首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The enzyme complex F1-ATPase has been isolated from bovine heart mitochondria by gel filtration of the enzyme released by chloroform from sub-mitochondrial particles. The five individual subunits alpha, beta, gamma, delta and epsilon that comprise the complex have been purified from it, and their amino acid sequences determined almost entirely by direct protein sequence analysis. A single overlap in the gamma-subunit was obtained by DNA sequence analysis of a complementary DNA clone isolated from a bovine cDNA library using a mixture of 32 oligonucleotides as the hybridization probe. The alpha, beta, gamma, delta and epsilon subunits contain 509, 480, 272, 146 and 50 amino acids, respectively. Two half cystine residues are present in the alpha-subunit and one in each of the gamma- and epsilon-chains; they are absent from the beta- and delta-subunits. The stoichiometry of subunits in the complex is estimated to be alpha 3 beta 3 gamma 1 delta 1 epsilon 1 and the molecular weight of the complex is 371,135. Mild trypsinolysis of the F1-ATPase complex, which has little effect on the hydrolytic activity of the enzyme, releases peptides from the N-terminal regions of the alpha- and beta-chains only; the C-terminal regions are unaffected. Sequence analysis of the released peptides demonstrates that the N terminals of the alpha- and beta-chains are ragged. In 65% of alpha-chains, the terminus is pyrrolidone carboxylic acid; in the remainder this residue is absent and the chains commence at residue 2, i.e. lysine. In the beta-subunit a minority of chains (16%) have N-terminal glutamine, or its deamidation product, glutamic acid (6%), or the cyclized derivative, pyrrolidone carboxylic acid (5%). A further 28% commence at residue 2, alanine, and 45% at residue 3, serine. The delta-chains also are heterogeneous; in 50% of chains the N-terminal alanine residue is absent. The sequences of the alpha- and beta-chains show that they are weakly homologous, as they are in bacterial F1-ATPases. The sequence of the bovine delta-subunit of F1-ATPase shows that it is the counterpart of the bacterial epsilon-subunit. The bovine epsilon-subunit is not related to any known bacterial or chloroplast H+-ATPase subunit, nor to any other known sequence. The counterpart of the bacterial delta-subunit is bovine oligomycin sensitivity conferral protein, which helps to bind F1 to the inner mitochondrial membrane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
ATP synthase from bovine mitochondria is a complex of 13 different polypeptides, whereas the Escherichia coli enzyme is simpler and contains eight subunits only. Two of the bovine subunits, b and d, which had not been characterized, have been isolated from the purified enzyme. Subunits with sizes corresponding to bovine subunits b and d are evident in preparations of the enzyme from mitochondria of other species. Partial protein sequences have been determined by direct methods. On the basis of some of this information, two oligonucleotide mixtures, 17 and 18 bases in length, have been synthesized and used as hybridization probes in the isolation of clones of the cognate cDNAs. The sequences of the two proteins have been deduced from their DNA sequences. Subunit b is 214 amino acid residues in length and has a free N terminus. Subunit d is 160 amino acid residues long. Its N-terminal alanine is blocked by an N-acetyl group, as demonstrated by fast atom bombardment mass spectrometry of N-terminal peptides. The sequence near the N terminus of the b subunit is made predominantly of hydrophobic residues, whereas the remainder of the protein is mainly hydrophilic. This N-terminal hydrophobic region may be folded into an alpha-helical structure spanning the lipid bilayer. In its distribution of hydrophobic residues, this protein resembles the b subunits of ATP synthase complexes in bacteria and chloroplasts. The b subunit in E. coli forms an important structural link between the extramembrane sector of the enzyme F1, and the intrinsic membrane domain, FO. It is proposed that the bovine mitochondrial subunit b serves a similar function. If this is so, the mitochondrial enzyme, as the chloroplast ATP synthase, contains equivalent subunits to all eight of those that constitute the E. coli enzyme. Subunit d has no extensive hydrophobic sequences, and is not apparently related to any subunit described in the simpler ATP synthases in bacteria and chloroplasts.  相似文献   

