首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tRNAGly/glycyl-tRNA synthetase (GlyRS) system belongs to the so-called ‘class II aminoacyl-tRNA synthetase system’ in which tRNA identity elements are assured by rather few and simple determinants mostly located in the tRNA acceptor stem. Regarding evolutionary aspects, the tRNAGly/GlyRS system is a special case. There exist two different types of GlyRS, namely an archaebacterial/human type and a eubacterial type reflecting an evolutionary divergence within this system.Here we report the crystal structure of a human tRNAGly acceptor stem microhelix at 1.2 Å resolution. The local geometric parameters of the microhelix and the water network surrounding the RNA are presented. The structure complements the previously published Escherichia coli tRNAGly aminoacyl stem structure.  相似文献   

2.
tRNAs are aminoacylated with the correct amino acid by the cognate aminoacyl-tRNA synthetase. The tRNA/synthetase systems can be divided into two classes: class I and class II. Within class I, the tRNA identity elements that enable the specificity consist of complex sequence and structure motifs, whereas in class II the identity elements are assured by few and simple determinants, which are mostly located in the tRNA acceptor stem.The tRNAGly/glycyl-tRNA-synthetase (GlyRS) system is a special case regarding evolutionary aspects. There exist two different types of GlyRS, namely an archaebacterial/human type and an eubacterial type, reflecting the evolutionary divergence within this system. We previously reported the crystal structures of an Escherichia coli and of a human tRNAGly acceptor stem microhelix. Here we present the crystal structure of a thermophilic tRNAGly aminoacyl stem from Thermus thermophilus at 1.6 Å resolution and provide insight into the RNA geometry and hydration.  相似文献   

3.
tRNA identity elements assure the correct aminoacylation of tRNAs by the aminoacyl-tRNA synthetases with the cognate amino acid. The tRNAGly/glycyl-tRNA sythetase system is member of the so-called ‘class II system’ in which the tRNA determinants consist of rather simple elements. These are mostly located in the tRNA acceptor stem and in the glycine case additionally the discriminator base at position 73 is required. Within the glycine-tRNA synthetases, the archaebacterial/human and the eubacterial sytems differ with respect to their protein structures and the required tRNA identity elements, suggesting a unique evolutionary divergence.In this study, we present a comparison between the crystal structures of the eubacterial Escherichia coli and the human tRNAGly acceptor stem microhelices and their surrounding hydration patterns.  相似文献   

4.
The tRNAGly/Glycyl-tRNA synthetase system belongs to the so called ‘class II’ in which tRNA identity elements consist of relative few and simple motifs, as compared to ‘class I’ where the tRNA determinants are more complicated and spread over different parts of the tRNA, mostly including the anticodon. The determinants from ‘class II’ although, are located in the aminoacyl stem and sometimes include the discriminator base. There exist predominant structure differences for the Glycyl-tRNA-synthetases and for the tRNAGly identity elements comparing eucaryotic/archaebacterial and eubacterial systems.We focus on comparative X-ray structure analysis of tRNAGly acceptor stem microhelices from different organisms. Here, we report the X-ray structure of the human tRNAGly microhelix isoacceptor G9990 at 1.18 Å resolution. Superposition experiments to another human tRNAGly microhelix and a detailed comparison of the RNA hydration patterns show a great number of water molecules with identical positions in both RNAs. This is the first structure comparison of hydration layers from two isoacceptor tRNA microhelices with a naturally occurring base pair exchange.  相似文献   

5.
tRNA identity elements assure the correct aminoacylation of tRNAs by the cognate aminoacyl-tRNA synthetases. tRNASer belongs to the so-called class II system, in which the identity elements are rather simple and are mostly located in the acceptor stem region, in contrast to ‘class I’, where tRNA determinants are more complex and are located within different regions of the tRNA.The structure of an Escherichia coli tRNASer acceptor stem microhelix was solved by high resolution X-ray structure analysis. The RNA crystallizes in the space group C2, with one molecule per asymmetric unit and with the cell constants a = 35.79, b = 39.13, c = 31.37 Å, and β = 111.1°. A defined hydration pattern of 97 water molecules surrounds the tRNASer acceptor stem microhelix. Additionally, two magnesium binding sites were detected in the tRNASer aminoacyl stem.  相似文献   

