首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Mammals are common predators on bird nests. However, their species identity frequently remains unknown. Here we present long-term data (1975–2005) from a central European woodland on the predatory effect of three dormice species (Rodentia, Gliridae) on cavity-nesting birds. Dormice are mostly frugivorous during the active late-summer season, but shortly after they terminate hibernation, they frequently depredate cavity-nesting-bird nests. The seven bird species studied, lost on average between 2.9 to 18.4% of their broods. MigratoryFicedula flycatchers suffered the highest brood losses, while the residentParus titmice and the nuthatchSitta europaea had much lower brood losses. The three dormice species differed significantly in their predatory effect during different avian breeding stages. The edible dormouseGlis glis (Linnaeus, 1766) depredated both eggs and nestlings equally, while the common dormouseMuscardinus avellanarius (Linnaeus, 1758) and the forest dormouseDryomys nitedula (Pallas, 1778) destroyed more nests during egg laying and the incubation period. Among adult birds, females were taken more frequently by dormice than males. Among avian species, adultFicedula flycatchers were more often depredated than the titmice and nuthatch. Our study provided further evidence, that among the traditional studies on the costs of reproduction, parental mortality at the nests needs to be considered and that incubating or brooding females might be under higher predation risk than the males.  相似文献   

3.
We examined phylogenetic relationships among six species representing three subfamilies, Glirinae, Graphiurinae and Leithiinae with sequences from three nuclear protein-coding genes (apolipoprotein B, APOB; interphotoreceptor retinoid-binding protein, IRBP; recombination-activating gene 1, RAG1). Phylogenetic trees reconstructed from maximum-parsimony (MP), maximum-likelihood (ML) and Bayesian-inference (BI) analyses showed the monophyly of Glirinae ( Glis and Glirulus ) and Leithiinae ( Dryomys , Eliomys and Muscardinus ) with strong support, although the branch length maintaining this relationship was very short, implying rapid diversification among the three subfamilies. Divergence time estimates were calculated from ML (local clock model) and Bayesian-dating method using a calibration point of 25 Myr (million years) ago for the divergence between Glis and Glirulus , and 55 Myr ago for the split between lineages of Gliridae and Sciuridae on the basis of fossil records. The results showed that each lineage of Graphiurus , Glis , Glirulus and Muscardinus dates from the Late Oligocene to the Early Miocene period, which is mostly in agreement with fossil records. Taking into account that warm climate harbouring a glirid-favoured forest dominated from Europe to Asia during this period, it is considered that this warm environment triggered the prosperity of the glirid species through the rapid diversification. Glirulus japonicus is suggested to be a relict of this ancient diversification during the warm period.  相似文献   

4.
5.
Graphiurus is a peculiar taxon among the monophyletic Gliridae (order Rodentia) in showing hystricomorphy of the zygomasseteric architecture of the skull [large infraorbital foramen (IOF), and correlative muscular arrangements). We analysed 34 extant genera taken from two groups of sciurognath rodents that share a large IOF (hystricomorph and myomorph) using elliptical Fourier transform in order to appraise whether this feature of cranial morphology was also accompanied by similar changes in mandible shape. The mandible of Graphiurus is distinct from those of all other hystricomorph sciurognath rodents in showing a more elongated coronoid process and a shorter angular process. Thus, two distinct zygomasseteric organizations (i.e. myomorphy and hystricomorphy of graphiurines) are associated with a similar mandible shape characterized by a well‐developed coronoid process. Results show that hystricomorphy of graphiurines was achieved convergently with other hystricomorph rodents. Protrogomorphy is the plesiomorphic condition in Gliridae and hystricomorphy is an autapomorphic feature of Graphiurus. © 2008 The Linnean Society of London, Zoological Journal of the Linnean Society, 2008, 154 , 807–821.  相似文献   

6.
Gliridae is a small family of rodents including three subfamilies: the Eurasian Glirinae (with three genera) and Leithiinae (with four genera) and the African Graphiurinae (with a single genus). Phylogenetic relationships among these eight genera are not fully resolved based on morphological characters. Moreover, the genus Graphiurus is characterized by numerous peculiar features (morphological characters and geographical distribution), raising the question of its relationships to the family Gliridae. The phylogenetic position of Graphiurus and the intra-Gliridae relationships are here addressed by a molecular analysis of 12S RNA and cytochrome b mitochondrial gene sequences for six glirid genera. Phylogenetic analyses are performed with three construction methods (neighbor-joining, maximum parsimony and maximum likelihood) and tests of alternative topologies with respect to the most likely. Our analyses reveal that Graphiurus is clearly a member of the Gliridae, refuting the hypothesis that the family could be paraphyletic. Among Gliridae, phylogenetic relationships are poorly resolved: the Leithiinae could be monophyletic, there is no support for the subfamily Glirinae, and the closest relative of Graphiurus is not identified. The inclusion of Graphiurus among Gliridae allows us to postulate that its hystricomorphous condition has been achieved convergently with other hystricomorphous rodents.  相似文献   

