首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Multipotent stem cells must generate various differentiated cell types in correct number and sequence during neural development. In the peripheral nervous system (PNS), this involves the formation of postmigratory progenitor cell types which maintain multipotency and are able to give rise to neural and non-neural cells in response to instructive growth factors. We propose that fate restrictions in such progenitor cells are controlled by the combinatorial interaction of different extracellular signals, including community effects in response to both neurogenic and gliogenic factors. In addition, distinct progenitor cell types display intrinsic differences which modulate their response to the extracellular environment. Thus, a progenitor cell is apparently able to integrate multiple intrinsic and extrinsic cues and thereby to choose fates appropriate for its location. Fate analysis of genetically modified progenitor cells will help to identify the molecules involved. This approach appears promising given the identification of multipotent progenitor cells from the mouse PNS and the availability of genetics in the mouse system.  相似文献   

3.
4.
The pancreas is derived from a pool of multipotent progenitor cells (MPCs) that co-express Pdx-1 and Ptf1a. To more precisely define how the individual and combined loss of Pdx-1 and Ptf1a affects pancreatic MPC specification and differentiation we derived and studied mice bearing a novel Ptf1aYFP allele. While the expression of Pdx-1 and Ptf1a in pancreatic MPCs coincides between E9.5 and 12.5 the developmental phenotypes of Pdx-1 null and Pdx-1; Ptf1a double null mice are indistinguishable, and an early pancreatic bud is formed in both cases. This finding indicates that Pdx-1 is required in the foregut endoderm prior to Ptf1a for pancreatic MPC specification. We also found that Ptf1a is neither required for specification of Ngn3-positive endocrine progenitors nor differentiation of mature β-cells. In the absence of Pdx-1 Ngn3-positive cells were not observed after E9.5. Thus, in contrast to the deletion of Ptf1a, the loss of Pdx-1 precludes the sustained Ngn3-based derivation of endocrine progenitors from pancreatic MPCs. Taken together, these studies indicate that Pdx-1 and Ptf1a have distinct but interdependent functions during pancreatic MPC specification.  相似文献   

5.
Expression of cytokines by multipotent neural progenitor cells   总被引:5,自引:0,他引:5  
Klassen HJ  Imfeld KL  Kirov II  Tai L  Gage FH  Young MJ  Berman MA 《Cytokine》2003,22(3-4):101-106
Recent work with mammalian neural stem cells has highlighted the role of cytokine signaling in the proliferation and differentiation of these multipotent cells. While the responsiveness of neural progenitors to exogenously applied growth factors has been demonstrated in vivo as well as in vitro, little attention has been given to the production of cytokines by these cells. Here we use immunocytochemistry, RT-PCR, and ELISA to show that under standard growth conditions multipotent neural progenitor cells from humans express multiple cytokines including IL-1alpha, IL-1beta, IL-6, TGF-beta1, TGF-beta2, TNF-alpha, but not IL-2, IL-4, or IFN-gamma. Neural progenitor cells from rat and mouse express some, but not all, of these cytokines under similar conditions. While the function of cytokine expression by neural progenitor cells remains to be elucidated, these signaling molecules are known to be involved in neural development and may play a role in the activation of quiescent stem cells by a variety of pathological processes.  相似文献   

6.
7.
Context-dependent foraging decisions in rufous hummingbirds   总被引:6,自引:0,他引:6  
A core assumption implicit in economic models of animal choice is that subjects assign absolute utilities to options that are independent of the type and number of alternatives available. Humans sometimes appear to violate this assumption and employ relative, as opposed to absolute, currencies when making choices. Recent evidence suggests that animals too might sometimes employ relative choice mechanisms. We tested this idea by measuring the foraging preferences of rufous hummingbirds (Selasphorus rufus) faced with choices analogous to those in which human use of relative currencies is evident. The birds experienced three treatments: a binary choice between two artificial flower types designated concentration (20 microl, 40% sucrose solution) and volume (40 microl, 20%), and two trinary treatments in which a third decoy option (either concentration decoy: 10 microl, 30% or volume decoy: 30 microl, 10%) was added to the set. The birds' preferences differed significantly across the three treatments. In the trinary treatments, the effect of the decoy options was to increase the preference for the option that dominated the decoy. These results are similar to those reported in the human choice literature, and are compatible with the hummingbirds using a relative evaluation mechanism in decision making.  相似文献   