6.
Due to the redundancy of the genetic code there exist six mRNA codons for arginine and several tRNAArg isoacceptors which translate these triplets to protein within the context of the mRNA. The tRNA identity elements assure the correct aminoacylation of the tRNA with the cognate amino acid by the aminoacyl-tRNA-synthetases. In tRNAArg, the identity elements consist of the anticodon, parts of the D-loop and the discriminator base. The minor groove of the acceptor stem interacts with the arginyl-tRNA-synthetase. We crystallized different Escherichia coli tRNAArg acceptor stem helices and solved the structure of the tRNAArg isoacceptor RR-1660 microhelix by X-ray structure analysis. The acceptor stem helix crystallizes in the space group P1 with the cell constants a = 26.28, b = 28.92, c = 29.00 Å, α = 105.74, β = 99.01, γ = 97.44° and two molecules per asymmetric unit. The RNA hydration pattern consists of 88 bound water molecules. Additionally, one glycerol molecule is bound within the interface of the two RNA molecules.  相似文献   

7.
We solved the X-ray structures of two Escherichia coli tRNASer acceptor stem microhelices. As both tRNAs are aminoacylated by the same seryl-tRNA-synthetase, we performed a comparative structure analysis of both duplexes to investigate the helical conformation, the hydration patterns and magnesium binding sites. It is well accepted, that the hydration of RNA plays an important role in RNA-protein interactions and that the extensive solvent content of the minor groove has a special function in RNA. The detailed comparison of both tRNASer microhelices provides insights into the structural arrangement of the isoacceptor tRNA aminoacyl stems with respect to the surrounding water molecules and may eventually help us to understand their biological function at atomic resolution.  相似文献   

8.
Aminoacyl-tRNA synthetases catalyze the formation of aminoacyl-tRNAs. Seryl-tRNA synthetase is a class II synthetase, which depends on rather few and simple identity elements in tRNA(Ser) to determine the amino acid specificity. tRNA(Ser) acceptor stem microhelices can be aminoacylated with serine, which makes this part of the tRNA a valuable tool for investigating the structural motifs in a tRNA(Ser)-seryl-tRNA synthetase complex. A 1.8A-resolution tRNA(Ser) acceptor stem crystal structure was superimposed to a 2.9A-resolution crystal structure of a tRNA(Ser)-seryl-tRNA synthetase complex for a visualization of the binding environment of the tRNA(Ser) microhelix.  相似文献   

9.
The modified nucleotide 3′ of the tRNA anticodon is an important structural element that regulates the codon-anticodon interaction in the ribosome by stacking with codon-anticodon bases. The presence and identity (pyrimidine, purine, or modified purine) of this nucleotide significantly affects the energy of stacking in the A and P sites of the ribosome. Modification of nucleotide 37 does not contribute to stacking in the A site of the 70S ribosome, while its effect is substantial in the P site. The enthalpies of tRNA interactions with the A and P sites in the ribosome are similar and considerably lower than the enthalpy of the interactions of two tRNAs with the cognate anticodons in solution, suggesting that the ribosome contributes to the enthalpy-related portion of the free energy of tRNA binding by directly forming additional interactions with tRNA or by indirectly stabilizing the conformation of the codon-anticodon complex. In addition to stacking, tRNA binding in the A and P sites is further stabilized by interactions that involve magnesium ions. The number of ions involved in the formation of the tRNA-ribosome complex depends on the identity of tRNA nucleotide 37.  相似文献   

10.
Summary We report a new tRNA 1 Asp gene near the dnaQ gene, which is located at 5 min on the Escherichia coli linkage map. We named it aspV. The sequence corresponding to the mature tRNA is identical with that of the two previously identified tRNA 1 Asp genes (aspT and aspU), but there is no homology in the sequences of their 3-and 5-flanking regions.Abbreviations kb kilo base pair(s) - rrn ribosomal RNA  相似文献   

