首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Several substances related to the neurodegenerative diseases of Alzheimer and Parkinson, such as hydrogen peroxide, tumor necrosis factor alpha, dopamine and beta-amyloid peptide 1-42, have been shown to induce apoptosis in tumoral cell lines and rat neurons but not in human neurons. Moreover, the role of mitochondria (membrane potential) during neuronal apoptosis is still a matter of debate. We present here, for the first time, in cultured human cortical neurons that the DNA fragmentation induced by these substances was preceded by a decrease of the mitochondrial membrane potential. We have also examined the antiapoptotic effect of the antioxidants glutathione, N -acetyl-cysteine and ascorbic acid. All these antioxidants inhibited the apoptosis induced by hydrogen peroxide, tumor necrosis factor alpha, dopamine and beta-amyloid peptide 1-42, since they were able to inhibit completely the mitochondrial membrane potential depolarization and the DNA fragmentation.  相似文献   

2.
The neurotoxic effects and influence of beta-amyloid peptide (Aβ)1–42 on membrane lipids and nicotinic acetylcholine receptors (nAChRs) in human SH-SY5Y neuroblastoma cells were investigated in parallel. Exposure of the cultured cells to varying concentrations of Aβ1–42 evoked a significantly decrease in cellular reduction of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5,diphenyl tetrazolium bromide), together with enhanced lipid peroxidation and protein oxidation. Significant reductions in the total contents of phospholipid and unbiquinone-10, as well as in the levels of the 3 and 7 subunit proteins of nAChRs were detected in cells exposed to Aβ1–42. In contrast, such treatment had no effect on the total cellular content of cholesterol. Among these alterations, increased lipid peroxidation and decreased levels of cellular phospholipids were most sensitive to Aβ1–42, occurring at lower concentrations. In addition, when SH-SY5Y cells were pretreated with the antioxidant Vitamin E, prior to the addition of Aβ1–42, these alterations in neurotoxicity, oxidative stress, composition of membrane lipids and expression of nAChRs were partially prevented. These findings suggest that stimulation of lipid peroxidation by Aβ may be involved in eliciting the alterations in membrane lipid composition and the reduced expression of nAChRs associated with the pathogenesis of AD.  相似文献   

3.
Calpains are calcium-regulated cysteine proteases that have been implicated in the regulation of cell death pathways. Here, we used our calpain-1 null mouse model to evaluate the function of calpain-1 in neural degeneration following a rodent model of traumatic brain injury. In vivo, calpain-1 null mice show significantly less neural degeneration and apoptosis and a smaller contusion 3 days post-injury than wild type littermates. Protection from traumatic brain injury corroborated with the resistance of calpain-1 neurons to apoptosis induced by oxidative stress. Biochemical analysis revealed that caspase-3 activation, extracellular calcium entry, mitochondrial membrane permeability, and release of apoptosis-inducing factor from mitochondria are partially blocked in the calpain-1 null neurons. These findings suggest that the calpain-1 knock-out mice may serve as a useful model system for neuronal protection and apoptosis in traumatic brain injury and other neurodegenerative disorders in which oxidative stress plays a role.  相似文献   

4.
The interactions of proteins with reactive oxygen species (ROS) may result in covalent modifications of amino acid residues in proteins, formation of protein-protein cross-linkages, and oxidation of the protein backbone resulting in protein fragmentation. In an attempt to elucidate the products of the metal-catalyzed oxidation of the human (H) and mouse (M) (1-10H), (1-10M), (1-16H) and (1-16M) fragments of beta-amyloid peptide, the high performance liquid chromatography (HPLC) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) methods and Cu(II)/H(2)O(2) as a model oxidizing system were employed. Peptide solution (0.50 mM) was incubated at 37 degrees C for 24 h with metal:peptide:H(2)O(2) molar ratio 1:1:1 for the (1-16H), (1-16M) fragments, and 1:1:2 for the (1-10H), (1-10M) peptides in phosphate buffer, pH 7.4. Oxidation targets for all peptide studied are the histidine residues coordinated to the metal ions. For the (1-16H) peptide are likely His(13) and/or His(14), and for the (1-16M) fragment His(6) and/or His(14), which are converted to 2-oxo-His. Metal-binding residue, the aspartic acid (D(1)) undergoes the oxidative decarboxylation and deamination to pyruvate. The cleavages of the peptide bonds by either the diamide or alpha-amidation pathways were also observed.  相似文献   