8.
Neurotrophins, via activation of Trk receptor tyrosine kinases, serve as mitogens, survival factors and regulators of arborization during retinal development. Brain-derived neurotrophic factor (BDNF) and TrkB regulate neuronal arborization and survival in late retinal development. However, TrkB is expressed during early retinal development where its functions are unclear. To assess TrkB/BDNF actions in the early chick retina, replication-incompetent retroviruses were utilized to over-express a dominant negative truncated form of TrkB (trunc TrkB), or BDNF and effects were assessed at E15. Clones expressing trunc TrkB were smaller than controls, and proliferation and apoptosis assays suggest that decreased clone size correlated with increased cell death when BDNF/TrkB signaling was impaired. Analysis of clonal composition revealed that trunc TrkB over-expression decreased photoreceptor numbers (41%) and increased cell numbers in the middle third of the inner nuclear layer (INL) (23%). Conversely, BDNF over-expression increased photoreceptor numbers (25%) and decreased INL numbers (17%). Photoreceptors over-expressing trunc TrkB demonstrated no increase in apoptosis nor abnormalities in lamination suggesting that TrkB activation is not required for photoreceptor cell survival or migration. These studies suggest that TrkB signaling regulates commitment to and/or differentiation of photoreceptor cells from retinal progenitor cells, identifying a novel role for TrkB/BDNF in regulating cell fate decisions.  相似文献   

9.
The definitive endoderm is the embryonic germ layer that gives rise to the budding endodermal organs including the thyroid, lung, liver and pancreas as well as the remainder of the gut tube. DiI fate mapping and whole embryo culture were used to determine the endodermal origin of the 9.5 days post coitum (dpc) dorsal and ventral pancreas buds. Our results demonstrate that the progenitors of each bud occupy distinct endodermal territories. Dorsal bud progenitors are located in the medial endoderm overlying somites 2-4 between the 2 and 11 somite stage (SS). The endoderm forming the ventral pancreas bud is found in 2 distinct regions. One territory originates from the left and right lateral endoderm caudal to the anterior intestinal portal by the 6 SS and the second domain is derived from the ventral midline of the endoderm lip (VMEL). Unlike the laterally located ventral foregut progenitors, the VMEL population harbors a multipotent progenitor that contributes to the thyroid bud, the rostral cap of the liver bud, ventral midline of the liver bud and the midline of the ventral pancreas bud in a temporally restricted manner. This data suggests that the midline of the 9.5 dpc thyroid, liver and ventral pancreas buds originates from the same progenitor population, demonstrating a developmental link between all three ventral foregut buds. Taken together, these data define the location of the dorsal and ventral pancreas progenitors in the prespecified endodermal sheet and should lead to insights into the inductive events required for pancreas specification.  相似文献   

10.
11.
Putative neural stem cells have been identified within the enteric nervous system (ENS) of adult rodents and cultured from human myenteric plexus. We conducted studies to identify neural stem cells or progenitor cells within the submucosa of adult human ENS. Jejunum tissue was removed from adult human subjects undergoing gastric bypass surgery. The tissue was immunostained, and confocal images of ganglia in the submucosal plexus were collected to identify protein gene product 9.5 (PGP 9.5) - immunoractive neurons and neuronal progenitor cells that coexpress PGP 9.5 and nestin. In addition to PGP-9.5-positive/nestin-negative neuronal cells within ganglia, we observed two other types of cells: (1) cells in which PGP 9.5 and nestin were co-localized, (2) cells negative for both PGP 9.5 and nestin. These observations suggest that the latter two types of cells are related to a progenitor cell population and are consistent with the concept that the submucosa of human adult ENS contains stem cells capable of maintenance and repair within the peripheral nervous system.  相似文献   

12.
13.
Neural crest cells represent a unique link between axial and peripheral regions of the developing vertebrate head. Although their fates are well catalogued, the issue of their role in spatial organization is less certain. Recent data, particularly on patterns of expression of Hox genes in the hindbrain and crest cells, have raised anew the debate whether a segmental arrangement is the basis for positional specification of craniofacial epithelial and mesenchymal tissues or is but one manifestation of underlying spatial programming processes. The mechanisms of positional specification of sensory neurons derived from the neural crest and placodes are unknown. This review examines the spatial organization of cells and tissues that develop in proximity to sensory neurons; some of these tissues share a common ancestry, others are targets of cranial sensory and motor nerves. All share the necessity of acquiring and expressing site-specific properties in a functionally integrated manner. This integration occurs in part by coordinating patterns of cell migration, as occurs between migrating crest cells and branchial arch myoblasts. Constant rostro-caudal relations are maintained among these precursors as they move dorsoventrally from the hindbrain–paraxial regions to establish branchial arches. During this period the interactions among these and other mesenchymal cells are hierarchical; each cell population differentially integrates its past with cues emanating from new microenvironments. Analyses of tissue interactions indicate that neural crest cells play a dominant role in this scenario. © 1993 John Wiley & Sons, Inc.  相似文献   