3.
4.
Spinach leaf mitochondrial F0F1 ATPase has been purified and is shown to consist of twelve polypeptides. Five of the polypeptides constitute the F1 part of the enzyme. The remaining polypeptides, with molecular masses of 28 kDa, 23 kDa, 18.5 kDa, 15 kDa, 10.5 kDa, 9.5 kDa and 8.5 kDa, belong to the F0 part of the enzyme. This is the first report concerning identification of the subunits of the plant mitochondrial F0. The identification of the components is achieved on the basis of the N-terminal amino acid sequence analysis and Western blot technique using monospecific antibodies against proteins characterized in other sources. The 28-kDa protein crossreacts with antibodies against the subunit of bovine heart ATPase with N-terminal Pro-Val-Pro- which corresponds to subunit F0b of Escherichia coli F0F1. Sequence analysis of the N-terminal 32 amino acids of the 23-kDa protein reveals that this protein is similar to mammalian oligomycin-sensitivity-conferring protein and corresponds to the F1 delta subunit of the chloroplast and E. coli ATPases. The 18.5-kDa protein crossreacts with antibodies against subunit 6 of the beef heart F0 and its N-terminal sequence of 14 amino acids shows a high degree of sequence similarity to the conserved regions at N-terminus of the ATPase subunits 6 from different sources. ATPase subunit 6 corresponds to subunit F0a of the E. coli enzyme. The 15-kDa protein and the 10.5-kDa protein crossreact with antibodies against F6 and the endogenous ATPase inhibitor protein of beef heart F0F1-ATPase, respectively. The 9.5-kDa protein is an N,N'-dicyclohexylcarbodiimide-binding protein corresponding to subunit F0c of the E. coli enzyme. The 8.5-kDa protein is of unknown identity. The isolated spinach mitochondrial F0F1 ATPase catalyzes oligomycin-sensitive ATPase activity of 3.5 mumol.mg-1.min-1. The enzyme catalyzes also hydrolysis of GTP (7.5 mumol.mg-1.min-1) and ITP (4.4 mumol.mg-1.min-1). Hydrolysis of ATP was stimulated fivefold in the presence of amphiphilic detergents, however the hydrolysis of other nucleotides could not be stimulated by these agents. These results show that the plant mitochondrial F0F1 ATPase complex differs in composition from the other mitochondrial, chloroplast and bacterial ATPases. The enzyme is, however, more closely related to the yeast mitochondrial ATPase and to the animal mitochondrial ATPase than to the chloroplast enzyme. The plant mitochondrial enzyme, however, exhibits catalytic properties which are characteristic for the chloroplast enzyme.  相似文献   

5.
In order to identify the subunits constituting the rat liver F0F1-ATP synthase, the complex prepared by selective extraction from the mitochondrial membranes with a detergent followed by purification on a sucrose gradient has been compared to that obtained by immunoprecipitation with an anti-F1 serum. The subunits present in both preparations that are assumed to be authentic components of the complex have been identified. The results show that the total rat liver F0F1-ATP synthase contains at least 13 different proteins, seven of which can be attributed to F0. The following F0 subunits have been identified: the subunit b (migrating as a 24 kDa band in SDS-PAGE), the oligomycin-sensitivity-conferring protein (20 kDa), and F6 (9 kDa) that have N-terminal sequences homologous to the beef-heart ones; the mtDNA encoded subunits 6 (20 kDa) and 8 (less than 7 kDa) that can be synthesized in isolated mitochondria; an additional 20 kDa protein that could be equivalent to the beef heart subunit d.  相似文献   

6.
The N-terminal amino acid sequence of the 20 kDa (delta') subunit of the turnip (Brassica napus L.) mitochondrial F1-ATPase has been determined. Comparison of the sequence obtained with those of the epsilon subunits of chloroplast CF1, E. coli F1 and the delta subunit of bovine F1 shows that the turnip delta' subunit is another member of this family of homologous proteins. The delta' subunit of sweet potato F1-ATPase [(1989) J. Biol. Chem. 264, 3183-3186] is very similar to the turnip sequence and thus can also be considered to belong to this family.  相似文献   

7.
All five subunits of bovine heart mitochondrial F1-ATPase have been isolated by reverse-phase HPLC and NH2-terminal sequences determined by gas phase Edman degradations. Bovine gamma exhibits 16 identities in the first 30 residues compared with the NH2-terminus of gamma from E.coli F1. Bovine delta exhibit about 27% identity with residues 28-59 of precursor delta from N.crassa and in the first six residues is identical with delta from S.cerevisiae. Approximately half of bovine epsilon has been sequenced. Possibly significant sequence similarities exist between bovine gamma and epsilon and kinase-related gene and oncogene products. The bovine alpha subunit has a blocked NH2-terminus.  相似文献   

8.
A delta epsilon complex has been purified as a molecular entity from pig heart mitochondrial F1-ATPase. This delta epsilon complex has also been reconstituted from purified delta and epsilon subunits. Both isolated and reconstituted delta epsilon complexes have delta 1 epsilon 1 stoichiometry and are indistinguishable by their chromatographic behavior, their circular dichroism spectra (CD spectra), and their intrinsic fluorescence features. The content of secondary structures deduced from CD spectra of the delta epsilon complex appears to be the sum of the respective contributions of purified delta and epsilon subunits. All intrinsic fluorescence studies carried out on isolated epsilon subunit and delta epsilon complex show that the single tryptophan residue located on epsilon is involved in the interaction between delta and epsilon subunits. Results obtained with F1-ATPase are in favor of the same delta epsilon interaction in the entire enzyme.  相似文献   