5.
Tumor necrosis factor (TNF) and cytotoxic T lymphocytes, which utilize Fas to induce apoptosis in target cells, are known to play a critical role in the host defense against viral infection. In this study, the Epstein-Barr virus BHRF1 protein was stably expressed in intestine 407 cells which were susceptible to cell death mediated through both the TNF receptor and Fas. WST-1 conversion assays and acridine orange staining showed that vector-transfected control cells were killed by TNF-alpha or anti-Fas antibody in a dose-dependent manner, whereas BHRF1-expressing cells were resistant to apoptosis induced by these mediators. DNA fragmentation, a characteristic of apoptosis induced by TNF-alpha and the anti-Fas antibody, was suppressed in BHRF1-expressing cells. These results indicate that the BHRF1 protein protects cells from apoptosis mediated by the TNF receptor and Fas. The role of BHRF1 as an inhibitor of cytokine-induced apoptosis during the Epstein-Barr virus lytic cycle in vivo is discussed.  相似文献   

6.
Interleukin 1 alpha (IL-1 alpha), tumor necrosis factor alpha (TNF alpha), granulocyte-colony-stimulating factor (G-CSF), and granulocyte-macrophage colony-stimulating factor (GM-CSF) are molecularly distinct cytokines acting on separate receptors. The release of these cytokines can be concomitantly induced by the same signal and from the same cellular source, suggesting that they may cooperate. Administered alone, human recombinant (hr)IL-1 alpha and hrTNF alpha protect lethally irradiated mice from death, whereas murine recombinant GM-CSF and hrG-CSF do not confer similar protection. On a dose basis, IL-1 alpha is a more efficient radioprotector than TNF alpha. At optimal doses, IL-1 alpha is a more radioprotective cytokine than TNF alpha in C57BL/6 and B6D2F1 mice and less effective than TNF alpha in C3H/HeN mice, suggesting that the relative effectiveness of TNF alpha and IL-1 alpha depends on the genetic makeup of the host. Administration of the two cytokines in combination results in additive radioprotection in all three strains. This suggests that the two cytokines act through different radioprotective pathways and argues against their apparent redundancy. Suboptimal, nonradioprotective doses of IL-1 alpha also synergize with GM-CSF or G-CSF to confer optimal radioprotection, suggesting that such an interaction may be necessary for radioprotection of hemopoietic progenitor cells.  相似文献   

7.
Fumonisin B1 (FB1), the most potent of the fumonisin mycotoxins, is a carcinogen and causes a wide range of species-specific toxicoses. FB1 modulates the activity of protein kinase C (PKC), a family of phospholipid-dependent serine/threonine kinases that play important role in modulating a variety of biologic responses ranging from regulation of cell growth to cell death. Although it has been demonstrated that FB1 induces apoptosis in many cell lines, the precise mechanism of apoptosis is not fully understood. In this study, we investigated the membrane localization of various PKC isoforms, PKC enzyme activity, and its downstream targets, namely nuclear factor-kappa B (NF-kappaB), tumor necrosis factor alpha (TNFalpha), and caspase 3, in porcine renal epithelial (LLC-PK1) cells. FB1 repressed cytosol to membrane translocation of PKC-alpha, -delta, -epsilon, and -zeta isoforms over 24-72 h. The FB1-induced membrane PKC repression was corroborated by a concentration-dependent decrease in total PKC activity. Exposure of cells to phorbol 12-myristate 13-acetate (PMA) for this duration also resulted in repressed PKC membrane localization and activity comparable to FB1. Exposure of cells to FB1 (10 microM) was associated with inhibition of cytosol to nuclear translocation of NF-kappaB and NF-kappaB-DNA binding at 72 h. The expression of TNFalpha was significantly inhibited at 24 and 48 h in response to 1 and 10 microM FB1. Increased caspase 3 activity was observed in LLC-PK1 cells exposed to > or =1 microM FB1 at 48 h. PMA also increased the caspase 3 activity at 24 and 48 h. Results suggest that FB1-induced apoptosis involves the activation of caspase 3, which is associated with the repression of PKC and possibly its down-stream effectors, NF-kappaB and TNFalpha.  相似文献   

