首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The production of hydrogen peroxide by Anacystis nidulans R2 in presence of methyl viologen occurs by using the redox power from water promoted by the photosystems of the blue-green alga. Thus, in the presence of the photosynthetic inhibitor DCMU or in the dark, H(2)O(2) production does not take place. In cells permeabilized with lysozyme, the addition of ionophores, which is expected to increase the electron flow, produces only a small increase to initial velocity of hydrogen peroxide production. On the other hand, in nonpermeabilized cells, the addition of superoxide dismutase increases the initial velocity of hydrogen peroxide production, but the net amount accumulated by the system is very low because of posterior decomposition. Preincubation of cells with azide, which inhibits the catalase, prevents the decomposition, thereby increasing drastically the amount of hydrogen peroxide accumulated by the system after a few hours. Hence, H(2)O(2) production appears to be limited mainly because of decomposition by catalase activity rather than by the photosynthetic electron flow rate or the diffusion of products through the cell wall. The net production of hydrogen peroxide by the system was enhanced severalfold by treatment with azide. If one takes into account the use of hydrogen peroxide as fuel due to the large amount of energy released in its dismutation, the photosystem can be a useful tool in the storage of solar energy.  相似文献   

2.
The truncated light-harvesting antenna2 (tla2) mutant of Chlamydomonas reinhardtii showed a lighter-green phenotype, had a lower chlorophyll (Chl) per-cell content, and higher Chl a/b ratio than corresponding wild-type strains. Physiological analyses revealed a higher intensity for the saturation of photosynthesis and greater P(max) values in the tla2 mutant than in the wild type. Biochemical analyses showed that the tla2 strain was deficient in the Chl a-b light-harvesting complex, and had a Chl antenna size of the photosystems that was only about 65% of that in the wild type. Molecular and genetic analyses showed a single plasmid insertion in the tla2 strain, causing a chromosomal DNA rearrangement and deletion/disruption of five nuclear genes. The TLA2 gene, causing the tla2 phenotype, was cloned by mapping the insertion site and upon complementation with each of the genes that were deleted. Successful complementation was achieved with the C. reinhardtii TLA2-CpFTSY gene, whose occurrence and function in green microalgae has not hitherto been investigated. Functional analysis showed that the nuclear-encoded and chloroplast-localized CrCpFTSY protein specifically operates in the assembly of the peripheral components of the Chl a-b light-harvesting antenna. In higher plants, a cpftsy null mutation inhibits assembly of both the light-harvesting complex and photosystem complexes, thus resulting in a seedling-lethal phenotype. The work shows that cpftsy deletion in green algae, but not in higher plants, can be employed to generate tla mutants. The latter exhibit improved solar energy conversion efficiency and photosynthetic productivity under mass culture and bright sunlight conditions.  相似文献   

3.
4.
通过将微藻细胞固定在平面多孔碳纸上,制备微藻光电极,并在三电极体系电解液中加入电子介体进行测试,可产生与光照同步的光电流响应。考察了不同固定化方法、不同微藻及不同电子介体的光电流响应,结果表明硅溶胶-凝胶法制备的光电极光电流响应最佳,且对于亚心形四爿藻、金藻、莱茵衣藻、蛋白核小球藻、聚球藻等 5 种微藻都适用,表明该制备方法对不同微藻具有较好的通用性。电子介体的研究表明苯醌及其衍生物由于氧还电位较高,具有较好的阳极光电流响应特性,而甲基紫精氧还电位较低,具有较好的阴极光电流响应。  相似文献   