7.
Phylogenetic analyses were conducted on cytochrome b sequence data of the most geographically and taxonomically broad sampling of Cavia taxa to date. Primary objectives included providing the first extensive molecular phylogenetic framework for the genus, testing the taxonomic and systematic hypotheses of previous authors and providing insight into the evolutionary and biogeographic history of the genus. Support was found for the morphologically defined species C. aperea, C. tschudii, C. magna and C. fulgida and the taxonomic placement of taxa previously subject to conflicting taxonomic opinions (e.g. C. nana, C. anolaimae and C. guianae) was further resolved. Additionally, we elevate the Ecuadorian C. a. patzelti to species status, restrict the distributional limits and suggest taxonomic affiliations of some C. tschudii subspecies, and provide strong evidence for the geographic origin of guinea pig domestication. Finally, we provide an estimated evolutionary timeline for the genus Cavia, which appears to extend well into the late Miocene.  相似文献   

8.
Helge Walhovd 《Oecologia》1976,25(4):321-330
Summary A pair of common dormice discovered while torpid in their natural hibernaculum on December 5, was studied continously outdoors, exposed to natural fluctuations in temperature and rainfall. Temperature inside and outside the nest ball and motor activity were recorded. The first emergence from hibernaculum occurred on March 4, after which the dormice were daily active, chiefly during evening and night hours. Nest departures lasted on average 10.5 h (6.5–14 h) per day.During the 88 days while the animals remained in the hibernaculum ambient temperature ranged from -5° to 8.5° C. Nest temperature never fell below zero, being chiefly 1.0°C above ambient temperature during 68 of these days and thus reflecting deep hibernation in both animals. However, on 19 occasions nest temperature was raised steeply from average 5.6°C (2.0–8.0°C) to average 23.0°C (17.5–32.5°C). These increases of nest temperature, lasting roughly 4 h (3–8 h) are interpreted as partial arousals. The total duration of partial arousals was 76 h, i.e. 3.6% of the time during which the animals remained consistently in the nest.The interarousal time varied, being 16 days at the most and 12 h at the least. The frequency of arousals increased with rising maximum values of ambient temperature, and partial arousals never were recorded on days when temperature remained below 2°C. It is believed that partial arousals correspond to the periodic or spontaneous arousals previously recorded in laboratory experiments of some other hibernating mammals. However, the energetic expenditure seems to be smaller during periodic arousals because of their shorter duration and the fact that no departure from the hibernaculum occurs.Possible mechanisms governing partial arousals are discussed. As these events chiefly occurred during night they may partly be controlled by an inherent time sense.  相似文献   

9.
The use of nest boxes by the woodland dormouse, Graphiurus murinus, was investigated over a 13-month period in a riverine forest of the Great Fish River Reserve, South Africa. We predicted that some characteristics of nest box placement would affect nest box use and that the seasonal pattern of nest box use would be linked to the species' life cycle and physiological and socioecological characteristics. Generalized linear models indicated that the time since nest box installation and nest box height above ground positively affected the frequency and intensity of nest box use. Male and female dormice, as well as adults and juveniles, did not differ in the number of nest boxes used and equally occupied individual nest boxes. The percentage of nest boxes used peaked during spring and summer (breeding period) and dropped during winter (hibernation). However, whereas significantly more males were caught during the mating season (spring), the number of females occupying nest boxes was constant during the year. As female dormice successfully bred in the nest boxes, the observed sexual patterns suggest that (artificial) nest sites represent an important resource for females, whereas females seem to constitute the main resource for males, as predicted by the socioecological model.  相似文献   

