首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Gakamsky DM  Davis DM  Strominger JL  Pecht I 《Biochemistry》2000,39(36):11163-11169
Class I major histocompatibility complex (MHC) heterodimer, composed of human leukocyte antigen (HLA)-A2 heavy chain and human beta(2)-microglobulin (beta(2)m), was produced by denaturation and gel filtration of the recombinant water-soluble HLA-A2/beta(2)m/peptide ternary complex in 8 M urea Tris-HCl buffer, followed by refolding of the separated chains without peptide. Peptide affinity and kinetics of the ternary complex formation and dissociation were investigated in real time by monitoring the fluorescence resonance energy transfer (FRET) from intrinsic HLA-A2 heavy-chain tryptophans to a dansyl fluorophore conjugated to the bound peptide. Peptide binding to the heterodimer was a second order process with rate constants linearly dependent upon temperature in Arrhenius coordinates over 0-20 degrees C. The binding rate constant of pRT6C-dansyl [ILKEPC(dansyl)HGV] at 37 degrees C evaluated by extrapolation of the Arrhenius plot was (2.0 +/- 0.5) x 10(6) M(-1) s(-1). Association of the heavy chain with beta(2)m was a first order process, apparently controlled by a conformational transition in the heavy chain. One of these conformations bound to beta(2)m to form the heavy chain/beta(2)m heterodimer whereas the second conformer oligomerized. Peptide dissociation from the ternary complex was a first-order reaction over the temperature range 20-37 degrees C, suggesting that the ternary complex also exists in two conformations. Taken together, the present data suggest that association of beta(2)m changes the HLA-A2 heavy-chain conformation thereby promoting peptide binding. Peptide dissociation from the ternary complex induces dissociation of the heavy-chain/beta(2)m heterodimer thereby causing oligomerization of the heavy chain. The lability of the HLA-A2/beta(2)m heterodimer and the strong tendency of the "free" heavy chain to oligomerize may provide an efficient mechanism for control of antigen presentation under physiological conditions by reducing the direct loading of HLA with exogenous peptide at the cell surface.  相似文献   

2.
The class I major histocompatibility (MHC) molecule is a heterotrimer composed of a heavy chain, the small subunit beta(2)-microglobulin (beta(2)m), and a peptide. Fluorescence anisotropy has been used to assay the interaction of a labeled peptide with a recombinant, soluble form of the class I MHC HLA-A2. Consistent with earlier work, peptide binding is shown to be a two-step process limited by a conformational rearrangement in the heavy chain/beta(2)m heterodimer. However, we identify two pathways for peptide dissociation from the heterotrimer: (1) initial peptide dissociation leaving a heavy chain/beta(2)m heterodimer and (2) initial dissociation of beta(2)m, followed by peptide dissociation from the heavy chain. Eyring analyses of rate constants measured as a function of temperature permit for the first time a complete thermodynamic characterization of peptide binding. We find that in this case peptide binding is mostly entropically driven, likely reflecting the hydrophobic character of the peptide binding groove and the peptide anchor residues. Thermodynamic and kinetic analyses of peptide-MHC interactions as performed here may be of practical use in the engineering of peptides with desired binding properties and will aid in the interpretation of the effects of MHC and peptide substitutions on peptide binding and T cell reactivity. Finally, our data suggest a role for beta(2)m in dampening conformational dynamics in the heavy chain. Remaining conformational variability in the heavy chain once beta(2)m has bound may be a mechanism to promote promiscuity in peptide binding.  相似文献   

