neuronal health. Several studies have shown that autophagy deficits occurred in early stage of Alzheimer’s disease (AD). Autophagy plays an important role in generation and metabolism of β-amyloid (Aβ), assembling of tau and thus its malfunction may lead to the progress of AD. By considering the above evidences, autophagy may be a new target in developing drugs for AD. So far, a number of mammalian target of rapamycin (mTOR)-dependent and independent autophagy modulators have been identified to have positive effects in AD treatment. In this review, we summarized the latest progress supporting the role for autophagy deficits in AD and the potential therapeutic effects of autophagy modulators in AD. 相似文献
10.
Celeste M. Karch Amanda T. Jeng Petra Nowotny Janet Cady Carlos Cruchaga Alison M. Goate 《PloS one》2012,7(11)
Late onset Alzheimer’s disease (LOAD) etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains. 相似文献
11.
13.
14.
Uddin Md. Sahab Sumsuzzman Dewan Md. Jeandet Philippe Behl Tapan Rauf Abdur Amran Md. Shah Ashraf Ghulam Md 《Neurochemical research》2021,46(7):1603-1617
Neurochemical Research - Alzheimer’s disease (AD) is one of the crucial causative factors for progressive dementia. Neuropathologically, AD is characterized by the extracellular accumulation... 相似文献
15.
C. Severi R. Sferra A. Scirocco A. Vetuschi N. Pallotta A. Pronio R. Caronna G. Di Rocco E. Gaudio E. Corazziari P. Onori 《European journal of histochemistry : EJH》2014,58(4)
Mesenchymal cells transdifferentiation and extracellular matrix deposition are involved in the fibrotic process of Crohn’s disease (CD). Mesenchymal smooth muscle cells (SMCs) de-differentiation, driven by Platelet-derived growth factor (PDGF) that counteracts Transforming growth factor (TGF-β) has been studied in vascular muscle. The role of SMCs in intestinal fibrogenesis is still not clearly elucidated. Aim of the study was to evaluate the possible myogenic contribution to CD fibrotic process through the comparative analysis of histological, morphometric and molecular alterations occurring in human smooth muscle. Full thickness specimens were obtained from CD (non-involved and stenotic tracts) and healthy (control) ileum. Tissues were processed for histological and immunohistochemical (IHC) analyses and SMCs were isolated from the muscularis propria for morphofunctional and molecular (qPCR) analyses. CD stenotic ileum showed a significant increased thickness of all layers compared to CD non-involved and control ileum. IHC revealed an overexpression of α-smooth muscle actin and collagens I-III throughout all intestinal layers only in stenotic tracts. The two growth factors, PDGF and TGF-β, showed a progressive increase in expression in the muscle layer from CD non-involved to stenotic tracts. Freshly isolated SMCs presented alterations in CD non-involved tracts that progressively increased in the stenotic tracts consisting in a statistical increase in mRNA encoding for PDGF-β and collagen III, paralleled to a decrease in TGF-β and Tribbles-like protein-3 mRNA, and altered morphofunctional parameters consisting in progressive decreases in cell length and contraction to acetylcholine. These findings indicate that intrinsic myogenic alterations occur in CD ileum, that they likely precede stricture formation, and might represent suitable new targets for anti-fibrotic interventions.Key words: Fibrosis, Crohn’s disease, ileal smooth muscle cells, stricture formation, PDGF, TGF-β 相似文献
16.
Berridge MJ 《Neurochemical research》2011,36(7):1149-1156
New insights into how Ca2+ regulates learning and memory have begun to provide clues as to how the amyloid-dependent remodelling of neuronal Ca2+ signalling pathways can disrupt the mechanisms of learning and memory in Alzheimer’s disease (AD). The calcium hypothesis
of AD proposes that activation of the amyloidogenic pathway remodels the neuronal Ca2+ signalling pathways responsible for cognition by enhancing the entry of Ca2+ and/or the release of internal Ca2+ by ryanodine receptors or InsP3 receptors. The specific proposal is that Ca2+ signalling remodelling results in a persistent elevation in the level of Ca2+ that constantly erases newly acquired memories by enhancing the mechanism of long-term depression (LTD). Neurons can still
form memories through the process of LTP, but this stored information is rapidly removed by the persistent activation of LTD.
Further dysregulation in Ca2+ signalling will then go on to induce the neurodegeneration that characterizes the later stages of dementia. 相似文献
17.
There is mounting evidence linking Aβ42 generation in Alzheimer’s disease (AD) with sphingomyelin catabolism. Using microarray technology to study 17 brain regions from subjects with varying severity of AD and dementia we detected multiple gene expression abnormalities of the key enzymes that control sphingolipid metabolism. These changes were correlated with the progression of clinical dementia. The upregulation of gene expression of the enzymes controlling synthesis de novo of Cer and the downregulation of the enzymes involved in glycosphingolipid synthesis was evident as early in disease progression as in mild dementia. Together these changes suggest a shift in sphingolipid metabolism towards accumulation of Cer, depletion of glycosphingolipids and the reduction of synthesis of the anti-apoptosis signaling lipid—sphingosine 1-phosphate as a function of disease progression. This disrupted balance within the sphingolipid metabolism may trigger signaling events promoting neurodegeneration across cortical regions. This potential mechanism may provide a link between lipid metabolism disturbance and AD. Special issue dedicated to John P. Blass. 相似文献
18.