10.
11.
Damselflies of the endemic Hawaiian genus Megalagrion have radiated into a wide variety of habitats and are an excellent model group for the study of adaptive radiation. Past phylogenetic analysis based on morphological characters has been problematic. Here, we examine relationships among 56 individuals from 20 of the 23 described species using maximum likelihood (ML) and Bayesian phylogenetic analysis of mitochondrial (1287 bp) and nuclear (1039 bp) DNA sequence data. Models of evolution were chosen using the Akaike information criterion. Problems with distant outgroups were accommodated by constraining the best ML ingroup topology but allowing the outgroups to attach to any ingroup branch in a bootstrap analysis. No strong contradictions were obtained between either data partition and the combined data set. Areas of disagreement are mainly confined to clades that are strongly supported by the mitochondrial DNA and weakly supported by the elongation factor 1alpha data because of lack of changes. However, the combined analysis resulted in a unique tree. Correlation between Bayesian posterior probabilities and bootstrap percentages decreased in concert with decreasing information in the data partitions. In cases where nodes were supported by single characters bootstrap proportions were dramatically reduced compared with posterior probabilities. Two speciation patterns were evident from the phylogenetic analysis. First, most speciation is interisland and occurred as members of established ecological guilds colonized new volcanoes after they emerged from the sea. Second, there are several instances of rapid radiation into a variety of specialized habitats, in one case entirely within the island of Kauai. Application of a local clock procedure to the mitochondrial DNA topology suggests that two of these radiations correspond to the development of habitat on the islands of Kauai and Oahu. About 4.0 million years ago, species simultaneously moved into fast streams and plant leaf axils on Kauai, and about 1.5 million years later another group moved simultaneously to seeps and terrestrial habitats on Oahu. Results from the local clock analysis also strongly suggest that Megalagrion arrived in Hawaii about 10 million years ago, well before the emergence of Kauai. Date estimates were more sensitive to the particular node that was fixed in time than to the model of local branch evolution used. We propose a general model for the development of endemic damselfly species on Hawaiian Islands and document five potential cases of hybridization (M. xanthomelas x M. pacificum, M. eudytum x M. vagabundum, M. orobates x M. oresitrophum, M. nesiotes x M. oahuense, and M. mauka x M. paludicola).  相似文献   

12.
Molecular systematics of Goniodidae (Insecta: Phthiraptera)   总被引:2,自引:0,他引:2  
The higher level phylogenetic relationships within the avian feather lice (Insecta: Phthiraptera: Ischnocera) are extremely problematic. Here we investigate the relationships of 1 family (Goniodidae), sometimes recognized as distinct within Ischnocera, using parsimony and likelihood analyses of nuclear and mitochondrial DNA sequences. These data support monophyly for a restricted definition of traditional Goniodidae, but recognition of this family would result in paraphyly of the large heterogeneous family Philopteridae. We show that the New World Chelopistes is not related to other members of Goniodidae, despite similarities in morphology, but rather is the sister taxon to Oxylipeurus. Within Goniodidae, genera are divided into those occurring on Galliformes (the Goniodes complex) and those occurring on Columbiformes (the Coloceras complex). Within the well-sampled Coloceras complex, or Physconelloidinae, several groups are identified. However, traditionally recognized genera such as Coloceras and Phvsconelloides appear to be paraphyletic. Whereas the phylogeny of Goniodidae reflects some aspects of host relationships, biogeography also influences coevolutionary history.  相似文献   

13.
Molecular systematics of sponges (Porifera)   总被引:7,自引:0,他引:7  
Borchiellini  C.  Chombard  C.  Lafay  B.  Boury-Esnault  N. 《Hydrobiologia》2000,420(1):15-27
The first application of molecular systematics to sponges was in the 1980s, using allozyme divergence to dis-criminate between conspecific and congeneric sponge populations. Since this time, a fairly large database has been accumulated and, although the first findings seemed to indicate that sponge species were genetically more divergent than those of other marine invertebrates, a recent review of the available dataset indicates that levels of interspecific gene identities in most sponges fall within the normal range found between species of other invertebrates. Nevertheless, some sponge genera have species that are extremely divergent from each other, suggesting a possible polyphyly of these genera. In the 1990s, molecular studies comparing sequences of ribosomal RNA have been used to reappraise the phylogenetic relationships among sponge genera, families, orders and classes. Both the 18S small subunit and the 28S large subunit rRNA genes have been sequenced (41 complete or partial and 75 partial sequences, respectively). Sequences of 18S rRNA show good support for Porifera being true Metazoa, but they are not informative for resolving relationships among genera, families or orders. 28S rRNA domains D1 and D2 appear to be more informative for the terminal nodes and provide resolution for internal topologies in sufficiently closely related species, but the deep nodes between orders or classes cannot be resolved using this molecule. Recently, a more conserved gene, Hsp70, has been used to try to resolve the relationships in the deep nodes. Metazoan monophyly is very well supported. Nevertheless, the divergence between the three classes of Porifera, as well as the divergence between Porifera, Cnidaria and Ctenophora, is not resolved. Research is in progress using other genes such as those of the homeodomain, the tyrosine kinase domain, and those coding for the aggregation factor. For the moment the dataset for these genes is too restricted to resolve the phylogenetic relationships of these phyla. However, whichever the genes, the phylogenies obtained suggest that Porifera could be paraphyletic and that the phylogenetic relationships of most of the families and orders of the Demospongiae have to be reassessed. The Calcarea and Hexactinellida are still to be studied at the molecular level.  相似文献   