3.
A soluble form of a mouse class I major histocompatibility antigen (H-2Kb) has been expressed in transfected Drosophila melanogaster cells. These molecules were efficiently secreted (up to 4 mg/liter) as noncovalent heterodimers and purified to homogeneity from cell supernatants. The isolated soluble Kb molecules were devoid of endogenous peptides. Using these molecules, we have characterized the Kb heavy chain-beta 2-microglobulin (beta 2m) assembly as well as peptide binding in vitro. In detergent-free solution the heavy chains readily re-assembled with beta 2m even in the absence of peptides. Kinetic analyses showed that the peptide binding is rapid and reversible and dependent on the heavy chains being assembled with beta 2m. Likewise, peptide dissociated from Kb molecules without the displacement of beta 2m. Equilibrium binding experiments using various peptides confirmed that octapeptides bind to Kb molecules with the highest affinity and form the most stable complexes. However, in contrast to earlier studies, the amino-terminal positioning of peptide to Kb molecules was more crucial than the carboxyl-terminal positioning and amidation of the peptide carboxylate did not affect the binding. Soluble Kb molecules could selectively bind allele-specific peptides among a mixture of randomly synthesized octapeptides in vitro; however, no dominant residue was observed at the carboxyl terminus of bound peptides. This suggests that the previously observed hydrophobic residues at the carboxyl terminus of peptides may reflect the specificity of enzyme(s) or protein(s) involved in peptide processing in vivo.  相似文献   

4.
The influence of TAP-MHC class I interactions on peptide binding to the class I heavy chain is assessed during TAP-dependent assembly using Kb-specific Abs that recognize conformational changes induced by assembly with beta2-microglobulin (beta2m) and by peptide binding. A significant portion (45%) of Kb molecules in TAP+, RMA-derived microsomes are associated with the TAP complex as measured by coimmunoisolation of Kb using anti-TAP1 Abs, while only 20% of the Kb heavy chain molecules are isolated as Kbbeta2m complexes with the alpha-Kb-specific Abs, Y-3 or K-10-56. The amount of Kb isolated with Y-3 and K-10-56 increases in proportion to transport and binding of peptide to the Kb molecules within the RMA microsomes. In contrast, less than 5% of the Kb within TAP2-RMA-S microsomes associated with the remaining TAP1 subunit. However, greater than 60% of Kb heavy chain is isolated as K-10-56- and Y-3-reactive Kbbeta2m complexes. We propose that a TAP-MHC class I interaction serves to stabilize the MHC class I:beta2m complex in an immature conformation (Y-3 and K-10-56 nonreactive) prior to high affinity peptide binding, preventing the export of class I molecules complexed with low affinity peptide ligands from the ER.  相似文献   

5.
A recombinant baculovirus encoding a single-chain murine major histocompatibility complex class I molecule in which the first three domains of H-2Kd are fused to beta 2-microglobulin (beta 2-m) via a 15-amino acid linker has been isolated and used to infect lepidopteran cells. A soluble, 391-amino acid single-chain H-2Kd (SC-Kd) molecule of 48 kDa was synthesized and glycosylated in insect cells and could be purified in the absence of detergents by affinity chromatography using the anti-H-2Kd monoclonal antibody SF1.1.1.1. We tested the ability of SC-Kd to bind antigenic peptides using a direct binding assay based on photoaffinity labeling. The photoreactive derivative was prepared from the H-2Kd-restricted Plasmodium berghei circumsporozoite protein (P.b. CS) peptide 253-260 (YIPSAEKI), a probe that we had previously shown to be unable to bind to the H-2Kd heavy chain in infected cells in the absence of co-expressed beta 2-microglobulin. SC-Kd expressed in insect cells did not require additional mouse beta 2-m to bind the photoprobe, indicating that the covalently attached beta 2-m could substitute for the free molecule. Similarly, binding of the P.b. CS photoaffinity probe to the purified SC-Kd molecule was unaffected by the addition of exogenous beta 2-m. This is in contrast to H-2KdQ10, a soluble H-2Kd molecule in which beta 2-m is noncovalently bound to the soluble heavy chain, whose ability to bind the photoaffinity probe is greatly enhanced in the presence of an excess of exogenous beta 2-m. The binding of the probe to SC-Kd was allele-specific, since labeling was selectively inhibited only by antigenic peptides known to be presented by the H-2Kd molecule.  相似文献   

