首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of low-intensity laser radiation of the blue (441.2 nm), green (532 nm), and red (632.8 nm) spectral regions on the healing of experimental skin wounds in rats has been studied. The effect of the traditionally applied laser radiation in the red region has been compared with the effect of laser radiation in the other spectral regions, assuming that, upon irradiation of wounds by lasers emitting in the blue and green regions, a similar effect can be achieved at lower doses. The following parameters characterizing the healing of experimental wounds were used: the functional activity of phagocytes of wound exudates, which was determined by luminol-dependent chemiluminescence, and their number; the antioxidant activity of wound exudates; and the rate of healing, which was determined as a change in the wound area. It was shown that irradiation with laser accelerated the healing of wounds in all cases. The exposure to laser radiations in the red (1.5 J/cm), blue, and green (0.75 J/cm2) spectral regions shortened the time of wound healing from 22 to 17 and 19 days, respectively. The functional activity of leukocytes after the exposure increased on day 5 after the infliction of the wound, whereas in the control it decreased. The superoxide dismutase activity increased in all experimental groups by day 5 after the operation. A maximum increase in the superoxide dismutase activity occurred after the exposure to laser radiation in the red region at a dose of 1.5 J/cm and in the blue and green spectral regions at a dose of 0.75 J/cm2.  相似文献   

2.
Lasers have in principle the capability to cut at the level of a single cell, the fundamental limit to minimally invasive procedures and restructuring biological tissues. To date, this limit has not been achieved due to collateral damage on the macroscale that arises from thermal and shock wave induced collateral damage of surrounding tissue. Here, we report on a novel concept using a specifically designed Picosecond IR Laser (PIRL) that selectively energizes water molecules in the tissue to drive ablation or cutting process faster than thermal exchange of energy and shock wave propagation, without plasma formation or ionizing radiation effects. The targeted laser process imparts the least amount of energy in the remaining tissue without any of the deleterious photochemical or photothermal effects that accompanies other laser wavelengths and pulse parameters. Full thickness incisional and excisional wounds were generated in CD1 mice using the Picosecond IR Laser, a conventional surgical laser (DELight Er:YAG) or mechanical surgical tools. Transmission and scanning electron microscopy showed that the PIRL laser produced minimal tissue ablation with less damage of surrounding tissues than wounds formed using the other modalities. The width of scars formed by wounds made by the PIRL laser were half that of the scars produced using either a conventional surgical laser or a scalpel. Aniline blue staining showed higher levels of collagen in the early stage of the wounds produced using the PIRL laser, suggesting that these wounds mature faster. There were more viable cells extracted from skin using the PIRL laser, suggesting less cellular damage. β-catenin and TGF-β signalling, which are activated during the proliferative phase of wound healing, and whose level of activation correlates with the size of wounds was lower in wounds generated by the PIRL system. Wounds created with the PIRL systsem also showed a lower rate of cell proliferation. Direct comparison of wound healing responses to a conventional surgical laser, and standard mechanical instruments shows far less damage and near absence of scar formation by using PIRL laser. This new laser source appears to have achieved the long held promise of lasers in minimally invasive surgery.  相似文献   

3.
The action of laser and light-emitting diode radiation in the visible region on the content of reactive nitrogen species and activity of superoxide dismutase in rat wound fluid was studied, and efficiency of action of coherent laser and incoherent light emitting diode radiations in the red region of the spectrum on the parameters under study was compared. A model of incised aseptic wounds in rats proposed by L.I. Slutskiy was used. A He-Ne laser (632 nm) and a Y-332B light emitting diode served as radiation sources. It was shown that (1) exposure of wounds to the visible light of both laser and light-emitting diodes causes dose-dependent changes in superoxide dismutase activity and production of nitrites and (2) the radiation coherence does not play any significant role in the changes of superoxide dismutase activity or nitrogen oxide formation by wound fluid phagocytes.  相似文献   

