首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In theChrysophyceae as well as in different species ofCryptomonas bilobed chromatophores are present. These chromatophores consist of two large parietal lobes closed to the lateral sides of the cell and joined by a narrow bridge on its dorsal part. A survey of all species with a single bilobed chromatophore is given. Besides, also species with two separate chromatophores have been found. The presence of several chromatophores inCryptomonas cells is doubtful. The morphology of the chromatophores has to be taken into consideration in the taxonomy ofCryptomonas.
  相似文献   

2.
Membrane vesicles have been isolated by a modified procedure from Rhodopseudomonas sphaeroides, grown phototrophically under high light intensity. In addition,chromatophores have been isolated from this organism grown phototrophically with low light intensities.Structural, chemical and functional properties of both preparations have been investigated and compared. The orientation of the membrane preparations has been studied by freeze-etch electron microscopy, the localization of cytochrome c2, and light-driven active transport of amino acids and Ca2+. The results demonstrate that the orientation of the vesicle membrane is the same as the cytoplasmic membrane of intact cells; the membranes in chromatophores, however, have an inverted orientation.On a dry weight basis, the membrane vesicles contain less protein, carotenoids and bacteriochlorophyll and more lipids than do chromatophores. Qualitatively, however, the composition of both preparations is similar.It is concluded that the intracytoplasmic structures from which the chromatophores are derived are structurally and functionally similar to (and most likely continuous with) the cytoplasmic membranes from which the vesicles are derived.  相似文献   

3.
Cytochrome c2 was removed by washing from heavy chromatophores prepared from Rhodopseudomonas capsulata cells. The easy removal of the cytochrome could indicate that it was attached on the outside of the membrane. Therefore, the membrane was probably oriented inside out in relation to the membrane of regular chromatophores, from which cytochrome c2 could not be removed. Washing of the heavy chromatophores caused loss of photphosphorylation activity. The activity was restored to the resolved heavy chromatophores by the supernatant obtained during the washing or by the native cytochrome c2, which was found to be the active component in this supernatant. The activity could not be restored by other c-type cytochromes. Ascorbate, which enhanced photophosphorylation activity in the heavy chromatophores at the optimal concentration of 8 mm, restored this activity to the washed heavy chromatophores, but at an optimum concentration of 50 mm. Cytochrome c2 and dichlorophenol indophenol reduced the optimum of the ascorbate concentration to 7 mm. This might indicate that the effect of ascorbate is mediated through cytochrome c2. Washing the heavy chromatophores caused 70% loss of the light-induced electron transport from ascorbate and from ascorbate-reduced dichlorophenol indophenol to O2. However, this effect was only observed with the lower concentrations of ascorbate and the dye. The activity was restored either by the supernatant obtained from the washing or by various c-type cytochromes, reduced by ascorbate. Washing the heavy chromatophores did not affect succinate oxidation in the dark. It is suggested that cytochrome c2 is one of the cytochromes catalyzing the photosynthetic cyclic electron transport, as has been seen from its high specificity in the reconstitution experiments. Light can induce oxidation of various c-type cytochromes and other redox reagents. However, reduction was specific for cytochrome c2 from Rps. capuslata, since it was the only one which could be both reduced and oxidized as required from a component which is part of a cyclic electron transport chain. It is also suggested that cytochrome c2 was not part of the succinate oxidase system.  相似文献   

4.
The aerobic photooxidations of reduced 2,6-dichlorophenolindophenol and of reaction-center bacteriochlorophyll (P-870) have been investigated in membrane vesicles (chromatophores) isolated from a non-phototrophic Rhodospirillum rubrum strain. In aerobic suspensions of wild-type chromatophores, continuous light elicits an increase of the levels of 2,6-dichlorophenolindophenol and of oxidized P-870, which reach steady-state values shortly after the onset of illumination. In contrast, light induces in mutant suspensions a transient increase of the levels of 2,6-dichlorophenolindophenol and of oxidized P-870, which fall to low steady-state values within a few seconds. These observations suggest that the mutation has altered a redox constituent located on the low-potential side of the photochemical reaction center, between a pool of acceptors and oxygen.Since endogenous cyclic photophosphorylation is catalyzed by mutant chromatophores at normal rates, it appears that the constituent altered by the mutation does not belong to the cyclic electron-transfer chain responsible for photophosphorylation. However, the system which mediates the aerobic photooxidations and the cyclic system are not completely independent: endogenous photophosphorylation is inhibited by oxygen in wild-type chromatophores but not in mutant chromatophores; in addition, the inhibitor of cyclic electron flow, 2-heptyl-4-hydroxyquinoline-N-oxide, enhances the aerobic photooxidation of reduced 2,6-dichlorophenolindophenol by chromatophores from both strains.These results support a tentative branched model for light-driven electron transfer. In that model, the constituent altered in the mutant strain is located in a side electron-transfer chain which connects the cyclic acceptors to oxygen.  相似文献   

