首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Radiation inactivation and target analysis were used to determine the molecular mass of the binding sites for high density lipoproteins (HDL) on membranes prepared from human fibroblasts. These membrane binding sites shared characteristics with the previously described HDL binding sites on whole fibroblasts in tissue culture. They exhibited the same affinity for HDL, the same ligand specificity, and the same sensitivity to proteolytic agents. They were also up-regulated by cholesterol loading of the cells. Kinetics of HDL dissociation from membrane binding sites could not be described by a single exponential function, indicating that HDL probably bind to multiple classes of sites on fibroblast membranes. After exposure to ionizing radiation, these sites decreased in number as an apparent single exponential function of radiation dose, corresponding to an average molecular mass of 16,000 +/- 1,000 Da, which is smaller than any known cell-surface receptor protein. These data indicate that HDL binding sites on fibroblast membranes are not "classical" receptors in that they are kinetically heterogeneous and small in molecular mass.  相似文献   

2.
Polar lipids and membrane proteins are major components of biological membranes, both cell membranes and membranes of enveloped viruses. How these two classes of membrane components interact with each other to influence the function of biological membranes is a fundamental question that has attracted intense interest since the origins of the field of membrane studies. One of the most powerful ideas that driven the field is the likelihood that lipids bind to membrane proteins at specific sites, modulating protein structure and function. However only relatively recently has high resolution structure determination of membrane proteins progressed to the point of providing atomic level structure of lipid binding sites on membrane proteins. Analysis of X-ray diffraction, electron crystallography and NMR data over 100 specific lipid binding sites on membrane proteins. These data demonstrate tight lipid binding of both phospholipids and cholesterol to membrane proteins. Membrane lipids bind to membrane proteins by their headgroups, or by their acyl chains, or binding is mediated by the entire lipid molecule. When headgroups bind, binding is stabilized by polar interactions between lipid headgroups and the protein. When acyl chains bind, van der Waals effects dominate as the acyl chains adopt conformations that complement particular sites on the rough protein surface. No generally applicable motifs for binding have yet emerged. Previously published biochemical and biophysical data link this binding with function. This Article is Part of a Special Issue Entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.  相似文献   

3.
R M Wadkins  D E Graves 《Biochemistry》1991,30(17):4277-4283
Spectroscopic methods are used to probe the interactions of several anilinoacridine analogues with calf thymus DNA over a wide range of temperatures and sodium chloride concentrations. The structurally similar compounds m-AMSA, AMSA (both active as antitumor agents), and o-AMSA (inactive as an antitumor agent) have been widely studied in their abilities to bind DNA in an intercalative manner. Recent studies from this laboratory reveal distinct differences in the thermodynamic binding mechanisms between m-AMSA and o-AMSA (Wadkins & Graves, 1989), with the m-AMSA-DNA interaction being an enthalpy-driven process while the binding of o-AMSA to DNA is characterized by more positive entropy values. To further examine the physical chemical properties associated with these compounds and their correlation with antitumor activities, an in-depth investigation into the thermodynamic parameters of these compounds and structurally related anilinoacridine analogues was performed. These studies demonstrate that substituent type and position on the aniline ring of the anilinoacridines greatly influences both the affinities of these drugs in binding to DNA and dictates whether the DNA binding is an enthalpy- or entropy-driven process. The differences in thermodynamic mechanisms of binding between the two isomers along with molecular modeling studies reveal the electronic and/or steric factors resulting from the positioning of the methoxy substituent group on the anilino ring directs the DNA-binding properties through orientation of the methanesulfonamido group at the 1' position of the aniline ring. The orientation of this substituent group may result in favorable contacts through hydrogen bonding with neighboring base pairs and ultimately influence the biological effectiveness as an antitumor agent.  相似文献   