5.
The Chlamydomonas reinhardtii truncated light-harvesting antenna 4 (tla4) DNA transposon mutant has a pale green phenotype, a lower chlorophyll (Chl) per cell and a higher Chl a/b ratio in comparison with the wild type. It required a higher light intensity for the saturation of photosynthesis and displayed a greater per chlorophyll light-saturated rate of oxygen evolution than the wild type. The Chl antenna size of the photosystems in the tla4 mutant was only about 65% of that measured in the wild type. Molecular genetic analysis revealed that a single plasmid DNA insertion disrupted two genes on chromosome 11 of the mutant. A complementation study identified the “chloroplast signal recognition particle 54” gene (CpSRP54), as the lesion causing the tla4 phenotype. Disruption of this gene resulted in partial failure to assemble and, therefore, lower levels of light-harvesting Chl-binding proteins in the C. reinhardtii thylakoids. A comparative in silico 3-D structure-modeling analysis revealed that the M-domain of the CpSRP54 of C. reinhardtii possesses a more extended finger loop structure, due to different amino acid composition, as compared to that of the Arabidopsis CpSRP54. The work demonstrated that CpSRP54 deletion in microalgae can serve to generate tla mutants with a markedly smaller photosystem Chl antenna size, improved solar energy conversion efficiency, and photosynthetic productivity in high-density cultures under bright sunlight conditions.  相似文献   

6.
Hydrogen peroxide production by blue-green algae (cyanobacteria) under photoautotrophic conditions is of great interest as a model system for the bioconversion of solar energy. Our experimental system was based on the photosynthetic reduction of molecular oxygen with electrons from water by Anacystis nidulans 1402-1 as the biophotocatalyst and methyl viologen as a redox intermediate. It has been demonstrated that the metabolic conditions of the algae in their different growth stages strongly influence the capacity for hydrogen peroxide photoproduction, and so the initial formation rate and net peroxide yield became maximum in the mid-log phase of growth. The overall process can be optimized in the presence of certain metabolic inhibitors such as iodoacetamide and p-hydroxymercuribenzoate, as well as by permeabilization of the cellular membrane after drastic temperature changes and by immobilization of the cells in inert supports such as agar and alginate.  相似文献   

7.
The effect of light intensity on hydrogen production by sulfur-deprived Chlamydomonas reinhardtii was studied in situ using either long- or short-term experiments, or alternatively, with samples withdrawn from the photobioreactor. Overall hydrogen production by S-deprived culture was shown to depend on the light intensity and to exhibit regions of light limitation and light inhibition. The optimal incident light intensity for hydrogen production was independent of the method of sulfur deprivation or the initial acetate concentration in the medium (12-34 mM). However, it varied with the Chl concentration and the thickness of the photobioreactor. To calculate the average light intensity in the photobioreactor under different experimental conditions, a special mathematics approach was developed. The optimal average light intensity for H(2) production appeared to be 30-40 microE m(-2)s(-1) and was independent of the Chl or acetate concentrations and the method of S deprivation. The inhibitory effect of high light intensity was related to the enhanced O(2) evolution activity during the photosynthetic stage of sulfur deprivation and to the high activity of photosystem II at the beginning of the H(2)-production phase. Data support the major role of photosystem II in supplying reductants through photosystem I to the hydrogenase throughout the H(2)-production phase.  相似文献   

8.
The differences in pigment levels and photosynthetic activity of green sun and shade leaves of ginkgo (Ginkgo biloba L.) and beech (Fagus sylvatica L.) are described. Sun leaves of both tree species possessed higher levels in chlorophylls (Chl) and carotenoids on a leaf area basis, higher values for the ratio Chl a/b and lower values for the ratio Chl/carotenoids (a+b)/(x+c) in comparison to shade leaves. The higher photosynthetic rates P(N) of sun leaves (ginkgo 5.4+/-0.9 and beech 8.5+/-2.1 micromol m(-2)s(-1)) were also reflected by higher values for the Chl fluorescence decrease ratios R(F)(d) 690 and R(F)(d) 735. In contrast, the shade leaves had lower P(N) rates (ginkgo 2.4+/-0.3 and beech 1.8+/-1.2 micromol m(-2)s(-1)). In both tree species the stomatal conductance G(s) was significantly higher in sun (range: 70-19 1 mmol m(-2)s(-1)) as compared to shade leaves (range: 5-55 mmol m(-2)s(-1)). In fact, at saturating light conditions there existed a close correlation between G(s) values and P(N) rates. Differences between sun and shade leaves also existed in several other Chl fluorescence ratios (F(v)/F(m), F(v)/F(o), and the stress adaptation index Ap). The results clearly demonstrate that the fan-shaped gymnosperm ginkgo leaves show the same high and low irradiance adaptation response as the angiosperm beech leaves.  相似文献   