5.
The mechanism of light-induced O2 uptake by chromatophores and isolated P-870 reaction center complexes from Rhodospirillum rubrum has been investigated.The process is inhibited by o-phenanthroline and also by an extraction of loosely bound quinones from chromatophores. Vitamin K-3 restored the o-phenanthroline-sensitive light-induced O2 uptake by the extracted chromatophores and stimulated the O2 uptake by the reaction center complexes. It is believed that photooxidase activity of native chromatophores is due to an interaction of loosely bound photoreduced ubiquinone with O2. Another component distinguishable from the loosely bound ubiquinone is also oxidized by O2 upon the addition of detergents (lauryldimethylamine oxide or Triton X-100) to the illuminated reaction center complexes and to the extracted or native chromatophores treated by o-phenanthroline. Two types of photooxidase activity are distinguished by their dependence on pH.The oxidation of chromatophore redox chain components due to photooxidase activity as well as the over-reduction of these components in chromatophores, incubated with 2,3,5,6-tetramethyl-p-phenylenediamine (Me4Ph(NH2)2) or N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) (plus ascorbate) in the absence of exogenous electron acceptors, leads to an inhibition of the membrane potential generation, as measured by the light-induced uptake of penetrating phenyldicarbaundecaborane anions (PCB?) and tetraphenylborate anions. The inhibition of the penetrating anion responses observed under reducing conditions is removed by oxygen, 1,4-naphthoquinone, fumarate, vitamin K-3 and methylviologen, but not by NAD+ or benzylviologen. Since methylviologen does not act as an electron acceptor with the extracted chromatophores, it is believed that this compound, together with fumarate and O2, gains electrons at the level of the loosely bound ubiquinone. Data on the relationship between photooxidase activity and membrane potential generation by the chromatophores show that non-cyclic electron transfer from reduced Me4Ph(NH2)2 to the exogenous acceptors is an electrogenic process, whereas non-cyclic electron transfer from reduced TMPD is non-electrogenic.Being oxidized, Me4Ph(NH2)2 and TMPD are capable of the shunting of the cyclic redox chain of the chromatophores. Experiments with extracted chromatophores show that the mechanisms of the shunting by Me4Ph(NH2)2 and TMPD are different.  相似文献   

6.
In purple bacteria, photosynthesis is carried out on large indentations of the bacterial plasma membrane termed chromatophores. Acting as primitive organelles, chromatophores are densely packed with the membrane proteins necessary for photosynthesis, including light harvesting complexes LH1 and LH2, reaction center (RC), and cytochrome bc1. The shape of chromatophores is primarily dependent on species, and is typically spherical or flat. How these shapes arise from the protein-protein and protein-membrane interactions is still unknown. Now, using molecular dynamics simulations, we have observed the dynamic curvature of membranes caused by proteins in the chromatophore. A membrane-embedded array of LH2s was found to relax to a curved state, both for LH2 from Rps. acidophila and a homology-modeled LH2 from Rb. sphaeroides. A modeled LH1-RC-PufX dimer was found to develop a bend at the dimerizing interface resulting in a curved shape as well. In contrast, the bc1 complex, which has not been imaged yet in native chromatophores, did not induce a preferred membrane curvature in simulation. Based on these results, a model for how the different photosynthetic proteins influence chromatophore shape is presented.  相似文献   

7.
Extensive washing of chromatophores of Rhodospirillum rubrum and Rhodopseudomonas spheroides with dilute buffer results in a complete loss of the energylinked transhydrogenase activities of Rsp. rubrum but only a partial loss of the light-driven reaction in chromatophores of Rps. spheroides. It was not possible to reactivate the Rps. spheroides transhydrogenation with the Rsp. rubrum transhydrogenase factor nor with a protein fraction of Rps. spheroides isolated by procedures identical to that used for the isolation of the Rsp. rubrum transhydrogenase factor. The Rsp. rubrum factor is highly specific and cannot be replaced by a number of sulfhydryl compounds tested for reconstitution of Rsp. rubrum transhydrogenation. A published procedure for the isolation of a “transhydrogenase factor” from Rps. spheroides chromatophores yields a preparation having energy-dependent transhydrogenation when supplemented with dithiothreitol in the absence of added chromatophores.  相似文献   