Tjitske A. Boonstra Jeroen P. P. van Vugt Herman van der Kooij Bastiaan R. Bloem 《PloS one》2014,9(7)
Balance control (the ability to maintain an upright posture) is asymmetrically controlled in a proportion of patients with Parkinson’s disease. Gait asymmetries have been linked to the pathophysiology of freezing of gait. We speculate that asymmetries in balance could contribute to freezing by a) hampering the unloading of the stepping leg and/or b) leading to a preferred stance leg during gait, which then results in asymmetric gait. To investigate this, we examined the relationship between balance control and weight-bearing asymmetries and freezing. We included 20 human patients with Parkinson (tested OFF medication; nine freezers) and nine healthy controls. Balance was perturbed in the sagittal plane, using continuous multi-sine perturbations, applied by a motion platform and by a force at the sacrum. Applying closed-loop system identification techniques, relating the body sway angle to the joint torques of each leg separately, determined the relative contribution of each ankle and hip joint to the total amount of joint torque. We also calculated weight-bearing asymmetries. We determined the 99-percent confidence interval of weight-bearing and balance-control asymmetry using the responses of the healthy controls. Freezers did not have larger asymmetries in weight bearing (p = 0.85) nor more asymmetrical balance control compared to non-freezers (p = 0.25). The healthy linear one-to-one relationship between weight bearing and balance control was significantly different for freezers and non-freezers (p = 0.01). Specifically, non-freezers had a significant relationship between weight bearing and balance control (p = 0.02), whereas this relation was not significant for freezers (p = 0.15). Balance control is asymmetrical in most patients (about 75 percent) with Parkinson’s disease, but this asymmetry is not related to freezing. The relationship between weight bearing and balance control seems to be less pronounced in freezers, compared to healthy controls and non-freezers. However, this relationship should be investigated further in larger groups of patients. 相似文献
19.
Fesahat F Houshmand M Panahi MS Gharagozli K Mirzajani F 《Cellular and molecular neurobiology》2007,27(3):329-334
1. Alzheimer’s disease (AD) is the most common form of dementia in the elderly in which interplay between genes and the environment
is supposed to be involved. Mitochondrial DNA (mtDNA) has the only noncoding regions at the displacement loop (D-loop) region
that contains two hypervariable segments (HVS-I and HVS-II) with high polymorphism. mtDNA has already been fully sequenced
and many subsequent publications have shown polymorphic sites, haplogroups, and haplotypes. Haplogroups could have important
implications to understand the association between mutability of the mitochondrial genome and the disease.
2. To assess the relationship between mtDNA haplogroup and AD, we sequenced the mtDNA HVS-I in 30 AD patients and 100 control
subjects. We could find that haplogroups H and U are significantly more abundant in AD patients (P = 0.016 for haplogroup H and P = 0.0003 for haplogroup U), Thus, these two haplogroups might act synergistically to increase the penetrance of AD disease. 相似文献
20.
Ryszard Pluta Mirosław Jabłoński Marzena Ułamek-Kozioł Janusz Kocki Judyta Brzozowska Sławomir Januszewski Wanda Furmaga-Jabłońska Anna Bogucka-Kocka Ryszard Maciejewski Stanisław J. Czuczwar 《Molecular neurobiology》2013,48(3):500-515
The study of sporadic Alzheimer’s disease etiology, now more than ever, needs an infusion of new concepts. Despite ongoing interest in Alzheimer’s disease, the basis of this entity is not yet clear. At present, the best-established and accepted “culprit” in Alzheimer’s disease pathology by most scientists is the amyloid, as the main molecular factor responsible for neurodegeneration in this disease. Abnormal upregulation of amyloid production or a disturbed clearance mechanism may lead to pathological accumulation of amyloid in brain according to the “amyloid hypothesis.” We will critically review these observations and highlight inconsistencies between the predictions of the “amyloid hypothesis” and the published data. There is still controversy over the role of amyloid in the pathological process. A question arises whether amyloid is responsible for the neurodegeneration or if it accumulates because of the neurodegeneration. Recent evidence suggests that the pathophysiology and neuropathology of Alzheimer’s disease comprises more than amyloid accumulation, tau protein pathology and finally brain atrophy with dementia. Nowadays, a handful of researchers share a newly emerged view that the ischemic episodes of brain best describe the pathogenic cascade, which eventually leads to neuronal loss, especially in hippocampus, with amyloid accumulation, tau protein pathology and irreversible dementia of Alzheimer type. The most persuasive evidences come from investigations of ischemically damaged brains of patients and from experimental ischemic brain studies that mimic Alzheimer-type dementia. This review attempts to depict what we know and do not know about the triggering factor of the Alzheimer’s disease, focusing on the possibility that the initial pathological trigger involves ischemic episodes and ischemia-induced gene dysregulation. The resulting brain ischemia dysregulates additionally expression of amyloid precursor protein and amyloid-processing enzyme genes that, in addition, ultimately compromise brain functions, leading over time to the complex alterations that characterize advanced sporadic Alzheimer’s disease. The identification of the genes involved in Alzheimer’s disease induced by ischemia will enable to further define the events leading to sporadic Alzheimer’s disease-related abnormalities. Additionally, knowledge gained from the above investigations should facilitate the elaboration of the effective treatment and/or prevention of Alzheimer’s disease. 相似文献