6.
Spectral changes and a sixfold increase in the emission intensity were observed in the fluorescence of a single xanthene probe (Texas red) attached to beta2m-microglobulin (beta2m) upon assembly of beta2m into a ternary complex with mouse H-2Kd heavy chain and influenza nuclear protein peptide. Dissociation of the labeled beta2m from the ternary complex restored the probe's fluorescence and absorption spectra and reduced the emission intensity. Thus changes in xanthene probe fluorescence upon association/dissociation of the labeled beta2m molecule with/from the ternary complex provide a simple and convenient method for studying the assembly/dissociation mechanism of the class I major histocompatibility complex (MHC-I) encoded molecule. The photophysical changes in the probe can be accounted for by the oligomerization of free labeled beta2m molecules. The fluorescence at 610 nm is due to beta2m dimers, where the probes are significantly separated spatially so that their emission and excitation properties are close to those of xanthene monomers. Fluorescence around 630 nm is due to beta2m oligomers where xanthene probes interact. Minima in the steady-state excitation (550 nm) and emission (630 nm) anisotropy spectra correlate with the maxima of the high-order oligomer excitation and emission spectra, showing that their fluorescence is more depolarized. These photophysical features are explained by splitting of the first singlet excited state of interacting xanthene probes that can be modeled by exciton theory.  相似文献   

7.
Chemical cross-linking and gel permeation chromatography were used to examine early events in the biogenesis of class I histocompatibility molecules. We show that newly synthesized class I heavy chains associate rapidly and quantitatively with an 88-kD protein in three murine tumor cell lines. This protein (p88) does not appear to possess Asn-linked glycans and it is not the abundant ER protein, GRP94. The class I-p88 complex exists transiently (t1/2 = 20-45 min depending on the specific class I heavy chain) and several lines of evidence suggest that p88 dissociates from the complex while still in the ER. Dissociation is not triggered upon binding of beta 2-microglobulin to the heavy chain (t1/2 = 2-5 min). However, the rate of dissociation does correlate with the characteristic rate of ER to Golgi transport for the particular class I molecule studied. Consequently, dissociation of p88 may be rate limiting for ER to Golgi transport. Class I molecules bind antigenic peptides, apparently in the ER, for subsequent presentation to cytotoxic T lymphocytes at the cell surface. p88 could promote peptide binding or it may retain class I molecules in the ER during formation of the ternary complex of heavy chain, beta 2-microglobulin, and peptide.  相似文献   

8.
MHC class I molecules usually bind short peptides of 8-10 amino acids, and binding is dependent on allele-specific anchor residues. However, in a number of cellular systems, class I molecules have been found containing peptides longer than the canonical size. To understand the structural requirements for MHC binding of longer peptides, we used an in vitro class I MHC folding assay to examine peptide variants of the antigenic VSV 8 mer core peptide containing length extensions at either their N or C terminus. This approach allowed us to determine the ability of each peptide to productively form Kb/beta2-microglobulin/peptide complexes. We found that H-2Kb molecules can accommodate extended peptides, but only if the extension occurs at the C-terminal peptide end, and that hydrophobic flanking regions are preferred. Peptides extended at their N terminus did not promote productive formation of the trimolecular complex. A structural basis for such findings comes from molecular modeling of a H-2Kb/12 mer complex and comparative analysis of MHC class I structures. These analyses revealed that structural constraints in the A pocket of the class I peptide binding groove hinder the binding of N-terminal-extended peptides, whereas structural features at the C-terminal peptide residue pocket allow C-terminal peptide extensions to reach out of the cleft. These findings broaden our understanding of the inherent peptide binding and epitope selection criteria of the MHC class I molecule. Core peptides extended at their N terminus cannot bind, but peptide extensions at the C terminus are tolerated.  相似文献   