14.
Molecular systematics of polychaetes (Annelida)   总被引:6,自引:0,他引:6  
McHugh  Damhnait 《Hydrobiologia》2005,(1):309-318
Hydrobiologia - Some progress has been made in the field of molecular systematics of polychaetes over the past couple of years. In particular, phylogenetic analyses of sequence data from the 18S...  相似文献   

15.
A molecular phylogeny of the genus Artibeus using 19 of the 20 recognized species, many with samples from a broad geographic range, is presented. The analysis shows a clear distinction between the two subgenera (or genera), the 'large'Artibeus and the 'small'Dermanura, in both mitochondrial and nuclear genes. The placement and status of A. concolor remains inconclusive and is presented as the third subgenus Koopmania. The phylogenies and divergence time estimates show a marked influence of the Andes in the formation of the subgenera and the main lineages inside each subgenus. Nuclear genes showed a highly incomplete lineage sorting among species inside subgenera Artibeus and Dermanura. Indeed, shared alleles were also found between Artibeus and Koopmania, which are presumed to have split apart during the Miocene, showing that great care should be taken in using these markers. Cytochrome-b gene divergences and monophyly analyses suggest that A. lituratus and A. intermedius are indeed conspecifics. These analyses also suggested the existence of at least four 'new' species revealing a significant cryptic diversity inside the genus.  相似文献   

16.
The systematic relationships of the freshwater shrimp family, Kakaducarididae, were examined using mitochondrial and nuclear DNA sequences. Combined nuclear (18S rDNA, 28S rDNA, Histone) and mitochondrial (16S rDNA) analyses placed the kakaducaridid genera, Kakaducaris and Leptopalaemon, as a strongly supported clade within the Palaemonidae, in a close relationship with the genus Macrobrachium. Monophyly of the Australian Kakaducarididae was strongly supported by the molecular data. Estimated net divergence times between Kakaducaris and Leptopalaemon using mitochondrial 16S rDNA equate to a late Miocene/Pliocene split. Within Leptopalaemon, each locality was distinct for mitochondrial COI haplotypes, suggesting long-term isolation or recent genetic bottlenecks, a lack of contemporary gene flow amongst sites and a small Ne. Mitochondrial groupings within Leptopalaemon were largely congruent with several previously recognised morphotypes. Estimated net divergence times between L. gagadjui and the new Leptopalaemon morphotypes equate to a split in the late Pliocene/early Pleistocene. The hypothesis that the Kakaducarididae is comprised of relict species in specialised ecological niches is not supported by the molecular data, which instead suggest a relatively recent origin for the group in northern Australia, sometime in the late Miocene or Pliocene.  相似文献   

17.
A new nomenclature of the lung lobes and of the bronchial tree is presented, with which the lungs in 40 species of 11 rodent families are described. Whole, fixed lungs and silicone casts of the bronchial tree are tested for 23 characters, based on the distribution of lung lobes, the number and geometry of first order bronchi, the pulmonary blood supply, and lung symmetry. Ten lung morphotypes are recognized, seven of them representing one or more families: Castor type (Castoridae), Cryptomys type (Bathyergidae), Ctenodactylus type (Ctenodactylidae), Eliomys type (Gliridae), Myocastor type (Myocastoridae), Octodon type (Octodontidae and Echimyidae) and Rattus type (Sciuridae, Muridae pt. and Dipodidae). The Hydromys type is found only in Hydromys chrysogaster (Muridae), while Galea type A and B both appear in Galea musteloides (Caviidae). The data are phylogenetically analyzed by the program PAUP 4.0 using as outgroup Lagomorpha or Insectivora. On the species level, there are no well-resolved cladograms. On the family level, the cladograms do not contradict traditional rodent systematics with one exception: the Caviidae do not fall within Caviomorpha or even within the Hystricomorpha, but form a sister group to Dipodidae (Myomorpha). This appears to be a result of convergence. The lungs of Gliridae are more similar to those of Muridae than to those of Sciuridae. Included in the ingroup, Oryctolagus (Lagomorpha) forms a clade with Caviidae + Dipodidae. Thus, the "Glires hypothesis" is neither supported nor refuted.  相似文献   