9.
The effects of different photooxidative stresses on the function of photosystem I were measured in vivo in Chlamydomonas reinhardtii. Pholooxidative stresses included strong light, light combined with chilling to 0 °C, and light combined with several concentrations of methyl viologen. Photosystem I function was measured in vivo using the absorbance change at 820 nm associated with P700 oxidation. Photosystem II function was measured in vivo using chlorophyll fluorescence. Strong light or light combined with chilling caused inhibition of photosystem II function earlier than inhibition of photosystem I function. When photosystem I was inhibited, however, it did not recover. Light combined with 5 mmol m?3 methyl viologen caused inhibition of photosystem I function earlier than inhibition of photosystem II. If the methyl viologen concentration was reduced to 1 mmol m?3, the damage to PSI was accelerated by addition of 90 mmol m?3 chloramphenicol. This effect of chloroamphenicol suggests a role for chloroplast-encoded proteins in protecting photosystem I against photooxidative damage caused by methyl viologen.  相似文献   

10.
This study investigated whether increased solar UV-B radiation (280-315 nm) could suppress the growth of marine microalgae through effects on their antioxidant systems. Two marine microalgae species, Platymonas subcordiformis (Wille) Hazen and Nitzschia closterium (Ehrenb.) W. Sm, were exposed to a range of UV-B radiation and both showed reductions in their growth rates, and the chlorophyll a (Chl a) and carotenoid (Car) contents when UV-B radiation dose increased. Superoxide anion radical (O2)production and the concentration of hydrogen peroxide (H2O2) and malodiadehyde (MDA) also increased with the increasing of UV-B radiation. Antioxidant systems, non-enzymic components (Car and glutathione content) and enzymic components (superoxide dismutase (SOD) and catalase (CAT) activity), decreased as a result of enhanced UV-B radiation. When the exogenous glutathione (GSH) was added, the effects of UVB radiation on the growth of the two species were alleviated. These results suggest that enhanced UV-B radiation suppressed the antioxidant systems and caused some active oxygen species to accumulate, which in turns retarded the development of the marine microalgae.  相似文献   

11.
The sensitivity of green microalgae Chlamydomonas reinhardtii to methylmercury chloride (MeHg) and chloride mercury (HgCl2) was evaluated by measuring chlorophyll fluorescence parameters by the pulse-amplitude-modulation (PAM) fluorometry. It was shown that MeHg at concentrations above 1 microM decreased the Fv/Fm ratio, which characterizes the maximal efficiency of energy utilization in photosystem II. The degree of inhibition depended on the time of treatment and was always higher under illumination conditions (50 microE.m-2.s-1) than under dark conditions. A similar regularity was observed for the delta F/Fm' ratio, which characterizes the real efficiency of energy storage at the given intensity of the photosynthesis-exciting light. Incubation with 5 microM HgCl2 for 5 h did not affect both ratios. The decrease in Fm at constant F0 as well as changes in the fast fluorescence kinetics after MeHg treatment of algae cells indicated the damage on the donor side of photosystem II and the damage of the electron transfer from QA to QB. The reduction of photochemical fluorescence quenching (qN) under MeHg treatment is also evidence of the increase in the fraction of closed reaction centers (QA-). At the same time, increase in the steady-state level of P700 photooxidation indicated a disturbance of electron transfer between photosystems. The present study demonstrates that methylmercury treatment damaged the photosynthetic electron transfer chain at several sites. The inhibitory effect of methylmercury is much stronger than the effect of mercury chloride on photosynthetic processes.  相似文献   