9.
The intramolecular organization of the membrane integrated Class I major histocompatibility complex (MHC) molecule H-2Kb (Kb) was analyzed. After the removal of the two carbohydrate moieties by glycosidase enzymes, proteolytic digestion of the Kb molecule yielded: 1) several fragments with the beta 2 microglobulin (beta 2 m) subunit still bound and 2) one fragment carrying alloantigenic activity but lacking the beta 2 m. Isolation of the beta 2 m binding fragments showed them to be derived from the C-2 domain by partial N-terminal sequence analysis. One fragment extended to the C-terminus and the other fragment had lost the transmembrane region. Such studies conclusively show that the beta 2 m subunit is bound in the third domain, i.e., C-2, of the Kb 44,000 m.w. heavy chain. The alloantigenic fragment also isolated from the proteolytic digest consists of the first 180 residues of the 44,000 m.w. heavy chain, i.e., domains N and C-1, and carried alloantigenic determinants detected by several monoclonal antibodies as well as alloantisera. The present studies indicate that the external region of the Class I molecules has two functional regions. The first 180 residues bear the recognition elements for the immune system, and the next 90 residues (180-270) are involved in binding to beta 2 m.  相似文献   

10.
To investigate the molecular basis of the interaction between the T cell receptor and the MHC class I antigen in an allogeneic response, a soluble counterpart of the murine class I molecule, H-2Kb, was genetically engineered. Cells secreting this soluble molecule, H-2Kb/Q10b, inhibited stimulation of an H-2Kb-reactive T cell hybridoma by cells transfected with H-2Kbm10, a weak stimulus, but not by H-2Kb- or H-2Kbm6-transfected cells. Soluble purified H-2Kb/Q10b protein also blocked T cell stimulation. In addition, a peptide from the wild-type H-2Kb molecule spanning the region of the bm10 mutation specifically inhibited activation of the T cell hybridoma by H-2Kbm10 cells, thus suggesting that amino acid residues 163-174 of H-2Kb define a region important for T cell receptor binding. An estimate for the Kd of the T cell receptor for soluble H-2Kb/Q10b was 10(-7) M, while the Kd for soluble peptide 163-174 was 10(-4) M.  相似文献   

11.
Stable, recombinant, water-soluble complexes of HLA-A2 and HLA-B27 were reconstituted from 125I-labeled beta 2-microglobulin (beta 2m), a synthetic peptide, and HLA H chain fragments expressed as inclusion bodies in the Escherichia coli cytoplasm. Using this system, we were able to show: 1) the t1/2 of beta 2m dissociation from HLA complexes at 37 degrees C varied from approximately 40 h to less than 1 h, depending on the peptide employed for reconstitution. Peptide length and composition were found to be critical factors in determining the beta 2m dissociation rate. Endogenous peptides form complexes that are about as stable as those formed with typical antigenic peptides. 2) Peptide exchange reactions, in which an exogenous peptide replaces the peptide that is already bound by the class I molecule, proceed readily for complexes that have rapid beta 2m dissociation rates. Thus, difficulties in demonstrating peptide binding to complexes that contain endogenous peptides can be attributed to the stability of the endogenous peptide/class I molecule complex. 3) The peptide exchange reaction does not require concomitant beta 2m dissociation. 4) Distal parts of the class I molecule, which are not directly involved in peptide binding or beta 2m binding, have a major impact on the stability of class I molecules. Thus, these studies show that the dissociation rate of beta 2m is an excellent measure of how tightly a given peptide binds to class I MHC molecules, that the ability to bind peptide is tightly coupled to the binding of beta 2m and vice versa, and that regions of the molecule distal from the binding site influence the stability of peptide binding.  相似文献   