9.
Assembly of F1-ATPase in isolated mitochondria   总被引:2,自引:0,他引:2  
The assembly of the proton-translocating ATPase complex was studied in isolated mitochondria by incubating yeast mitochondria with radiolabeled precursors of mitochondrial proteins which had been made in a cell-free protein synthesis system. Following such an incubation, the ATPase complex (F1F0) was isolated. Newly assembled F1-ATPase was detected by autoradiography of the isolated enzyme, only peptide subunits which had been made in vitro and imported into the isolated mitochondria could be radioactive. Incorporation of radiolabeled ATPase subunits into the enzyme does not occur in the presence of an uncoupler of oxidative phosphorylation or of a divalent metal chelator, nor does it occur in submitochondrial particles rather than intact mitochondria. Incorporation of labeled ATPase subunits into the enzyme can be completed by unlabeled subunits, provided the unlabeled proteins are added before the mitochondria are incubated with radioactive precursors. These findings suggest that F1-ATPase is assembled from a pool of subunits in mitochondria.  相似文献   

10.
The Na(+)-F(1)F(0)-ATPase operon of Acetobacterium woodii was recently shown to contain, among eleven atp genes, those genes that encode subunit a and b, a gene encoding a 16-kDa proteolipid (subunit c(1)), and two genes encoding 8-kDa proteolipids (subunits c(2) and c(3)). Because subunits a, b, and c(1) were not found in previous enzyme preparations, we re-determined the subunit composition of the enzyme. The genes were overproduced, and specific antibodies were raised. Western blots revealed that subunits a, b, and c(1) are produced and localized in the cytoplasmic membrane. Membrane protein complexes were solubilized by dodecylmaltoside and separated by blue native-polyacrylamide gel electrophoresis, and the ATPase subunits were resolved by SDS-polyacrylamide gel electrophoresis. N-terminal sequence analyses revealed the presence of subunits a, c(2), c(3), b, delta, alpha, gamma, beta, and epsilon. Biochemical and immunological analyses revealed that subunits c(1), c(2), and c(3) are all part of the c-oligomer, the first of a F(1)F(0)-ATPase that contains 8- and 16-kDa proteolipids.  相似文献   

11.
Mitochondrial F1-ATPases purified from several dicotyledonous plants contain six different subunits of alpha, beta, gamma, delta, delta' and epsilon. Previous N-terminal amino acid sequence analyses indicated that the gamma-, delta-, and epsilon-subunits of the sweet potato mitochondrial F1 correspond to the gamma-subunit, the oligomycin sensitivity-conferring protein and the epsilon-subunit of animal mitochondrial F1F0 complex (Kimura, T., Nakamura, K., Kajiura, H., Hattori, H., Nelson, N., and Asahi, T. (1989) J. Biol. Chem. 264, 3183-3186). However, the N-terminal amino acid sequence of the delta'-subunit did not show any obvious homologies with known protein sequences. A cDNA clone for the delta'-subunit of the sweet potato mitochondrial F1 was identified by oligonucleotide-hybridization selection of a cDNA library. The 1.0-kilobase-long cDNA contained a 600-base pair open reading frame coding for a precursor for the delta'-subunit. The precursor for the delta'-subunit contained N-terminal presequence of 21-amino acid residues. The mature delta'-subunit is composed of 179 amino acids and its sequence showed similarities of about 31-36% amino acid positional identity with the delta-subunit of animal and fungal mitochondrial F1 and about 18-25% with the epsilon-subunit of bacterial F1 and chloroplast CF1. The sweet potato delta'-subunit contains N-terminal sequence of about 45-amino acid residues that is absent in other related subunits. It is concluded that the six-subunit plant mitochondrial F1 contains the subunit that is homologous to the oligomycin sensitivity-conferring protein as one of the component in addition to five subunits that are homologous to subunits of animal mitochondrial F1.  相似文献   

12.
I van Die  H Bergmans 《Gene》1984,32(1-2):83-90
The cloned DNA fragment encoding the F72 fimbrial subunit from the uropathogenic Escherichia coli strain AD110 has been identified. The nucleotide sequence of the structural gene and of 196 bp of the noncoding region preceding the gene was determined. The structural gene codes for a polypeptide of 188 amino acid residues, including a 21-residue N-terminal signal sequence. The nucleotide sequence and the deduced amino acid sequence of the F72 gene were compared with the reported sequences of the papA gene (B?ga et al., 1984). Both genes code for subunits of fimbriae that are involved in mannose-resistant hemagglutination (MRHA) of human erythrocytes. The available data show that there is absolute homology between the noncoding regions preceding both genes over 129 bp. The two proteins are homologous at the N terminus and C terminus; there is less, but significant, homology in the region between the N and C termini.  相似文献   