8.
Pectinariids are a family of polychaetes commonly found in shallow coastal waters around the world, but their diversity is poorly known along the coasts of Asia. Here we describe Amphictene alata sp. n. (Pectinariidae), based on 15 specimens collected from the coastal waters of Guangdong in the northern South China Sea. This new species can be distinguished from all other 13 described species and one described subspecies of Amphictene by having a pair of dorsolateral lobes on segment 3, a pair of large lateral lobes on segment 21, and more scaphal hooks (26 to 37 pairs).  相似文献   

9.
The photosynthetic electron transport chain in Rhodopseudomonas capsulata cells was investigated by studying light-induced noncyclic electron transport from external donors to O2. Two membrane preparations with opposite membrane polarity, heavy chromatophores and regular chromatophores, were used to characterize this electron transport. It was shown that with lipophylic electron donors such as dichloroindophenol, diaminobenzidine, and phenazine methosulfate the electron transport activities were similar in both types of chromatophores, whereas horse heart cytochrome c, K4Fe(CN)6, 3-sulfonic acid phenazine methosulfate, and ascorbate, which cannot penetrate the membrane, were more active in the heavy chromatophores than in the regular chromatophores. Partial depletion of cytochrome c2 from the heavy chromatophores caused a decrease in the light-induced O2 uptake from reduced dichloroindophenol or ascorbate. The activity could be restored with higher concentrations of dichloroindophenol or with purified cytochrome c2 from Rps. capsulata. It is assumed that in the heavy chromatophores the artificial electron donors are oxidized on the cytochrome c2 level which faces the outside medium. However, cytochrome c2 is not exposed to the outside medium in the regular chromatophores. Therefore, only lipophylic donors would interact with cytochrome c2 in this system, while hydrophylic donors would be oxidized by another component of the electron transport chain which is exposed to the external medium. Studies with inhibitors of photophosphorylation show that antimycin A enhances the light-dependent electron transport to O2 whereas 1:10 phenanthroline inhibited the reaction, but dibromothymoquinone did not affect it. It is assumed that a nonheme iron protein is taking part in this electron transport but not a dibromothymoquinone-sensitive quinone. The terminal oxidase of the light-dependent pathway is different from the two oxidases of the respiratory chain. The ratio between electrons entering the system and molecules of O2 consumed is 4, which means that the end product of O2 reduction is H2O.  相似文献   

10.
Sections of Rhodospirillum rubrum cells from cultures of different ages have been examined to obtain information on the development of chromatophores in this organism. Cells from the 12-hour cultures studied contain neither distinct invaginations of the cytoplasmic membrane nor distinct chromatophores. The first structures that can be related to chromatophore development occur peripherally in the cells, are relatively few in number, relatively high in density, and have an indistinct membrane. In cells from 26-hour cultures numerous distinct invaginations of the cytoplasmic membrane are present, and all layers of the cytoplasmic membrane are involved in the formation of each invagination. As the invaginations become more numerous, the ends of the invaginations become constricted to form one or more structures similar to the chromatophores previously described in this organism. Cells of R. rubrum, therefore, develop a structural continuum which initially consists of invaginations of the cytoplasmic membrane, and later of the chromatophores produced by and attached to these invaginations. The presence of this continuum, however, does not necessarily exclude the existence of discrete chromatophores within these cells. Several other structures previously reported in this organism are described in greater detail.  相似文献   

11.
Fusion of chromatophores, the photosynthetic membrane vesicles isolated from the intracytoplasmic membranes of Rhodopseudomonas sphaeroides, was achieved by the use of poly(ethylene glycol) 6000 as fusogen. Ultracentrifugation, electron microscopy, intrinsic density and isotope labeling were used to demonstrate chromatophore fusion. Although studies of the flash-induced shift in the carotenoid absorbance spectrum indicated that the membrane was rendered leaky to ions by either the fusion procedure or the increased size of the fused products, the orientation and integrity of fused chromatophores were otherwise demonstrated to be identical to control chromatophores by freeze-fracture electron microscopy, proteolytic enzyme digestion, enzymatic radioiodination, and transfer of chromatophore phospholipids mediated by phospholipid exchange protein extracted from Rps. sphaeroides.  相似文献   