12.
We have translated major histocompatibility complex (MHC) class I heavy chains and human beta 2-microglobulin in vitro in the presence of microsomal membranes and a peptide from the nucleoprotein of influenza A. This peptide stimulates assembly of HLA-B27 heavy chain and beta 2-microglobulin about fivefold. By modifying this peptide to contain biotin at its amino terminus, we could precipitate HLA-B27 heavy chains with immobilized streptavidin, thereby directly demonstrating class I heavy chain-peptide association under close to physiological conditions. The biotin-modified peptide stimulates assembly to the same extent as the unmodified peptide. Both peptides bind to the same site on the HLA-B27 molecule. Immediately after synthesis of the HLA-B27 heavy chain has been completed, it assembles with beta 2-microglobulin and peptide. These interactions occur in the lumen of the microsomes (endoplasmic reticulum), demonstrating that the peptide must cross the microsomal membrane in order to promote assembly. The transfer of peptide across the microsomal membrane is a rapid process, as peptide binding to heavy chain-beta 2-microglobulin complexes is observed in less than 1 min after addition of peptide. By using microsomes deficient of beta 2-microglobulin (from Daudi cells), we find a strict requirement of beta 2-microglobulin for detection of peptide interaction with the MHC class I heavy chain. Furthermore, we show that heavy chain interaction with beta 2-microglobulin is likely to precede peptide binding. Biotin-modified peptides are likely to become a valuable tool in studying MHC antigen interaction and assembly.  相似文献   

13.
Once MHC class I heavy chain binds beta(2)-microglobulin (beta(2)m) within the endoplasmic reticulum, an assembly complex comprising the class I heterodimer, TAP, TAPasin, calreticulin, and possibly Erp57 is formed before the binding of high affinity peptide. TAP-dependent delivery of high affinity peptide to in vitro translated K(b)beta(2)m complexes within microsomes (TAP(+)/TAPasin(+)) was studied to determine at which point peptide binding becomes resistant to thermal denaturation. It was determined that the thermal stability of K(b)-beta(2)m-peptide complexes depends on the timing of peptide binding to K(b)beta(2)m relative to TAP binding high affinity peptide. Premature exposure of the TAP complex to high affinity peptide before its association with class I heavy chain results in K(b)beta(2)m-peptide-TAP complexes that lose peptide upon exposure to elevated temperature after solubilization away from microsome-associated proteins. These findings suggest that the order in which class I heavy chain associates with endoplasmic reticulum-resident chaperones and peptide determines the stability of K(b)beta(2)m-peptide complexes.  相似文献   

14.
The far-ultraviolet circular dichroism (CD) spectra of the extracellular portion (papain-cleaved fragment) of the histocompatibility antigen H-2Kb and its noncovalently associated components, heavy chain and beta 2-microglobulin (beta 2m), indicate that the antigen is highly structured, containing about 30% alpha-helix, 41% beta-sheet, and 29% random coil. Separation of beta 2m from the heavy chain produced a decrease in heavy chain alpha-helix and beta-sheet structure which correlated with a loss of alloantigenic reactivity. Reconstitution of the heavy chain-beta 2m complex resulted in an increase in secondary structure which was greater than the sum of the free chains and the recovery of considerable alloantigenic reactivity. This suggests that some of the secondary structure and much of the alloantigenic reactivity may depend on conformation associated with the binding of beta 2m to heavy chain. A prediction of heavy chain secondary structure based on Chou-Fasman analysis of the primary amino acid sequence agreed with results from CD measurements and suggested that the segments of alpha-helix and beta-sheet structure are distributed throughout the molecule.  相似文献   

15.
The inhibition of the binding of 125I-labeled Clostridium botulinum type C neurotoxin to synaptosomes by unlabeled toxin indicated that there were two kinds of receptors on the synaptosomal membrane. The dissociation constants (Kd) were calculated as 79 pM and 35 nM from the concentration of unlabeled toxin that induced half-displacement of bound 125I-toxin. These values agree satisfactorily with the values obtained from direct binding experiments (Agui, T, Syuto, B., Oguma, K., Iida, H., & Kubo, S. (1983) J. Biochem. 94, 521-527). The inhibition of the binding of 125I-toxin to synaptosomes and N-acetylneuraminyl(alpha 2-3)galactosyl(beta 1-3)N-acetylgalactosaminyl(beta 1-4) [N-acetylneuraminyl(alpha 2-8) N-acetylneuraminyl(alpha 2-3)]galactosyl(beta 1-4)glucosyl(beta 1-1)ceramide (GT1b) by unlabeled heavy chain indicated that heavy chain facilitates the binding of toxin to synaptosomes and GT1b. The synaptosomal and heavy chain complex Kd values were estimated as 12 nM and 24 microM. Monoclonal antibodies C-9 and CA-12 recognized the binding sites to GT1b and synaptosomes, respectively. Antigenic determinants against the two antibodies are presumably partially overlapping, and the overlapping area seems to be essential to the reaction between toxin and C-9 antibody.  相似文献   