8.
J E Merrill  Y Koyanagi    I S Chen 《Journal of virology》1989,63(10):4404-4408
Cytokines such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF alpha) are important in normal immune processes. In this study, we demonstrate that human immunodeficiency virus type 1 (HIV-1) virions induce normal peripheral blood mononuclear phagocytes to produce both IL-1 and TNF within a few hours after their exposure to virus. The induction of these cytokines by HIV-1 does not require a productive infection. Blocking studies with soluble CD4 indicate that the effect is mediated through the CD4 molecule. In addition, the treatment of mononuclear phagocytes with OKT4A monoclonal antibody mimics the effects of HIV-1. Thus, these results indicate that induction of IL-1 and TNF alpha can occur via signals mediated through the CD4 molecule on mononuclear phagocytes. TNF has been shown by other investigators to induce HIV-1 expression. Therefore, TNF alpha may play a role in autocrine and paracrine regulation of HIV-1 expression. In addition, the induction of IL-1 and TNF by HIV-1 may also contribute to some of the neurologic and physiologic disorders associated with acquired immunodeficiency syndrome.  相似文献   

9.
10.
Transforming growth factor beta(2) (TGF-beta(2)), a growth regulator of human lens epithelial cells (HLECs), also regulates the death of these cells. Dose-response analysis showed that the TGF-beta(2) concentration needed to induce HLECs death (100 pg/ml) was 10 times that needed to inhibit growth in these cells (10 pg/ml). TGF-beta(2)-induced apoptosis in HLECs was preceded by an induction of reactive oxygen species (ROS) and a decrease in glutathione in the intracellular content, indicating that this factor induces oxidative stress in HLECs. Studies performed to analyze the levels of c-fos mRNA, a gene whose expression is modulated by the redox state, demonstrated that only high, apoptotic concentrations of TGF-beta(2) (100 pg/ml) produced an increase in the mRNA levels of this gene, the level of induction being similar to that found when cells were incubated in the presence of hydrogen peroxide. Finally, the cell death induced by TGF-beta(2) in HLECs was partially blocked by radical scavengers, which decreased the percentage of apoptotic cells, whereas these agents did not modify the growth-inhibitory effect elicited by TGF-beta(2) in these cells. The results presented in this paper provide evidence for the involvement of an oxidative process in the apoptosis elicited by TGF-beta(2) in HLECs.  相似文献   

11.
Tumor necrosis factor (TNF) can induce caspase-dependent (apoptotic) and caspase-independent pathways to programmed cell death (PCD). Here, we demonstrate that stable transfection of a cDNA encompassing the C-terminal apoptosis inhibitory domain (AID) of FE65-like protein 1 into mouse L929 fibrosarcoma cells protects from caspase-independent as well as from apoptotic PCD induced by TNF. We show that the AID does not protect from caspase-independent PCD elicited by 1-methyl-3-nitro-1-nitrosoguanidine, suggesting that the AID might prevent cell death by affecting assembly of the death inducing signaling complex of the 55 kDa TNF receptor or clustering of the receptor itself. Interference with caspase-independent PCD mediated by the sphingolipid ceramide further increases protection conferred by the AID, as does the antioxidant butylated hydroxyanisole, implicating ceramide and reactive oxygen species as potential factors interacting with caspase-independent PCD regulated by the AID.  相似文献   

12.
The cytokine-inducing activities of fungal polysaccharides were examined in human monocytes in culture, with special reference to CD14 and Toll-like receptors (TLRs). Tumor necrosis factor alpha (TNF-alpha) production by monocytes was markedly induced in a dose-dependent manner upon stimulation with cell walls from Candida albicans and mannan from Saccharomyces cerevisiae and C. albicans, although relatively high concentrations (10 to 100 microg/ml) of stimulants were required for activation as compared with the reference lipopolysaccharide (LPS) (1 to 10 ng/ml). The yeast form C. albicans and its mannan and cell wall fractions exhibited higher TNF-alpha production than respective preparations from the hyphal form. Only slight TNF-alpha production was induced by the S. cerevisiae glucan. The TNF-alpha production triggered by reference LPS and purified fungal mannans required the presence of LPS-binding protein (LBP), and these responses were inhibited by anti-CD14 and anti-TLR4 antibodies, but not by anti-TLR2 antibody. In contrast to the activity of LPS, the activity of purified S. cerevisiae mannan was not inhibited by polymyxin B. These findings suggested that the mannan-LBP complex is recognized by CD14 on monocytes and that signaling through TLR4 leads to the production of proinflammatory cytokines in a manner similar to that induced by LPS.  相似文献   