14.
The thoracic integument of the adult fruit fly is a relatively simple but highly patterned structure. It is composed of sensory organ cells distributed within a monolayer of epidermal cells. Both cell types are easily detected at the cuticular surface, as each external sense organ forms a sensory bristle and each epidermal cell secretes a small nonsensory hair. Inhibitory cell—cell interactions play a key role in regulating the distribution as well as the formation of the sense organs. This review focuses on the role of these cell—cell interactions in the adoption of alternative cell fates. We also show that Notch, Hairless, and Suppressor of Hairless, three components of this intercellular signaling pathway, exhibit dose-dependent genetic interactions. Finally we address how this intercellular signaling mechanism may be modulated to result in highly reproducible outcomes. © 1996 Wiley-Liss, Inc.  相似文献   

15.
16.
Adult multipotent neural progenitor cells can differentiate into neurons, astrocytes, and oligodendrocytes in the mammalian central nervous system, but the molecular mechanisms that control their differentiation are not yet well understood. Insulin-like growth factor I (IGF-I) can promote the differentiation of cells already committed to an oligodendroglial lineage during development. However, it is unclear whether IGF-I affects multipotent neural progenitor cells. Here, we show that IGF-I stimulates the differentiation of multipotent adult rat hippocampus-derived neural progenitor cells into oligodendrocytes. Modeling analysis indicates that the actions of IGF-I are instructive. Oligodendrocyte differentiation by IGF-I appears to be mediated through an inhibition of bone morphogenetic protein signaling. Furthermore, overexpression of IGF-I in the hippocampus leads to an increase in oligodendrocyte markers. These data demonstrate the existence of a single molecule, IGF-I, that can influence the fate choice of multipotent adult neural progenitor cells to an oligodendroglial lineage.  相似文献   

17.
18.
The principal neural cell types forming the mature central nervous system (CNS) are now understood to be diverse. This cellular subtype diversity originates to a large extent from the specification of the earlier proliferating progenitor populations during development. Here, we review the processes governing the differentiation of a common neuroepithelial cell progenitor pool into mature neurons, astrocytes, oligodendrocytes, ependymal cells and adult stem cells. We focus on studies performed in mice and involving two distinct CNS structures: the spinal cord and the cerebral cortex. Understanding the origin, specification and developmental regulators of neural cells will ultimately impact comprehension and treatments of neurological disorders and diseases.  相似文献   

19.
20.
Spinal ganglia from 4- to 7-day [Stage 23–30; Hamburger and Hamilton (1951) J. Morphol.88, 49–92] chicken embryos were cultured in vitro to investigate the effect of various environmental conditions on cell differentiation. Culture morphology (i.e., degree of dispersion of the explanted ganglia, survival of neurons, and outgrowth of axons) was observed to depend upon several factors including: (1) the age of the explanted ganglia, (2) the presence or absence of nerve growth factor (NGF), and (3) the nature of the substratum on which the cultured tissue resides. These observations enabled us to disturb the association of neurons with the other cells in ganglion cultures and thereby modulate the differentiation of adventitious melanocytes. Thus, in medium permissive for melanogenesis, melanocytes appear when the association between neurons and small stellate nonneuronal cells in the ganglion is disrupted. This disruption is most extensive (1) when young (Stage 26–27, 5-day) ganglia are explanted on plastic substrata, in the initial absence of NGF, and (2) when cells from enzyme-dissociated ganglia are cultured on plastic substrata. In comparable media, pigment cell differentiation is not observed when the association between neurons and small stellate cells is preserved. Such associations tend to endure (1) in developmentally older (Stage 30+, 7- to 8-day) ganglia or (2) when ganglia are cultured on agar or fibroblast substrata. We conclude that loss of association between neurons and the nonneuronal cells in young ganglia is necessary for the latter to undergo melanogenesis in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号