18.
Phylogenetic analyses of cytochrome c oxidasesubunit I (627bp) and mitochondrial controlregion (338bp aligned) sequences for all knownspecies of Allodontichthys wereperformed. Allodontichthys was recoveredas monophyletic, and A. hubbsi wassupported as the most primitive member of thegenus in all analyses. Combined-data analysessuggest that A. polylepis is sister to aclade comprising A. tamazulae and A. zonistius; however, a strict consensus of COIand control region cladograms results in acollapse of this node. The two species thatare broadly sympatric, A. hubbsi and A. tamazulae, are not sister taxa.Allodontichthys was found the sistergroup of a clade including Ilyodon andXenotaenia. These three genera are theonly goodeids to occupy high-gradient riversystems. Ilyodon and Allodontichthys share similar distributions;however, Allodontichthys exhibits greaterthan an order of magnitude more geneticvariation in COI than Ilyodon incomparisons of individuals from the samelocalities in the Ameca and Armeria drainagesystems. This is interpreted to mean Allodontichthys arrived in some westerndrainages significantly before Ilyodon.The Rio Coahuayana appears to be the center oforigin of the genus Allodontichthys. This river basin contains the most primitivemember of the genus, and appears to haveconnected with the Mesa Central, the center of endemism of the Goodeidae. A calibrated rateof molecular change in COI reveals Allodontichthys began diverging approximately6.2 million years ago (mya). Remainingspeciation in the group appears to haveoccurred about 2.7 to 3.3 mya. The hypothesisthat a hard polytomy comprising A. zonistius, A. polylepis, and A. tamazulae could be explained by speciation ofA. polylepis and A. tamazulae fromdifferent A. zonistius ancestors ispresented. Stream capture is evident but notfrequent in the history of Allodontichthys, and speciation does notclearly correlate with documented geologicactivity of the Mexican Transvolcanic Belt.  相似文献   

19.
Histological serial sections of fetal stages of various rodent taxa have been studied. We have concentrated on the ontogenetic differentiation of the infraorbital region in some hystricomorphs and myomorphs. The glirid taxa Graphiurus, Eliomys, Glis and Muscardinus show a specific mode of development of the medial masseter muscle that is clearly different from the other groups: In early ontogenetic stages, the muscle invariably has its anterior-most origin at the dorsolateral rim of the infraorbital foramen, and only in later fetal stages migrates to the side of the muzzle. In contrast to the glirines, Graphiurus has an aboral origin of the lateral masseter muscle from the beginning, and we consider this as a plesiomorphic state. In all other taxa showing an enlarged masseter medialis, this muscle bundle originates from the anterior portion of the ascending process or even from the premaxillary. We interpret our ontogenetical findings as support for the hypothesis of the monophyly of the Gliroidea and for the concept of `pseudo-myomorphy' of Vianey-Liaud (1985), which was derived from the fossil record. This evidence suggests that the gliroids are probably not members of the Myomorpha, but have acquired myomorphy independently. This conclusion is also in agreement with many molecular studies that suggest closer affinities of glirids with sciurids.  相似文献   

20.
We examined ten species of octodontid rodents and representatives of three outgroups in a complete 13 × 13 DNA-hybridization matrix. The results were indexed as differences in median melting-point depressions (T,ms), symmetrized, subjected to phylogenetic analysis using FITCH, bootstrapped, and exhaustively taxon-jackknifed. Within Octodontidae, four clades were recovered with 100% bootstrap and complete jackknife support: Tympanoctomys barrerae with Octomys mimax, Octodontomys gliroides alone, Octodon spp., and Aconaemys spp. with Spalacopus cyanus; the latter two clades were closer to each other than either was to Octodontomys or Octomys-Tympanoctomys, but were slightly nearer to and united with Octodontomys, with 89% bootstrap support. However, relationships among the three Aconaemys species and Spalacopus were not completely resolved by our experiments. Ctenomys coyhaiquensis, Abrocoma bennetti, and Lagostomus maximus represented successive outgroups to Octodontidae, while one-way comparisons with Cavia porcellus and Microcavia australis suggested that these caviids are almost as distant from octodontoids as is the chinchilloid Lagostomus. When the data were suitably corrected for percentage hybridization and saturation, division of the distances by the rate previously determined for most amniotes (0.48%/myr) suggested that the basal divergence among the caviomorph rodents examined occurred about 59 myrbp, and that Octodontidae originated 40 myrbp and diversified into extant lineages beginning 14 myr ago. Calibration against the date of the earliest known caviomorph (late Eocene or about 37.5 myrbp) gave a rate of 0.75%/myr, which would suggest later dates for subsequent caviomorph cladogenesis. It is notable that, based respectively on the slower or faster rates, the tetraploid Tympanoctomys barrerae must have diverged from its sister-taxon Octomys mimax 10 or 6.5 myr ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号