11.
A tRNAVal (GAC) gene is located in opposite orientation 552 nucleotides (nt) down-stream of the cytochrome oxidase subunit III (coxIII) gene in sunflower mitochondria. The comparison with the homologous chloroplast DNA revealed that the tRNAVal gene is part of a 417 nucleotides DNA insertion of chloroplast origin in the mitochondrial genome. No tRNAVal is encoded in monocot mitochondrial DNA (mtDNA), whereas two tRNAVal species are coded for by potato mtDNA. The mitochondrial genomes of different plant species thus seem to encode unique sets of tRNAs and must thus be competent in importing the missing differing sets of tRNAs.  相似文献   

12.
MurF is required to catalyze the final step in the synthesis of the cytoplasmic precursor of the bacterial cell wall peptidoglycan, rendering it an attractive target for antibacterial drug development. The crystal structure of the MurF apo-enzyme has been determined using the multiwavelength anomalous dispersion method and refined to 2.3 A resolution. It contains three consecutive open alpha/beta-sheet domains. In comparison with the complex crystal structures of MurD and its substrates, The topology of the N-terminal domain of MurF is unique, while its central and C-terminal domains exhibit similar mononucleotide and dinucleotide-binding folds, respectively. The apo-enzyme of MurF crystal structure reveals an open conformation with the three domains juxtaposed in a crescent-like arrangement creating a wide-open space where substrates are expected to bind. As such, catalysis is not feasible and significant domain closure is expected upon substrate binding.  相似文献   

13.
The N(6)-(isopentenyl)adenosine (i(6)A) modification of some tRNAs at position A37 is found in all kingdoms and facilitates codon-specific mRNA decoding, but occurs in different subsets of tRNAs in different species. Here we examine yeasts' tRNA isopentenyltransferases (i.e., dimethylallyltransferase, DMATase, members of the Δ(2)-isopentenylpyrophosphate transferase, IPPT superfamily) encoded by tit1(+) in Schizosaccharomyces pombe and MOD5 in Saccharomyces cerevisiae, whose homologs are Escherichia coli miaA, the human tumor suppressor TRIT1, and the Caenorhabditis elegans life-span gene product GRO-1. A major determinant of miaA activity is known to be the single-stranded tRNA sequence, A36A37A38, in a stem-loop. tRNA(Trp)(CCA) from either yeast is a Tit1p substrate, but neither is a Mod5p substrate despite the presence of A36A37A38. We show that Tit1p accommodates a broader range of substrates than Mod5p. tRNA(Trp)(CCA) is distinct from Mod5p substrates, which we sort into two classes based on the presence of G at position 34 and other elements. A single substitution of C34 to G converts tRNA(Trp)(CCA) to a Mod5p substrate in vitro and in vivo, consistent with amino acid contacts to G34 in existing Mod5p-tRNA(Cys)(GCA) crystal structures. Mutation of Mod5p in its G34 recognition loop region debilitates it differentially for its G34 (class I) substrates. Multiple alignments reveal that the G34 recognition loop sequence of Mod5p differs significantly from Tit1p, which more resembles human TRIT1 and other DMATases. We show that TRIT1 can also modify tRNA(Trp)(CCA) consistent with broad recognition similar to Tit1p. This study illustrates previously unappreciated molecular plasticity and biological diversity of the tRNA-isopentenyltransferase system of eukaryotes.  相似文献   

14.
Sphingomonas sp. A1 possesses a high molecular mass (average 25,700 Da) alginate uptake system mediated by a novel pit-dependent ABC transporter. The X-ray crystallographic structure of AlgQ2 (57,200 Da), an alginate-binding protein in the system, was determined by the multiple isomorphous replacement method and refined at 2.0 A resolution with a final R-factor of 18.3% for 15 to 2.0 A resolution data. The refined structure of AlgQ2 was comprised of 492 amino acid residues, 172 water molecules, and one calcium ion. AlgQ2 was composed of two globular domains with a deep cleft between them, which is expected to be the alginate-binding site. The overall structure is basically similar to that of maltose/maltodextrin-binding protein, except for the presence of an N2-subdomain. The entire calcium ion-binding site is similar to the site in the EF-hand motif, but comprises a ten residue loop. This calcium ion-binding site is about 40 A away from the alginate-binding site.  相似文献   