16.
To identify epitopes recognized by alloreactive CTL we have examined H-2Kb-specific CTL for their recognition of synthetic peptides with sequences derived from the native Kb class I molecule. Consecutive nested peptides spanning the immunogenic alpha 1 and alpha 2 domains of Kb were tested for their capacity to inhibit CTL clones in their recognition of cells expressing the native Kb molecule. Inhibition by these peptides was found to be an extremely rare event. One peptide (Kb.111-122) did inhibit recognition by one particular CTL clone, clone 13. Upon further investigation it was observed that clone 13 also recognized peptide Kb.111-122 when presented in the context of the syngeneic MHC molecule, Kd. Considering that residues 111 to 122 are located at the base of the antigen groove, and clone 13 is able to recognize Kb.111-122 when presented by syngeneic target cells, we suggest that inhibition of this CTL clone may be due to MHC restricted, self-presentation of peptide rather than to direct binding of free peptide to the TCR. Taken together, these results suggest inhibition of allospecific CTL by MHC peptides is a rare event at least for Kb recognition. Furthermore, they demonstrate the need for caution when interpreting inhibition by peptide as evidence for recognition by the TCR of the corresponding region on the native molecule.  相似文献   

17.
beta(2)-Microglobulin (beta(2)m) is non-covalently linked to the major histocompatibility complex (MHC) class I heavy chain and interacts with CD8 and Ly49 receptors. Murine MHC class I heavy chains can bind human beta(2)m (hbeta(2)m) and peptide, and such hybrid molecules are often used in structural and functional studies. The replacement of mouse beta(2)m (mbeta(2)m) with hbeta(2)m has several functional consequences for MHC class I complex stability and specificity, but the structural basis for this is presently unknown. To investigate the impact of species-specific beta(2)m subunits on MHC class I conformation, we provide a crystallographic comparison of H-2D(b) in complex with LCMV-derived gp33 peptide and either hbeta(2)m or mbeta(2)m. The conformation of the gp33 peptide is not affected by the beta(2)m species. Comparison of the interface between beta(2)m and the alpha(1)alpha(2) domains of the heavy chain in these two crystal structures reveals a marked increase in both polarity and number of hydrogen bonds between hbeta(2)m and the alpha(1)alpha(2) domains of H-2D(b). We propose that the positioning of two hydrogen bond rich regions at the hbeta(2)m/alpha(1)alpha(2) interface plays a central role in the increased overall stability and peptide exchange capacity in the H-2D(b)/hbeta(2)m complex. These two regions act as bridges, holding and stabilizing the underside of the alpha(1) and alpha(2) helices, enabling a prolonged peptide-receptive conformation of the peptide binding cleft. Furthermore, analysis of H-2D(b) in complex with either mbeta(2)m or hbeta(2)m provides a structural explanation for the differential binding of H-2D(b)/hbeta(2)m to both Ly49A and Ly49C. Our comparative structural study emphasizes the importance of beta(2)m residues at positions 3, 6 and 29 for binding to Ly49A and suggests that sterical hindrance by residue K6 on hbeta(2)m impairs the recognition of Ly49C by H-2D(b)/gp33/hbeta(2)m. Finally, comparison of the two H-2D(b) crystal structures implies that the beta(2)m species may affect the strength of TCR recognition by affecting CD8 binding.  相似文献   