12.
Photosynthetic supercomplexes from the cryptophyte Rhodomonas CS24 were isolated by a short detergent treatment of membranes from the cryptophyte Rhodomonas CS24 and studied by electron microscopy and low-temperature absorption and fluorescence spectroscopy. At least three different types of supercomplexes of photosystem I (PSI) monomers and peripheral Chl a/c(2) proteins were found. The most common complexes have Chl a/c(2) complexes at both sides of the PSI core monomer and have dimensions of about 17x24 nm. The peripheral antenna in these supercomplexes shows no obvious similarities in size and/or shape with that of the PSI-LHCI supercomplexes from the green plant Arabidopsis thaliana and the green alga Chlamydomonas reinhardtii, and may be comprised of about 6-8 monomers of Chl a/c(2) light-harvesting complexes. In addition, two different types of supercomplexes of photosystem II (PSII) dimers and peripheral Chl a/c(2) proteins were found. The detected complexes consist of a PSII core dimer and three or four monomeric Chl a/c(2) proteins on one side of the PSII core at positions that in the largest complex are similar to those of Lhcb5, a monomer of the S-trimer of LHCII, Lhcb4 and Lhcb6 in green plants.  相似文献   

13.
Cell-free extracts that show activity in photosynthetic electron flow have been prepared from the unicellular dinoflagellate, Gonyaulax polyedra. Electron flow, as O2 uptake, was measured through both photo-system I and II from water to methyl viologen, through photosystem I alone from reduced 2,6-dichlorophenol indophenol to methyl viologen which does not include the plastoquinone pool or from duroquinol to methyl viologen which includes the plastoquinone pool. Electron flow principally through photosystem II was measured from water to diaminodurene and ferricyanide, as O2 evolution. Cultures of Gonyaulax were grown on a 12-hour light:12 hour dark cycle to late log phase, then transferred to constant light at the beginning of a light period. After 3 days, measurements of electron flow were made at the maximum and minimum of the photosynthetic rhythm, as determined from measurements of the rhythm of bioluminescence. Photosynthesis was also measured in whole cells, either as 14C fixation or O2 evolution. Electron flow through both photosystems and through photosystem II alone were clearly rhythmic, while electron flow through photosystem I, including or excluding the plastoquinone pool, was constant with time in the circadian cycle. Thus, only changes in photosystem II account for the photosynthesis rhythm in Gonyaulax.  相似文献   

14.
Changes in photosynthetic pigment ratios showed that the Chlorophyll d-dominated oxyphotobacterium Acaryochloris marina was able to photoacclimate to different light regimes. Chl d per cell were higher in cultures grown under low irradiance and red or green light compared to those found when grown under high white light, but phycocyanin/Chl d and carotenoid/Chl d indices under the corresponding conditions were lower. Chl a, considered an accessory pigment in this organism, decreased respective to Chl d in low irradiance and low intensity non-white light sources. Blue diode PAM (Pulse Amplitude Modulation) fluorometry was able to be used to measure photosynthesis in Acaryochloris. Light response curves for Acaryochloris were created using both PAM and O(2) electrode. A linear relationship was found between electron transport rate (ETR), measured using a PAM fluorometer, and oxygen evolution (net and gross photosynthesis). Gross photosynthesis and ETR were directly proportional to one another. The optimum light for white light (quartz halogen) was about 206+/-51 micromol m(-2) s(-1) (PAR) (Photosynthetically Active Radiation), whereas for red light (red diodes) the optimum light was lower (109+/-27 micromol m(-2) s(-1) (PAR)). The maximum mean gross photosynthetic rate of Acaryochloris was 73+/-7 micromol mg Chl d(-1) h(-1). The gross photosynthesis/respiration ratio (P(g)/R) of Acaryochloris under optimum conditions was about 4.02+/-1.69. The implications of our findings will be discussed in relation to how photosynthesis is regulated in Acaryochloris.  相似文献   