12.
13.
A single alkaline wash removes most of the succinic dehydrogenase activity from chromatophores of Rhodopseudomonas sphaeroides. Three iron-sulfur centers are also removed by this washing. Two of these are ferredoxin-like centers with electron paramagnetic resonance signals at gv = 1.94 and midpoint potentials of +50 and ?250 mV at pH 7. The third is a high-potential iron-sulfur protein type signal centered at g 2.01 and a midpoint potential of +80 mV at pH 7. These centers have very similar properties to those of the well-characterized mammalian succinic dehydrogenase and account for the majority of iron-sulfur centers observed in chromatophores. Because it is so easily removed, it is concluded that succinic dehydrogenase is located on the outer surface of the chromatophore membrane, a conclusion supported by the fact that removal of the enzyme does not interfere with the kinetics of light-induced electron flow, nor does it allow cytochrome c2 to escape from inside the chromatophore vesicles.  相似文献   

14.
Chemical modification of Rhodospirillum rubrum chromatophores by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole (NBD-Cl) results in inactivation of photophosphorylation, Mg2+-ATPase, oxidative phosphorylation and ATP-driven transhydrogenase, with apparent first-order kinetics. Other energy-linked reactions such as light-driven transhydrogenase and light-dependent proton uptake were insensitive to NBD-Cl. The Ca2+-ATPase activity of the soluble coupling factor from chromatophores (R. rubrum F1) was inactivated by NBD-Cl with kinetics resembling those described for Mg2+-ATPase and photophosphorylation activities of chromatophores. Both NBD-chromatophores and NBD-R. rubrum F1 fully recovered their activities when subjected to thiolysis by dithioerythritol. Phosphoryl transfer reactions of chromatophores and Ca2+-ATPase activity of R. rubrum F1 were fully protected by 5 mM Pi against modification by NBD-Cl. ADP or ATP afforded partial protection. Analysis of the protection of Ca2+-ATPase activity by Pi indicated that NBD-Cl and Pi are mutually exclusive ligands. Spectroscopic studies revealed that tyrosine and sulfhydryl residues in R. rubrum F1 underwent modification by NBD-Cl. However, the inactivation was only related to the modification of tyrosine groups.  相似文献   

15.
Intact spheroplasts, vesicles obtained from French-press lysates (chromatophores), and spheroplast-derived vesicles were isolated from photosynthetically grown cells of Rhodopseudomonas sphaeroides. Lysed spheroplasts showed specific activities of succinate, NADH, and l-lactate dehydrogenase which were eight-, six-, and seven-fold higher, respectively, than those of intact spheroplasts when ferricyanide was used as electron acceptor. Mg2+-ATPase activity of lysed spheroplasts, measured using an assay system coupled to the oxidation of NADH, was seven-fold higher than the activity of intact sheroplasts. Toluene-treated spheroplast-derived vesicles displayed higher succinate dehydrogenase (ferricyanide reduction) and Mg2+-ATPase activities than untreated vesicles whereas no differences were measured between untreated and toluene-treated chromatophores. However, NADH dehydrogenase (ferricyanide reduction) activities of both toluene-treated vesicles and chromatophores were higher than the activities of untreated vesicles and chromatophores. When chromatophores and spheroplast-derived vesicles were preincubated with trypsin, the l-lactate and succinate dehydrogenase activities of chromatophores were preferentially inactivated when phenazine methosulfate was used as electron acceptor. The data indicate that chromatophores are oriented in an opposite direction to the spheroplast-derived vesicles. At least 80% of the latter are oriented in a direction equivalent to the cytoplasmic membrane of intact cells and spheroplasts. Spheroplast-derived vesicles from cells grown with higher light intensities seem to be more uniformly oriented than those obtained from cells grown with lower light intensities.  相似文献   

16.
1. In photophosphorylation with chromatophores from Rhodospirillum rubrum, evidence is presented for the synthesis of activated precursors of ATP in the energy-conversion system coupled to photosynthetic electron transport. 2. A significant amount of ATP is synthesized when a reaction mixture containing chromatophores and ADP is illuminated and then incubated with Pi in the dark. ATP is not synthesized to an appreciable extent, either when a reaction mixture containing chromatophores and Pi is illuminated and then incubated with ADP in the dark, or when one containing chromatophores alone is illuminated and then incubated with ADP and Pi in the dark. The amount of ATP thus synthesized is influenced markedly by concentrations of ADP. 3. The chromatophores illuminated with ADP, if allowed to stand in the dark at 30°, gradually lose the ability to form ATP with Pi in the dark. No loss of the ability occurs when the chromatophores illuminated with ADP are allowed to stand in the dark at 13° or in a frozen state. 4. Mg2+ is absolutely required for chromatophores to form ATP in the dark after illumination in the presence of ADP, and for the chromatophores to achieve ATP formation with Pi in the dark. 5. Antimycin A, 2-heptyl-4-hydroxyquinoline N-oxide and o-phenanthroline strongly inhibit the light-dependent acquisition of the ability to form ATP with Pi in the dark, but not the consequent ATP formation with Pi in the dark. Arsenate, 2,4-dinitrophenol, quinacrine hydrochloride, quinine hydrochloride and pyrophosphate inhibit the former or the latter, or both. Oligomycin inhibits the former somewhat more than the latter. 6. From these findings it is suggested that a high-energy intermediate is formed in photosynthetic ATP formation, and that its formation is dependent on ADP but not Pi.  相似文献   