18.
In this work we describe calcium binding to two synthetic 34-residue peptides, determined by 1H-nmr spectroscopy. The peptides investigated, SCIII and SCIV, encompass the calcium-binding sites III and IV, respectively, of troponin-C. In the absence of calcium it has previously been shown that each of these peptides possesses little regular secondary structure. Further, the 1H-nmr spectra of an equimolar mixture of both of these apo-peptides (apo-SCIII/SCIV) shows that little interaction occurs between peptides. Upon calcium binding the spectral changes that occur to SCIII/SCIV are consistent with global conformational changes in both peptides. We have shown previously that these conformational changes are a product of calcium binding to SCIII and SCIV to form a two-site heterodimer Ca2-SCIII/SCIV. It is proposed that this calcium-induced folding proceeds via calcium binding to SCIII to form Ca-SCIII, peptide association with apo-SCIV to form the heterodimer Ca-SCIII/SCIV, and calcium binding to form Ca2-SCIII/SCIV. The dissociation constants involved in this pathway, K1, Kd, and K2, respectively, have been determined by stoichiometric calcium titration of SCIII/SCIV, monitored by 1H-nmr spectroscopy. Using this procedure it has been determined that K1 = 3 microM, Kd = 10 microM, and K2 = 2 microM.  相似文献   

19.
NK cell recognition of targets is strongly affected by MHC class I specific receptors. The recently published structure of the inhibitory receptor Ly49A in complex with H-2Dd revealed two distinct sites of interaction in the crystal. One of these involves the alpha1, alpha2, alpha3, and beta2-microglobulin (beta2m) domains of the MHC class I complex. The data from the structure, together with discrepancies in earlier studies using MHC class I tetramers, prompted us to study the role of the beta2m subunit in MHC class I-Ly49 interactions. Here we provide, to our knowledge, the first direct evidence that residues in the beta2m subunit affect binding of MHC class I molecules to Ly49 receptors. A change from murine beta2m to human beta2m in three different MHC class I molecules, H-2Db, H-2Kb, and H-2Dd, resulted in a loss of binding to the receptors Ly49A and Ly49C. Analysis of the amino acids involved in the binding of Ly49A to H-2Dd in the published crystal structure, and differing between the mouse and the human beta2m, suggests the cluster formed by residues Lys3, Thr4, Thr28, and Gln29, as a potentially important domain for the Ly49A-H-2Dd interaction. Another possibility is that the change of beta2m indirectly affects the conformation of distal parts of the MHC class I molecule, including the alpha1 and alpha2 domains of the heavy chain.  相似文献   

20.
D A Malencik  S R Anderson 《Biochemistry》1984,23(11):2420-2428
Calmodulin and troponin C exhibit calcium-dependent binding of 1 mol/mol of dynorphin. The dissociation constants of the complexes, determined in 0.20 N KC1-1.0 mM CaCI2, pH 7.3, are 0.6 microM for calmodulin, 2.4 microM for rabbit fast skeletal muscle troponin C, and 9 microM for bovine heart troponin C. Experiments with deletion peptides of dynorphin show that peptide chain length and especially charge affect the binding of the peptides by calmodulin. Dynorphin, but not mastoparan or melittin, inhibits adenosinetriphosphatase activity in a reconstituted rabbit skeletal muscle actomyosin assay. The inhibition is partially reversed by the addition of calmodulin or troponin C in the presence of calcium. Calmodulin also exhibits calcium-dependent binding of a synthetic peptide corresponding to positions 104-115 of rabbit fast skeletal muscle troponin I. Mastoparan is a tetradecapeptide from the vespid wasp having exceptional affinity for calmodulin, with Kd approximately 0.3 nM [Malencik, D.A., & Anderson, S.R. (1983) Biochem. Biophys. Res. Commun. 114, 50]. The addition of 1 mol/mol of mastoparan to the complex of calmodulin with dynorphin results in complete dissociation of dynorphin. Similar titrations of the skeletal muscle troponin C-dynorphin complex produce a gradual dissociation consistent with a dissociation constant of 0.2 microM for the troponin C-mastoparan complex. Fluorescence anisotropy measurements using the intrinsic tryptophan fluorescence of mastoparan X show strongly calcium-dependent binding by proteolytic fragments of calmodulin. binding by proteolytic fragments of calmodulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号