4.
Binding sites having the characteristics of receptors for "activated" alpha 2-macroglobulin (alpha 2M) have been solubilized with octyl-beta-D-glucoside from fibroblast membranes. When the detergent was removed by dialysis, the resulting insoluble extract was shown to bind 125I-alpha 2M specifically. Analysis of the binding data using a nonlinear curve-fitting program suggests that the solubilized preparation contains two classes of binding sites (KD = 0.34 nM and KD = 104 nM). Membranes or solubilized extracts from KB cells which lack alpha 2M binding sites did not specifically bind 125I-alpha 2M. The solubilized binding sites from fibroblasts were inactivated by boiling and trypsin treatment, and required Ca+2 for maximal binding. In addition, the high affinity binding of 125I-alpha 2M to the solubilized receptor was inhibited by bacitracin and by alpha-bromo-5-iodo-4-hydroxy-3-nitroacetophenone, two agents which interfere with the uptake of alpha 2M in cultured fibroblasts. Using a combination of ion exchange and gel permeation chromatography, we have purified the high affinity alpha 2M binding site approximately 100-fold from membrane derived from NIH-3T3 (spontaneously transformed) fibroblasts grown as tumors in mice. The receptor is apparently an acidic protein and the receptor octyl-beta-D-glucoside complex has a Stokes radius of 45-50 A as measured by gel filtration.  相似文献   

5.
Previous studies have demonstrated that a number of membrane-active agents are capable of binding to the surface of polymorphonuclear leukocytes (PMN) resulting in an augmentation of superoxide anion and hydrogen peroxide (H2O2) production in response to soluble stimuli. It is now demonstrated that these same membrane-active agents can bind to the surface of endothelial cells and enhance their susceptibility to killing by H2O2. Membrane-active agents which are capable of synergizing with H2O2 include cationic proteins, cationic poly-amino acids, lysophosphatides and enzymes which are capable of degrading membrane phospholipids (e.g., phospholipase C, phospholipase A2 and streptolysin S). In each case, treatment of the target cells with the membrane-active agent and H2O2 produces greater damage than the sum of the damage produced by either agent separately. Since inflammatory lesions, particularly sites of bacterial infection, may contain a rich mixture of cationic substances, phospholipases and phospholipid breakdown products, these substances may contribute to the tissue damage observed at sites of inflammation by enhancing endothelial cell sensitivity to PMN-generated H2O2 as well as by augmenting the generation of H2O2 by PMNs.  相似文献   

6.
The equilibrium binding of the antitumor agent m-AMSA and its biologically inactive analog o-AMSA to native and synthetic DNAs are compared over a wide range of ionic strengths and temperatures. Although o-AMSA binds DNA with a higher affinity than m-AMSA it is not effective as an antitumor agent. Both m-AMSA and o-AMSA bind DNA in an intercalative manner. Indepth investigations into the thermodynamic parameters of these interactions reveal the interaction of m-AMSA with DNA to be an enthalpy driven process. In contrast, the structurally similar but biologically inactive o-AMSA binds DNA through an entropy driven process. The differences in thermodynamic mechanisms of binding between the two isomers reveal that the electronic and/or steric factors resulting from the position of the methoxy substituent group on the anilino ring directs the DNA binding properties of these compounds and ultimately the biological effectiveness as an antitumor agent.  相似文献   

7.
Actin filaments and microtubules play important biological functions in mammalian cells, such as mitosis, cytokinesis, cell signaling, intracellular transport, and cell motility. Therefore, small molecules that interact with these cytoskeletons are expected to be useful not only as antitumor agents, but also as tools for understanding a wide variety of the cellular functions of cytoskeletons. A large number of compounds have been reported as anti-microtubule or anti-actin agents, but only a few compounds have been clarified as to their binding sites on target molecules and their inhibition mechanisms. Here, I describe our recent research into anti-actin and anti-microtubule natural products. Some inhibitors contain active moieties, such as alpha,beta-unsaturated delta-lactone or allely epoxide, in their structure, and covalently bind to their target molecules. Furthermore, some compounds show new inhibition mechanisms by binding on novel sites in target molecules.  相似文献   