13.
Adipocytes can function as endocrine cells secreting a variety of adipocytokines including tumor necrosis factor (TNF)-alpha. Treatment of cultured mouse 3T3-L1 preadipocytes with TNF-alpha induced apoptosis, as was evident from increases in nuclear condensation and caspase-3 activity, but differentiated adipocytes during the maturation phase showed resistance to apoptosis by TNF-alpha. Antioxidants effectively reduced TNF-alpha-induced apoptosis in preadipocytes, indicating the involvement of reactive oxygen species. Exposure of preadipocytes to calcium ionophore A23187 reduced TNF-alpha-induced apoptosis, which was accompanied by increased production of prostaglandins (PGs) E2 and PGF 2alpha. TNF-alpha preferentially promoted gene expression of cyclooxygenase (COX)-2 without affecting that of COX-1. Consistently, NS-398, a COX-2 inhibitor, stimulated TNF-alpha-induced apoptosis, which was reversed by exogenous PGE2 and PGF 2alpha. These results indicate that endogenous PGE2 and PGF 2alpha synthesized by preadipocytes through the induction of COX-2 can serve as anti-apoptotic factors against apoptosis by TNF-alpha.  相似文献   

14.
The ovarian steroids, estrogen and progesterone, regulate cellular and molecular changes which occur in the uterus during the estrous cycle. Cycles of protein synthesis, cell proliferation and differentiation, and cell death are the direct results of changes in hormone concentration. To explore the possibility that cytokines, which stimulate proliferation and differentiation of numerous types of cells, might be associated with those cyclic changes, the production of IL-1, IL-6, and TNF alpha was examined in the mouse uterus. Cytokine mRNA expression, bioactivity, and immunoreactivity were quantitated during the estrous cycle, following ovariectomy and exposure of ovariectomized mice to estrogen and progesterone. IL-1, IL-6, and TNF alpha mRNA was detected, and mRNA levels for each of the cytokines varied with the stage of the cycle. Cytokine bioactivity was expressed throughout the cycle, but levels of each cytokine were highest during proestrus and/or estrus. Immunoreactivity paralleled bioactivity. Uterus from ovariectomized mice contained little or no cytokine activity, and systemic administration of estrogen or progesterone resulted in the induction of IL-1 alpha and IL-1 beta mRNA expression. Significant amounts of IL-6 and TNF alpha mRNA appeared only following the exposure of ovariectomized mice to estrogen plus progesterone. Cytokine bioactivity and immunoreactivity also appeared following the administration of estrogen and/or progesterone. The highest activity levels for each cytokine were observed following the injection of estrogen plus progesterone. Cyclic expression of IL-1, IL-6, and TNF alpha in the uterus and their apparent regulation by estrogen and progesterone raise the possibility that cytokines and factors which are induced by cytokines are part of the regulatory process which is induced by ovarian hormones in the uterus of reproductive age females.  相似文献   

15.
C Tornatore  A Nath  K Amemiya    E O Major 《Journal of virology》1991,65(11):6094-6100
Human immunodeficiency virus type 1 (HIV-1) infection of the brain has been associated with a severe dementing illness in children and adults. However, HIV-1 antigens are most frequently found in macrophages and microglial cells. To determine the extent of susceptibility of neuroglial cells to infection, the HIV-1 genome was introduced into cells cultured from human fetal brain tissue. Astroglial cells rapidly transcribed the viral genome producing high levels of p24 protein and infectious virions which peaked two to three days posttransfection. Thereafter HIV-1 genome expression progressively diminished and a persistent phase of infection developed during which neither virus nor viral proteins could be demonstrated by immunodetection methods. Cocultivation with CD4+ T cells at any time during the persistent infection resulted in resumption of p24 synthesis and virus multiplication. The release of persistence did not require direct cell-cell contact between the glial and T cells, since separation of the two cell types across a permeable membrane resulted in a delayed but similar resumption of p24 synthesis and virus multiplication. The persistently infected glial cells could also be stimulated to produce viral p24 protein if either tumor necrosis factor alpha or interleukin-1 beta was added to the medium without T cells present. These results suggest that astrocytes may serve as an undetected reservoir for HIV-1 and disseminate the virus to other susceptible cells in the brain upon triggering by some cellular or biochemical signal.  相似文献   