4.
The effect of laser and light-emitting diode radiation in the visible region of the spectrum on the content of reactive nitrogen species and superoxide dismutase activity in rat wound fluid was studied. The efficiency of action of coherent laser radiation and incoherent light-emitting diode radiation in the red region of the spectrum on the parameters analyzed was compared. The study was performed using the model of cut aseptic wounds proposed by L.I. Slutskii. A He-Ne laser (632 nm) or an U-332B light-emitting diode (630 nm) was used as the source of radiation. It was shown that (1) exposure of wounds to visible light of both laser and light-emitting diode causes dose-dependent changes in superoxide dismutase activity and nitrite production and that (2) radiation coherence does not play a significant role in the changes in superoxide dismutase activity or nitric oxide production by wound fluid phagocytes.  相似文献   

5.
Infections, ulcerations, gangrene and, in severe cases, extremity amputation, are common complications among diabetic subjects. Various biomaterials have been utilized for the treatment of these lesions. Chitosan is an amino sugar with a low risk of toxicity and immune response. In this study, we evaluated chitosan topical gel and film treatments for subjects with diabetic ulcerations and wounds associated with diabetes mellitus. In a pre-experimental design, we described the result of chitosan gel and film treatment for wounds and skin ulcers among patients with long-standing diabetes mellitus. We studied 8 diabetic patients with wounds and skin ulcers (long duration and Wagner degree 1–2). Initially, most lesions had some degree of infection, tissue damage and ulceration. At the end of the treatment (topical chitosan) period, the infections were cured. All patients experienced a significant improvement in the initial injury and developed granulation tissue and a healthy skin cover. This report represents one of the few published clinical experience regarding the chitosan for the treatment of skin lesions among diabetic subjects. These results are relevant and promising for the treatment of this disease.  相似文献   

6.
The effect of laser (632 nm) and LED (630 nm) on lipid peroxidation in rat wound fluid (exudate) was studied with the aim of comparing the efficiency of coherent and incoherent light on the processes that take place during wound healing. The study was performed using the model of cut aseptic wounds proposed by L.I. Slutskii. It was shown that irradiation of wounds with light of both laser and LED caused a decrease in the concentration of lipid peroxidation products in wound fluid as compared with the control group. An increase in the antioxidative activity of wound fluid was observed. It was concluded that irradiation with light of both laser and LED decreases the level of oxidative stress in wound fluid and that radiation coherence does not play a significant role.  相似文献   

7.
The effect of laser and light-emitting diode radiation on lipid peroxidation in rat wound exudate was studied with the aim to compare the efficiency of coherent laser and incoherent light-emitting diode radiations. A model of aseptic wound in rat suggested by L.I. Slutskii was used. A He-Ne laser (632 nm) and a U-332B light-emitting diode were used in this study. The intensity of lipid peroxidation was estimated by the TBA assay. The antioxidative capacity of rat wound fluid was evaluated by means of chemiluminescent assays in two model systems: a) aqueous system with ABAP and luminol and b) in phospholipid liposome suspension with Fe2+ and cumarin. It was shown that exposure of rat wounds to both laser and light-emitting diode radiation decreased the concentration of TBA products and increased the antioxidative capacity of wound exudates, compared with the control group (without irradiation). The results obtained show that exposure of wounds to both laser and light-emitting diode irradiation causes a decrease in the oxidative stress in the rat wound fluid. No significant quantitative difference between the effects of laser and light-emitting diode irradiation was found.  相似文献   