8.
Homogeneous ATPase from rat liver mitochondria binds one mole of ADP per mole of enzyme reversibly, and with high affinity (KD = 1–2 μM). The high affinity binding site is highly specific for ADP and dADP. AMP does not bind. Agents which inhibit ATP hydrolysis have little inhibitory effect on the high affinity binding of ADP. These agents include adenylyl imidodiphosphate (AMP-PNP), azide, sucrose, and the divalent cation Mg++. AMP-PNP inhibits ATPase activity in phosphorylating membrane preparations of rat liver mitochondria by about 90 percent, but is without effect on ATP synthesis. These results are consistent with the view that the purified soluble, and the membrane-bound ATPase of rat liver mitochondria contain separate sites involved in ATP hydrolysis and in the reversible, high affinity binding of ADP.  相似文献   

9.
I Creese  D R Burt  S H Snyder 《Life sciences》1975,17(6):933-1001
3H-Dopamine and 3H-haloperidol bind with high affinity and selectivity to synaptic dopamine receptors in membrane preparations of the calf caudate. Binding of both ligands shows marked regional variations with greatest density in caudate, putamen, globus pallidus, nucleus accumbens and olfactory tubercle, areas rich in dopamine nerve terminals. The rank-order of phenothiazines and related agents as well as catecholamines in displacing both dopamine and haloperidol binding closely parallels their pharmacological potencies and affinities for the dopamine-sensitive adenylate cyclase. Dopamine's affinity for specific 3H-dopamine binding sites is 100 times its apparent affinity for the dopamine sensitive adenylate cyclase. Agonists have about 50 times more affinity for dopamine than haloperidol sites, whereas antagonists display about 100 times greater affinity for haloperidol than dopamine sites.  相似文献   

10.
Binding of plasma low density lipoproteins to erythrocytes   总被引:2,自引:0,他引:2  
Low density lipoproteins (LDL) containing apolipoprotein B bind to intact, freshly isolated erythrocytes. The LDL-erythrocyte interaction is of low affinity, with a Kd of 1.1 x 10(-6) M. Binding is noncooperative. There are about 200 binding sites per cell and, within the limits of experimental uncertainty, these sites comprise a homogeneous class. Binding of LDL is a temperature-independent process. The maximum amount of LDL blood increases following proteolytic digestion of the cells with trypsin or chymotrypsin. The specificity of the binding sites for LDL is not absolute: high density lipoproteins and lipid vesicles composed of phosphatidylcholine or phosphatidylcholine/cholesterol (equimolar) complete with LDL for occupancy of 60% of the binding sites. Modification of 5--6 of the 9 apolipoprotein B arginine residues with 1,2-cyclohexanedione/borate or of 10--15 of the 20 lysine residues by reductive methylation does not alter the ability of LDL to bind to erythrocytes. Native LDL and methylated-LDL alter erythrocyte morphology. However, LDL in which the arginine residues are derivatized with 1,2-cyclohexanedione/borate do not induce the discocyte leads to echinocyte transformation. Chemically modified and native LDL exchange cholesterol with erythrocytes at equal rates and to nearly equal extents. Taken together, the data suggest that the binding sites for LDL on the erythrocyte membrane are distinct from the LDL receptors at the surface of other cells--e.g., fibroblasts and lymphocytes--which do not bind HDL and which do not recognize LDL with derivatized arginine or lysine residues. It is proposed that the biological function of the erythrocyte binding sites is to mediate the exchange of cholesterol between the cell membrane and lipoproteins.  相似文献   