16.
The signal transduction pathways triggering apoptotic mechanisms after ischemia/reperfusion may involve TNF- secretion, ceramide generation, and initiation of lipid peroxidation. In the present study involvement of the TNF-, sphingomyelin cycle, and lipid peroxidation in the initiation of apoptosis induced in liver cells by ischemia and reperfusion was investigated. Wistar rats were subjected to total liver ischemia (for 15, 30 min, and 1 h) followed by subsequent reperfusion. Ischemia caused sharp decrease of neutral sphingomyelinase activity. Activity of acidic sphingomyelinase initially decreased (during 15-30 min ischemia) but then increased (after 1 h of ischemic injury). Reperfusion of the ischemic lobe of the liver caused increase in neutral sphingomyelinase activity and decrease in acidic sphingomyelinase activity. A small amount of TNF- detected by immunoblotting analysis was accumulated in the ischemic area of liver rapidly and the content of this cytokine dramatically increased after the reperfusion. TNF- is known to induce free radical production. We found that the accumulation of TNF and increase of sphingomyelinase activity during the development of ischemic/reperfusion injury coincided with increase in content of lipid peroxidation products (conjugated dienes) and DNA degradation detected by gel electrophoresis. Recently it was shown that superoxide radicals are used as signaling molecules within the sphingomyelin pathway. This suggests the existence of cross-talk between the oxidation system and the sphingomyelin cycle in cells, which may have important implications for the initial phase and subsequent development of post-ischemic injury.  相似文献   

17.
18.
Apolipoprotein M (apoM) is a recently discovered human apolipoprotein predominantly present in high-density lipoprotein (HDL) in plasma, exclusively expressed in liver and in kidney. The function of apoM is yet unknown. The human apoM gene is located in the major histocompatibility complex class III region on chromosome 6. Because many genes located in this region are related to the immune response, we have investigated whether apoM might also be involved in the host inflammatory response. In this study we examined effects of the platelet-activating factor (PAF), tumor necrosis factor (TNF-alpha), and interleukin-1alpha (IL-1alpha) on apoM expression in a hepatoblastoma cell line, HepG2 cells. PAF significantly enhanced the apoM mRNA levels and the secretion of apoM in HepG2 cell cultures. The enhancement of apoM secretion is seen at a low concentration of PAF (2 ng/ml), whereas a high concentration of PAF increases both the apoM mRNA levels and apoM secretion. Neither TNF-alpha nor IL-1alpha influenced apoM mRNA level and secretion. Furthermore, Lexipafant, a PAF-receptor (PAF-R) antagonist significantly suppressed the mRNA level and the secretion of apoM in HepG2 cells in a dose-dependent manner. Neither PAF nor Lexipafant influenced the mRNA levels and the secretion of apoA-I, apoB and apoE in HepG2 cells, indicating that the effects of PAF or Lexipafant on the apoM production on hepatic cells are selective for apoM. The cellular mechanism of the effects of PAF or Lexipafant on apoM metabolism requires further investigations.  相似文献   

19.
Neuronal nicotinic acetylcholine receptors (nAChRs) are thought to be involved in the pathogenesis of Alzheimer's disease (AD). Interestingly, in the brains of patients with this disease, losses of several subtypes of nAChRs on neurons have been reported, while an increase in alpha7 nAChRs was recently detected in the astrocytes. However, little is presently known about the expressions of individual subunits of nAChR on rat astrocytes in primary culture or the possible influence of exposure to beta-amyloid peptide (Abeta), a neuropathological hallmark of AD, on this expression. Thus, in the present investigation the levels of individual nAChR subunits on primary rat astrocytes and the possible direct influence of Abetas on the receptors were examined by RT-PCR, Western blotting, monitoring intracellular free calcium and immunohistochemistry. The alpha4, alpha7, beta2 and beta3 subunits and related calcium channel responses were found in these cells, whereas neither alpha2 nor alpha3 could be detected. Elevation in the levels of alpha7, alpha4 and beta2 mRNAs and proteins were observed in astrocytes exposed to 0.1-100nM Abeta(1-42). In contrast, incubation with 1muM Abeta(1-42) or Abeta(35-25) did not affect these levels. We propose that the enhanced expression of alpha7, alpha4 and beta2 nAChRs by astrocytes stimulated directly by nanomolar concentrations of Abeta(1-42) might be related to ongoing defensive or compensative mechanisms.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号