17.
To examine chromatophore control by FMRFamide-related peptide (FaRP), we investigated the pharmacological effect of FMRFamide on the chromatophores and the FMRFamide-immunoreactivity of nerves surrounding the muscles in the coastal squid, Sepioteuthis lessoniana. Applications of FMRFamide elicited expansion of black chromatophores and retraction of yellow chromatophores in the adult squid. FMRFamide-immunoreactive terminals were distributed along black chromatophore muscles but were not observed around the yellow ones. This means that FMRFamide functions differently for each of the two types of chromatophores in the adult squid. Moreover, the pharmacological effect of FMRFamide on the black chromatophores differed between adults and hatchlings; application of FMRFamide retracted black chromatophores in hatchlings but not in adults. These results indicate that certain squid species have an FaRP system for controlling the chromatophores in their skin and that the system changes during development.  相似文献   

18.
Two related perciform fish species of the subfamily Monotaxinae (Sparoidea: Lethrinidae) Gymnocranius superciliosus sp. nov. and Gymnocranius satoi sp. nov. are described from specimens and tissue samples from the Coral Sea and adjacent regions. G. superciliosus sp. nov. is distinct from all other known Gymnocranius spp. by the following combination of characters: body elongated (depth 2.7–3.1 in standard length), caudal fin moderately forked with a subtle middle notch, its lobes slightly convex inside, distinctive blackish eyebrow, snout and cheek with blue speckles, and dorsal, pectoral, anal and caudal fins reddish. G. satoi sp. nov. is the red-finned ‘Gymnocranius sp.’ depicted in previous taxonomic revisions. While colour patterns are similar between the two species, G. satoi sp. nov. is distinct from G. superciliosus sp. nov. by the ratio of standard length to body depth (2.4–2.5 vs. 2.7–3.1) and by the shape of the caudal fin, which is more shallowly forked, its lobes convex inside and their extremities rounded. The two species are genetically distinct from each other and they are genetically distinct from G. elongatus, G. euanus, G. grandoculis, and G. oblongus sampled from the Coral Sea and adjacent regions.  相似文献   

19.
Based on our reexamination of the 9 specimens including the neotype, Bregmaceros lanceolatus is recharacterized and diagnosed by the following combination of features: caudal fin rounded; scales present on gill cover; dorsal surface of snout unpigmented or with a few chromatophores; isthmus pigmented with punctate chromatophores; two parapophyses on abdominal vertebrae; dorsal rays (D) 65–74; anal rays (A) 67–74; vertebrae (V) 58–61; longitudinal scales (LS) ca. 82–88; principal caudal rays (PC) 16–18; head length (HL)/standard length (SL) 14.0–15.5%; caudal peduncle depth/SL 3.2–4.2%. Based on 27 specimens, B. pseudolanceolatus sp. nov. is described. This species is closely similar to B. lanceolatus, but is diagnosed by the following combination of features: caudal fin rounded; scales present on gill cover; dense concentration of chromatophores on dorsal surface of snout; isthmus colorless; one board-like parapophysis on the last three abdominal vertebrae; D 58–64; A 58–67; V 52–55; LS ca. 68–77; PC 14–16; HL 15.5–18.4% SL; caudal peduncle depth 4.1–5.2% SL. Bregmaceros pseudolanceolatus is known from around the Taiwan Strait, southern East China Sea, South China Sea, Gulf of Thailand, Timor Sea, Arafura Sea, and eastern Bay of Bengal.  相似文献   

20.
Rhodospirillum rubrum chromatophores associated with a planar phospholipid macromembrane by bivalent cations in the presence of quinone, N,N,N′,N′-tetramethyl-p-phenylenediamine (TMPD) and ascorbate generate a transmembrane electrical potential difference in the light. Photoelectrical activity is also observed if chromatophores are preincubated with cytochrome c; the maximum values of responses are reached upon subsequent addition of ascorbate and menadion in the absence of bivalent cations and TMPD. The cytochrome c-dependent responses of the illuminated chromatophores are inhibited by Ca2+ and prevented by quinones. The possibility of cytochrome c (c2) translocation across the chromatophore membrane and the mechanism of charge transfer across the planar phospholipid membrane are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号