8.
In the present study, an established controlled burn wound model was used to test the hypothesis that controlled surface contamination with is capable of generating a noninvasive method for the creation of a reproducible deep tissue burn wound infection. Using a liquid tight-wound chamber in Yorkshire pigs, partial-thickness burns were inoculated with saline-immersed for 24 hours. Noninoculated burns and unwounded skin immersed in normal saline served as controls. Bacterial cultures of wound fluid were performed daily, and tissue biopsies for bacteriological and histological evaluations were performed on days 1, 3, and 5. was only recovered from -inoculated wounds (tissue and fluid), whereas all controls contained endogenous only. The number of colony-forming units per gram of wound tissue did not correlate with the bacterial counts found in the overlying wound fluid for any wounds. Fluid counts were consistently higher than tissue counts by two logs. -inoculated wounds showed three times deeper tissue destruction than control wounds. Obtaining consistently deep tissue colonization without cross-contamination among wounds, this study introduces a noninvasive model for controlled burn wound infection suitable for future investigations regarding the efficacy of topical antibiotic wound treatment in experimental burns.  相似文献   

9.
The effects of low-intensity laser irradiation in the red (632.8 nm), green (532 nm), and blue (441.2 nm) spectral ranges on wound healing has been studied in rats. The effect of the traditionally used red laser irradiation has been compared with the effect caused by laser irradiation in other spectral ranges, aiming to support the provisional hypothesis that a similar healing effect could be achieved at lower doses of wound irradiation by lasers emitting in the blue and green spectral ranges. The following parameters have been used to characterize healing of the experimental wounds: the functional activity of phagocytes in the wound exudate, which was determined from luminol-dependent chemiluminescence, the phagocyte number; the wound exudates’ antioxidant activity; and the rate of healing, which was determined as the change of the wound surface area. It was found that in all cases the laser irradiation accelerated the healing of wounds. Exposure to red laser irradiation at the dose of 1.5 J/cm2), and to blue or green laser irradiation at a dose of 0.75 J/cm2 shortened the time of the wound healing from 22 to 17 and 19 days, respectively. The functional activity of leukocytes in irradiated groups increased by day 5 after surgery, whereas in the control group it decreased. The superoxide dismutase activity increased in all experimental groups by day 5 after surgery. Laser irradiation in the red spectral range at a dose of 1.5 J/cm2 resulted in a larger increase in superoxide dismutase activity, as compared to that found after exposure to laser irradiation in the blue and green spectral ranges at a dose of 0.75 J/cm2.  相似文献   

10.
《Cytotherapy》2021,23(8):672-676
Background aimsThe treatment and care of human wounds represent an enormous burden on the medical system and patients alike. Chronic or delayed healing wounds are characterized by the inability to form proper granulation tissue, followed by deficiencies in keratinocyte migration and wound re-epithelialization, leading to increased likelihood of infection and poor wound outcomes. Human reticular acellular dermal matrix (HR-ADM) is one type of tissue graft developed to enhance closure of delayed healing wounds that has demonstrated clinical utility through accelerating closure of lower extremity diabetic ulcers, but the mechanisms underlying this clinical success are not well understood.MethodsThe authors utilized a diabetic murine splinted excisional wound model to investigate the effects of HR-ADM application on wound closure.ResultsThe authors demonstrate that application of HR-ADM served as a dermal scaffold and promoted rapid re-epithelialization and keratinocyte proliferation, resulting in accelerated wound closure while minimizing granulation tissue formation. HR-ADM-applied wounds also demonstrated evidence of cellular infiltration, neovascularization and collagen remodeling by the host organism.ConclusionsThese data suggest that HR-ADM supports epidermal closure in delayed healing wounds and remodeling of the matrix into host tissue, lending further support to the clinical success of HR-ADM described in clinical reports.  相似文献   

11.
The authors studied the effect of CO2 laser with an energy density ranging from 0.1 to 300 mVt/cm2 on reparative regeneration of experimental wounds. The criteria of the efficacy of laser therapy were the wound surface area, the surface of the necrotic area, cellular composition and the content of collagen and glycosaminoglycans in the granulation tissue. Laser radiation with an energy density of 0.5 and 4 mVt/cm2 and exposure of 2 min appeared to produce the most beneficial effect on reparative regeneration.  相似文献   