15.
16.
The acceptor stem of Escherichia coli tRNA(Ala), rGGGGCUA.rUAGCUCC (ALAwt), contains the main identity element for the correct aminoacylation by the alanyl tRNA synthetase. The presence of a G3.U70 wobble base pair is essential for the specificity of this reaction, but there is a debate whether direct minor-groove contact with the 2-amino group of G3 or a distortion of the acceptor stem induced by the wobble pair is the critical feature recognized by the synthetase. We here report the structure analysis of ALAwt at near-atomic resolution using twinned crystals. The crystal lattice is stabilized by a novel strontium binding motif between two cis-diolic O3'-terminal riboses. The two independent molecules in the asymmetric unit of the crystal show overall A-RNA geometry. A comparison with the crystal structure of the G3-C70 mutant of the acceptor stem (ALA(C70)) determined at 1.4 A exhibits a modulation in ALAwt of helical twist and slide due to the wobble base pair, but no recognizable distortion of the helix fragment distant from the wobble base pair. We suggest that a highly conserved hydration pattern in both grooves around the G3.U70 wobble base pair may be functionally significant.  相似文献   

17.
Glutamyl-queuosine tRNAAsp synthetase (Glu-Q-RS) from Escherichia coli is a paralog of the catalytic core of glutamyl-tRNA synthetase (GluRS) that catalyzes glutamylation of queuosine in the wobble position of tRNAAsp. Despite important structural similarities, Glu-Q-RS and GluRS diverge strongly by their functional properties. The only feature common to both enzymes consists in the activation of Glu to form Glu-AMP, the intermediate of transfer RNA (tRNA) aminoacylation. However, both enzymes differ by the mechanism of selection of the cognate amino acid and by the mechanism of its activation. Whereas GluRS selects l-Glu and activates it only in the presence of the cognate tRNAGlu, Glu-Q-RS forms Glu-AMP in the absence of tRNA. Moreover, while GluRS transfers the activated Glu to the 3′ accepting end of the cognate tRNAGlu, Glu-Q-RS transfers the activated Glu to Q34 located in the anticodon loop of the noncognate tRNAAsp. In order to gain insight into the structural elements leading to distinct mechanisms of amino acid activation, we solved the three-dimensional structure of Glu-Q-RS complexed to Glu and compared it to the structure of the GluRS·Glu complex. Comparison of the catalytic site of Glu-Q-RS with that of GluRS, combined with binding experiments of amino acids, shows that a restricted number of residues determine distinct catalytic properties of amino acid recognition and activation by the two enzymes. Furthermore, to explore the structural basis of the distinct aminoacylation properties of the two enzymes and to understand why Glu-Q-RS glutamylates only tRNAAsp among the tRNAs possessing queuosine in position 34, we performed a tRNA mutational analysis to search for the elements of tRNAAsp that determine recognition by Glu-Q-RS. The analyses made on tRNAAsp and tRNAAsn show that the presence of a C in position 38 is crucial for glutamylation of Q34. The results are discussed in the context of the evolution and adaptation of the tRNA glutamylation system.  相似文献   

18.
The crystal structure of (L-Arg)-B0 bovine insulin has been determined, using data to 0.21 nm and atomic parameters of 2Zn porcine insulin as a starting model, by the difference Fourier method, the restrained least square method and X-PLOR package, interspersed with careful review of the electron density, to a final R-factor of 0.182 and r.m.s. deviation of 0.002 2nm for the bond lengths and 4.3° for the bond angles. The electron densities of additional (L-Arg)-B0 residues to B-chain N-terminus of two monomers in each asymmetric unit are very dear. The crystallographic micro-environment of the N-terminus of the B-chain is different from that of rhombohedral 2-zinc insulin.  相似文献   

19.
The crystal structure of alginate (poly alpha-l-guluronate) lyase from Corynebacterium sp. (ALY-1) was determined at 1.2A resolution using the MAD method and bromide ions. The structure of ALY-1 is abundant in beta-strands and has a deep cleft, similar to the jellyroll beta-sandwich found in 1,3-1,4-beta-glucanase. The structure suggests that alginate molecules may penetrate into the cleft to interact with the catalytic site of ALY-1. The reported crystal structure of another type of alginate lyase, A1-III, differs from that of ALY-1 in that it consists almost entirely of alpha-helical structure. Nevertheless, the putative catalytic residues in both enzymes are positioned in space in nearly identical arrangements. This finding suggests that both alginate lyases may have evolved through convergent evolution.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号