15.
Three forms of light-harvesting chlorophyll a/b-protein complexes of photosystem II (LHC II) were isolated from the thylakoid membranes of Dunaliella salina grown under different irradiance conditions. Cells grown under a low intensity light condition (80 micromol quanta m(-2) s(-1)) contained one form of LHC II, LHC-L. Two other forms of LHC II, LHC-H1 and LHC-H2, were separated from the cells grown under a high intensity light condition (1,500 micromol quanta m(-2) s(-1)). LHC-L and LHC-H1 showed an apparent particle size of 310 kDa and contained four polypeptides of 31, 30, 29 and 28 kDa. LHC-H2, with a particle size of 110 kDa, consisted of 30 and 28 kDa polypeptides. LHC-L contained 7.5 molecules of Chl a, 3.2 of Chl b and 2.1 of lutein per polypeptide, analogous to the content in higher plants. LHC-H1, with 5.6 molecules of Chl a, 2.5 of Chl b and 1.8 of lutein per polypeptide was similar to that in the green alga Bryopsis maxima. LHC-L and LHC-H1 maintained high efficiency energy transfer from Chl b and lutein to Chl a molecules. LHC-H2 showed a high Chl a/b ratio of 7.5 and contained 3.4 molecules of Chl a, 0.5 of Chl b and 1.4 of lutein per polypeptide. Chl b and lutein could not completely transfer the excitation energy to Chl a in LHC-H2.  相似文献   

16.
Upon encountering oxidative stress, proteins are oxidized extensively by highly reactive and toxic reactive oxidative species, and these damaged, oxidized proteins need to be degraded rapidly and effectively. There are two major proteolytic systems for bulk degradation in eukaryotes, the proteasome and vacuolar autophagy. In mammalian cells, the 20S proteasome and a specific type of vacuolar autophagy, chaperone-mediated autophagy, are involved in the degradation of oxidized proteins in mild oxidative stress. However, little is known about how cells remove oxidized proteins when under severe oxidative stress. Using two macroautophagy markers, monodansylcadaverine and green fluorescent protein-AtATG8e, we here show that application of hydrogen peroxide or the reactive oxidative species inducer methyl viologen can induce macroautophagy in Arabidopsis (Arabidopsis thaliana) plants. Macroautophagy-defective RNAi-AtATG18a transgenic plants are more sensitive to methyl viologen treatment than wild-type plants and accumulate a higher level of oxidized proteins due to a lower degradation rate. In the presence of a vacuolar H(+)-ATPase inhibitor, concanamycin A, oxidized proteins were detected in the vacuole of wild-type root cells but not RNAi-AtATG18a root cells. Together, our results indicate that autophagy is involved in degrading oxidized proteins under oxidative stress conditions in Arabidopsis.  相似文献   

17.
光系统Ⅱ的结构与功能以及光合膜对环境因素的响应机制   总被引:1,自引:0,他引:1  
光合膜是地球上捕获、转换和利用太阳能的关键场所,光合膜的活动所提供的能源、粮食及氧气,是人类世界赖以生存的基础。经过35亿年的进化,光合膜已经进化成了一个高度精密的结构,色素分子高密度结合并合理排列,具有高精度的能级耦联网络和高效率的能量传递系统,这使得光合膜成为自然界中能够最高效地吸收和传递太阳能、并能在常温常压下高效地将太阳能转换成化学能和还原势的色素蛋白复合体体系。由于这一特性,光合膜被认为是最有潜力的固定太阳能的新材料,并为研究新型光电转换器件提供了新思路和新理论。因此,长期以来,光合膜的结构-功能关系研究及其功能模拟,特别是执行固定和转化太阳能第一步的光系统Ⅱ,在新能源的利用中吸引了大量的研究力量,取得了突飞猛进的进展。本文总结了近年来关于光系统Ⅱ的结构与功能,以及光合膜对环境的感应和功能调节机制等方面的研究进展。  相似文献   