11.
Asialoglycoprotein receptor (ASGP-R) has been actively investigated for targeted delivery of therapeutic agents into hepatocytes because this receptor is selectively and highly expressed in liver and has a high internalization rate. Synthetic cluster glycopeptides (e.g., triGalNAc) bind with high affinity to ASGP-R and, when conjugated to a therapeutic agent, can drive receptor-mediated uptake in liver. We developed a novel fluorescent polarization (FP) ASGP-R binding assay to determine the binding affinities of ASGP-R-targeted molecules. The assay was performed in 96-well microplates using membrane preparations from rat liver as a source of ASGP-R and Cy5 fluorophore-labeled triGalNAc synthetic ligand as a tracer. This high-throughput homogeneous assay demonstrates advantages over existing multistep methods in that it minimizes both time and resources spent in determining binding affinities to ASGP-R. At the optimized conditions, a Z' factor of 0.73 was achieved in a 96-well format.  相似文献   

12.
Staurosporine, a potent inhibitor of C-kinase, enhances accumulation of vincristine (VCR) in multidrug-resistant cells. We investigated this enhancement by two methods: (I) ATP-dependent VCR binding system; (II) azidopine photolabeling system. The ATP-dependent VCR binding to the resistant cell membrane was inhibited more efficiently by staurosporine than by verapamil. Staurosporine also inhibited the azidopine photolabeling of P-glycoprotein. These results indicate that staurosporine, an inhibitor of C-kinase, might directly bind to P-glycoprotein as well as antitumor agents and Ca2+ channel blockers. These findings also indicate that C-kinase might be involved in the function of P-glycoprotein.  相似文献   

13.
The Tp34 (TP0971) membrane lipoprotein of Treponema pallidum, an obligate human pathogen and the agent of syphilis, was previously reported to have lactoferrin binding properties. Given the non-cultivatable nature of T. pallidum, a structure-to-function approach was pursued to clarify further potential relationships between the Tp34 structural and biochemical properties and its propensity to bind human lactoferrin. The crystal structure of a nonacylated, recombinant form of Tp34 (rTp34), solved to a resolution of 1.9A(,) revealed two metaloccupied binding sites within a dimer; the identity of the ion most likely was zinc. Residues from both of the monomers contributed to the interfacial metal-binding sites; a novel feature was that the delta-sulfur of methionine coordinated the zinc ion. Analytical ultracentrifugation showed that, in solution, rTp34 formed a metal-stabilized dimer and that rTp34 bound human lactoferrin with a stoichiometry of 2:1. Isothermal titration calorimetry further revealed that rTp34 bound human lactoferrin at high (submicromolar) affinity. Finally, membrane topology studies revealed that native Tp34 is not located on the outer surface (outer membrane) of T. pallidum but, rather, is periplasmic. How propensity of Tp34 to bind zinc and the iron-sequestering lactoferrin may relate overall to the biology of T. pallidum infection in humans is discussed.  相似文献   

14.
This review outlines the steps for obtaining relative constants for drugs from footprinting data. After correcting the autoradiographic spot intensities for differing amounts of radioactive DNA loaded into the lanes of a sequencing gel, footprinting plots, showing individual spot intensities as a function of drug concentration, are constructed. The initial relative slopes of footprinting plots are proportional to the binding constant of the drug for its DNA sites. Slopes of plots outside the drug binding sites can be used to identify locations of altered DNA structure. It illustrates the power of quantitative footprinting analysis by analyzing the binding of the antiviral agent netrospin to a 139-base pair restriction fragment in the presence of the antitumor agent actinomycin D. While two netrospin binding regions are unaffected by actinomycin D a third region experiences enhanced binding in the presence of the antitumor agent.  相似文献   