12.
The technique of epidermal cell culture developed by Green and colleagues made a breakthrough in the treatment of massive wounds in vivo with grown cells in vitro. In the past two decades, progress of culture methods and clinical practice have been made and now it is possible to treat extensive skin defect with large amounts of cultured epithelium. Since 1985, we have been successfully used cultured epidermis as autografts for the permanent coverage of full-thickness burn wounds or excised burn scars, giant nevi, tattoos and so on. Furthermore, cultured epidermis has been available as allografts to promote the healing of chronic skin ulcers or deep dermal burn. In this paper we describe our clinical experience of cultured epithelium grafting for the treatment of wounds and predict new trial of wound management and regeneration based on tissue engineering concept.  相似文献   

13.
Recent investigations have reported contradictory results on the influence of low-power laser light on wound healing. Low-power laser with a power output of 250 mW and an emitted laser light of 670 nm have been insufficiently investigated to date. The effect of a 250-mW/670-nm laser light on the healing of burning wounds in rats was investigated. Thirty rats were burned on both flanks. One wound was irradiated with 670-nm laser light (2 J/cm2), whereas the other side remained untreated. Macroscopic evaluation of the wounds was performed daily; 10, 20, and 30 days after burning, 10 rats were killed and the wounds histologically evaluated. Neither macroscopic nor histologic examination of the irradiated wound showed accelerated wound healing when compared with control wounds. In the present study, irradiation of burns with a 250-mW/670-nm laser light produced no beneficial effects on wound-healing processes.  相似文献   

14.
In this study in 90 rats the measured rate of healing, pO2 in sites of postoperative scar and histological specimen of identical excisional wounds produced by CO2-laser, scalpel and combination are compared. The data of healing laser wounds via scalpel ones show slow laser wound healing. We explain, this by inhibition of the inflammation phase due to diminishing macrophages migration into the wound. pO2 data in postoperative scar after laser and scalpel wounds show that laser thermal alteration does not influence CO2 regimen in the scar.  相似文献   

15.
Mycobacterium ulcerans infections were found in 11 koalas (Phascolarctos cinereus) between 1980 and 1985, in a population of approximately 200 koalas on Raymond Island in southeastern Australia. Ulcers caused by the infection occurred on the face, forearm, rump, groin and footpads. Seven koalas had multiple ulcers. All the infected animals were mature (age classes 4, 5 and 6), and eight were male. The distribution of ulcers corresponded with the distribution of wounds in a sample of 87 koalas. Many of these wounds were associated with social behaviour.  相似文献   

16.
Wound healing in the skin is a complex biological process in which numerous types of cells, cytokines, growth factors, proteases and extracellular matrix components act in concert to restore the integrity of injured tissue. Cultivated allogenic human keratinocytes have been used for the treatment of various skin defects like burnwounds, surgical wounds, in exfoliative skin diseases and chronic wounds. A new method for wound healing enhancement in leg ulcers using cultured allogenic keratinocytes suspended in fibrin glue and used in spray technique is introduced. Allogenic keratinocytes are supposed to enhance granulation tissue production and to stimulate reepithelisation due to their release of growth factors and thus are able to recreate an active wound. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

17.
Chronic wounds, such as venous ulcers, are characterized by physiological impairments manifested by delays in healing, resulting in severe morbidity. Surgical debridement is routinely performed on chronic wounds because it stimulates healing. However, procedures are repeated many times on the same patient because, in contrast to tumor excision, there are no objective biological/molecular markers to guide the extent of debridement. To develop bioassays that can potentially guide surgical debridement, we assessed the pathogenesis of the patients' wound tissue before and after wound debridement. We obtained biopsies from three patients at two locations, the nonhealing edge (prior to debridement) and the adjacent, nonulcerated skin of the venous ulcers (post debridement), and evaluated their histology, biological response to wounding (migration) and gene expression profile. We found that biopsies from the nonhealing edges exhibit distinct pathogenic morphology (hyperproliferative/hyperkeratotic epidermis; dermal fibrosis; increased procollagen synthesis). Fibroblasts deriving from this location exhibit impaired migration in comparison to the cells from adjacent nonulcerated biopsies, which exhibit normalization of morphology and normal migration capacity. The nonhealing edges have a specific, identifiable, and reproducible gene expression profile. The adjacent nonulcerated biopsies have their own distinctive reproducible gene expression profile, signifying that particular wound areas can be identified by gene expression profiling. We conclude that chronic ulcers contain distinct subpopulations of cells with different capacity to heal and that gene expression profiling can be utilized to identify them. In the future, molecular markers will be developed to identify the nonimpaired tissue, thereby making surgical debridement more accurate and more efficacious.  相似文献   