18.
The vibrational properties of the primary electron donors (P) of type I photosynthetic reaction centers, as investigated by Fourier transform infrared (FTIR) difference spectroscopy in the last 15 years, are briefly reviewed. The results obtained on the microenvironment of the chlorophyll molecules in P700 of photosystem I and of the bacteriochlorophyll molecules in P840 of the green bacteria (Chlorobium) and in P798 of heliobacteria are presented and discussed with special attention to the bonding interactions with the protein of the carbonyl groups and of the central Mg atom of the pigments. The observation of broad electronic transitions in the mid-IR for the cationic state of all the primary donors investigated provides evidence for charge repartition over two (B)Chl molecules. In the green sulfur bacteria and the heliobacteria, the assignments proposed for the carbonyl groups of P and P(+) are still very tentative. In contrast, the axial ligands of P700 in photosystem I have been identified and the vibrational properties of the chlorophyll (Chl) molecules involved in P700, P700(+), and (3)P700 are well described in terms of two molecules, denoted P(1) and P(2), with very different hydrogen bonding patterns. While P(1) has hydrogen bonds to both the 9-keto and the 10a-ester C=O groups and bears all the triplet character in (3)P700, the carbonyl groups of P(2) are free from hydrogen bonding. The positive charge in P700(+) is shared between the two Chl molecules with a ratio ranging from 1:1 to 2:1, in favor of P(2), depending on the temperature and the species. The localization of the triplet in (3)P700 and of the unpaired electron in P700(+) deduced from FTIR spectroscopy is in sharp contrast with that resulting from the analysis of the magnetic resonance experiments. However, the FTIR results are in excellent agreement with the most recent structural model derived from X-ray crystallography of photosystem I at 2.5 A resolution that reveals the hydrogen bonds to the carbonyl groups of the Chl in P700 as well as the histidine ligands of the central Mg atoms predicted from the FTIR data.  相似文献   

19.
Polle JE  Kanakagiri SD  Melis A 《Planta》2003,217(1):49-59
DNA insertional mutagenesis and screening of the green alga Chlamydomonas reinhardtii was employed to isolate tla1, a stable transformant having a truncated light-harvesting chlorophyll antenna size. Molecular analysis showed a single plasmid insertion into an open reading frame of the nuclear genome corresponding to a novel gene ( Tla1) that encodes a protein of 213 amino acids. Genetic analysis showed co-segregation of plasmid and tla1 phenotype. Biochemical analyses showed the tla1 mutant to be chlorophyll deficient, with a functional chlorophyll antenna size of photosystem I and photosystem II being about 50% and 65% of that of the wild type, respectively. It contained a correspondingly lower amount of light-harvesting proteins than the wild type and had lower steady-state levels of Lhcb mRNA. The tla1 strain required a higher light intensity for the saturation of photosynthesis and showed greater solar conversion efficiencies and a higher photosynthetic productivity than the wild type under mass culture conditions. Results are discussed in terms of the tla1 mutation, its phenotype, and the role played by the Tla1 gene in the regulation of the photosynthetic chlorophyll antenna size in C. reinhardtii.  相似文献   

20.
Bertamini  M.  Nedunchezhian  N.  Borghi  B. 《Photosynthetica》2001,39(1):59-65
The effect of iron deficiency on photosynthetic pigments, ribulose-1,5-bisphosphate carboxylase (RuBPC), and photosystem activities were investigated in field grown grapevine (Vitis vinifera L. cv. Pinot noir) leaves. The contents of chlorophyll (Chl) (a+b) and carotenoids per unit fresh mass showed a progressive decrease upon increase in iron deficiency. Similar results were also observed in content of total soluble proteins and RuBPC activity. The marked loss of large (55 kDa) and small (15 kDa) subunits of RuBPC was also observed in severely chlorotic leaves. However, when various photosynthetic electron transport activities were analysed in isolated thylakoids, a major decrease in the rate of whole chain (H2O methyl viologen) electron transport was observed in iron deficient leaves. Such reduction was mainly due to the loss of photosystem 2 (PS2) activity. The same results were obtained when Fv/Fm was evaluated by Chl fluorescence measurements in leaves. Smaller inhibition of photosystem 1 (PS1) activity was also observed in both mild and severely chlorotic leaves. The artificial electron donors, diphenyl carbazide and NH2OH, markedly restored the loss of PS2 activity in severely chlorotic leaves. The marked loss of PS2 activity was evidently due to the loss of 33, 23, 28-25, and 17 kDa polypeptides in iron deficient leaves.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号