15.
Whereas ribosomes bind to membranes at eukaryal Sec61alphabetagamma and bacterial SecYEG sites, ribosomal membrane binding has yet to be studied in Archaea. Accordingly, functional ribosomes and inverted membrane vesicles were prepared from the halophilic archaea Haloferax volcanii. The ability of the ribosomes to bind to the membranes was determined using a flotation approach. Proteolytic pretreatment of the vesicles, as well as quantitative analyses, revealed the existence of a proteinaceous ribosome receptor, with the affinity of binding being comparable to that found in Eukarya and Bacteria. Inverted membrane vesicles prepared from cells expressing chimeras of SecE or SecY fused to a cytoplasmically oriented cellulose-binding domain displayed reduced ribosome binding due to steric hindrance. Pretreatment with cellulose drastically reduced ribosome binding to chimera-containing but not wild-type vesicles. Thus, as in Eukarya and Bacteria, ribosome binding in Archaea occurs at Sec-based sites. However, unlike the situation in the other domains of Life, ribosome binding in haloarchaea requires molar concentrations of salt. Structural information on ribosome-Sec complexes may provide insight into this high salt-dependent binding.  相似文献   

16.
Brief exposure to the protein neurotoxin, beta-bungarotoxin, is known to disrupt neuromuscular transmission irreversibly by blocking the release of transmitter from the nerve terminal. This neurotoxin also has a phospholipase A2 activity, although phospholipases in general are not very toxic. To determine if the toxicity of this molecule might result from specific binding to neural tissue, we have looked for high affinity, saturable binding using 125I-labelled toxin. At low membrane protein concentration 125I-labeled toxin binding was directly proportional to the amount of membrane; at fixed membrane concentration 125I-labeled toxin showed saturable binding. It was unlikely that iodination markedly changed the toxin's properties since the iodinated toxin had a comparable binding affinity to that of native toxin as judged by competition experiments. Comparison of toxin binding to brain, liver and red blood cell membranes showed that all had high affinity binding sites with dissociation constants between one and two nanomolar. This is comparable to the concentrations previously shown to inhibit mitochondrial function. However, the density of these sites showed marked variation such that the density of sites was 13.0 pmol/mg protein for a brain membrane preparation, 2.4 pmol/mg for liver and 0.25 pmol/mg for red blood cell membranes. In earlier work we had shown that calcium uptake by brain mitochondria is inhibited at much lower toxin concentrations than is liver mitochondrial uptake. Both liver and brain mitochondria bind toxin specifically, but the density of 125I-labeled toxin binding sites on brain mitochondrial preparations (3.3 +/- 0.3 pmol/mg) exceeded by a factor of ten the density on liver mitochondrial preparations (0.3 +/- 0.05 pmol/mg). It is also shown that labeled toxin does not cross synaptosomal membranes, suggesting that mitochondria may not be the site of action of the toxin in vivo. We conclude that beta-bungarotoxin is an enzyme which can bind specifically with high affinity to cell membranes.  相似文献   

17.
18.
19.
This work shows in vitro processing of Bacillus thuringiensis svar. isralensis Cry toxins and the capacity of the active fragments to bind the midgut microvilli of Aedes aegypti larvae. Processing of Cry11Aa, Cry4Aa and Cry4Ba yielded double fragments of 38-30, 45-20 and 45-18 kDa, respectively. Competition assays showed that all active (125)I-Cry toxins are able to specifically bind to brush border membrane fractions and they might share a common class of binding sites. The values of IC(50) suggested that toxins do not display high affinity for the receptors from brush border membrane fractions, while dissociation assays showed that binding was irreversible, indicating the insertion of toxins in the cell membrane.  相似文献   

20.
Reduction of iron in diferric transferrin is inhibited by monoclonal antibodies to the transferrin receptor which bind at sites other than the high affinity transferrin binding site. These antibodies include B3/25, GB16 and GB22. Two antibodies which bind at the high affinity site for transferrin, 42/6 and GB18, do not inhibit iron reduction by transplasma membrane electron transport. The results are consistent with the proposal that differric transferrin reduction or stimulation of transmembrane NADH oxidase activity involves a site different from the high affinity diferric transferrin binding site. A synergistic action of antibodies with epitopes at the tight binding site involved in iron uptake and the antibodies which inhibit electron transport, B3/25 and GB16, can explain the increased inhibition of growth observed when both 42/6 and B3/25 are added to proliferating cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号