18.
Chronic or non-healing skin wounds present an ongoing challenge in advanced wound care, particularly as the number of patients increases while technology aimed at stimulating wound healing in these cases remains inefficient. Mesenchymal stem cells (MSCs) have proved to be an attractive cell type for various cell therapies due to their ability to differentiate into various cell lineages, multiple donor tissue types, and relative resilience in ex-vivo expansion, as well as immunomodulatory effects during transplants. More recently, these cells have been targeted for use in strategies to improve chronic wound healing in patients with diabetic ulcers or other stasis wounds. Here, we outline several mechanisms by which MSCs can improve healing outcomes in these cases, including reducing tissue inflammation, inducing angiogenesis in the wound bed, and reducing scarring following the repair process. Approaches to extend MSC life span in implant sites are also examined.  相似文献   

19.
Under general anesthesia and sterile conditions, incision wound was induced in the hard palate mucosa of adult male mice. The wounds of groups 1 and 2 were irradiated daily with He-Ne laser at 3 and 7.5 J/cm2 for 120 and 300 s, respectively, while the incision wound of group 3 not exposed served as controls. On day 3 of injury, the laser-treated wounds contained significantly lower neutrophils than the wounds in the control group. By day 7 after injury, the laser-treated wounds contained significantly more fibroblasts and at the same time contained significantly fewer macrophages. In conclusion, an acceleration of the wound healing process of experimental wounds in the hard palate mucosa of mice at low-level laser therapy with a He-Ne laser at energy densities of 3 and 7.5 J/cm2 was observed.  相似文献   

20.
Lucigenin-enhanced chemiluminescence (LcCL) allows one to investigate the reactions of superoxide anion radical (*O2-) generated by mitochondria and is applied to study the superoxide production in enzymatic and membrane systems by isolated mitochondria and cells, and in whole organs. The application of lucigenin-enhanced chemiluminescence to estimate the respiration of human tissues involves the use of small tissue pieces, which can be obtained, for instance, by biopsia; however, no systematic investigations have been performed on these objects. In the present paper, a comparative study of lucigenin-enhanced chemiluminescence of tissues isolated from different organs of the rat was carried out to elucidate its dependence on the extent of tissue defragmentation, storage time, and access for oxygen. It was shown that the addition of lucigenin to a piece of tissue, a suspension of fine tissue fragments, and homogenates greatly enhanced chemiluminescence, and a whole piece of tissue possessed a much lesser (by 1-1.5 order of magnitude) intensity of chemiluminescence than homogenate or gruel. In the absence of stirring of the surrounding solution, the lucigenin-enhanced chemiluminescence of tissue quickly decreased, apparently due to a decrease in the level of oxygen in the tissue, as the result of its consumption. The chemiluminescence consisted of two components: a lucigenin-dependent and lucigenin-independent one (intrinsic chemiluminescence). Thus, the tissue was a source of lucigenin-enhanced chemiluminescence, and this luminescence was observed only at a sufficient access for oxygen. The lucigenin-independent component did not practically depend on oxygen and was determined by the components coming out of the tissue into the surrounding solution. Nitric oxide (NO) inhibited chemiluminescence as its concentration increased and did not affect considerably the rate of oxygen consumption by the tissue. The results obtained allow one to conclude that lucigenin can be used as a rather effective chemiluminescent probe for the production of superoxide radicals by tissue pieces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号