13.
Normal modes have been used to explore the inherent flexibility of the alpha, beta and gamma subunits of F(1)-ATPase in isolation and as part of the alpha(3)beta(3)gamma complex. It was found that the structural plasticity of the gamma and beta subunits, in particular, correlates with their functions. The N and C-terminal helices forming the coiled-coil domain of the gamma subunit are highly flexible in the isolated subunit, but more rigid in the alpha(3)beta(3)gamma complex due to interactions with other subunits. The globular domain of the gamma subunit is structurally relatively rigid when isolated and in the alpha(3)beta(3)gamma complex; this is important for its functional role in coupling the F(0) and F(1) complex of ATP synthase and in inducing the conformational changes of the beta subunits in synthesis. Most important, the character of the lowest-frequency modes of the beta(E) subunit is highly correlated with the large beta(E) --> beta(TP) transition. This holds for the C-terminal domain and the nucleotide-binding domain, which undergo significant conformational transitions in the functional cycle of F(1)-ATPase. This is most evident in the ligand-free beta(E) subunit; the flexibility in the nucleotide-binding domain is reduced somewhat in the beta(TP) subunit in the presence of Mg(2+).ATP. The low-frequency modes of the alpha(3)beta(3)gamma complex show that the motions of the globular domain of the gamma subunit and of the C-terminal and nucleotide binding domains of the beta(E) subunits are coupled, in accord with their function. Overall, the normal mode analysis reveals that F(1)-ATPase, like other macromolecular assemblies, has the intrinsic structural flexibility required for its function encoded in its sequence and three-dimensional structure. This inherent plasticity is an essential aspect of assuring a small free energy cost for the large-scale conformational transition that occurs in molecular motors.  相似文献   

14.
In addition to two major alpha- and beta-subunits, the soluble oligomycin-insensitive F1ATPase purified from sweet potato root mitochondria contains four different minor subunits of gamma (Mr = 35,500), delta (Mr = 27,000), delta' (Mr = 23,000), and epsilon (Mr = 12,000) (Iwasaki, Y., and Asashi, T. (1983) Arch. Biochem. Biophys. 227, 164-173). Among these minor subunits, the delta-subunit specifically cross-reacted with an antibody against the delta-subunit of maize mitochondrial F1 which contains only three minor gamma-, delta- and epsilon-subunits like F1ATPases from other organisms, indicating that the delta'-subunit is an extra subunit of sweet potato F1 which is absent in the maize F1. All of the four minor subunits of sweet potato F1 were purified and their N-terminal amino acid sequences of 30-36 residues were determined. The N-terminal sequence of gamma-subunit was homologous to those of the gamma-subunits of bacterial F1 and mammalian mitochondrial F1. The N-terminal sequence of the delta-subunit was homologous to those of the delta-subunits of bacterial F1, chloroplast CF1, and oligomycin sensitivity conferring protein of bovine mitochondrial F1F0. A sequence homology was also observed between the sweet potato epsilon-subunit and the epsilon-subunit of bovine mitochondrial F1. The N-terminal sequence of the delta'-subunit did not show any significant sequence homology to known protein sequences. These subunit correspondences place plant mitochondrial F1 at an unique position in the evolution of F1ATPase.  相似文献   

15.
The properties of two monoclonal antibodies which recognize the epsilon subunit of Escherichia coli F1-ATPase were studied in detail. The epsilon subunit is a tightly bound but dissociable inhibitor of the ATPase activity of soluble F1-ATPase. Antibody epsilon-1 binds free epsilon with a dissociation constant of 2.4 nM but cannot bind epsilon when it is associated with F1-ATPase. Likewise epsilon cannot associate with F1-ATPase in the presence of high concentrations of epsilon-1. Thus epsilon-1 activates F1-ATPase which contains the epsilon subunit, and prevents added epsilon from inhibiting the enzyme. Epsilon-1 cannot bind to membrane-bound F1-ATPase. The epsilon-4 antibody binds free epsilon with a dissociation constant of 26 nM. Epsilon-4 can bind to the F1-ATPase complex, but, like epsilon-1, it reverses the inhibition of F1-ATPase by the epsilon subunit. The epsilon subunit remains crosslinkable to both the beta and gamma subunits in the presence of epsilon-4, indicating that it is not grossly displaced from its normal position by the antibody. Presumably the activation arises from more subtle conformational effects. Antibodies epsilon-4 and delta-2, which recognizes the delta subunit, both bind to F1F0 in E. coli membrane vesicles, indicating that these subunits are substantially exposed in the membrane-bound complex. Epsilon-4 inhibits the ATPase activity of the membrane-bound enzyme by about 50%, and Fab prepared from epsilon-4 inhibits by about 40%. This inhibition is not associated with any substantial change in the major apparent Km for ATP. These results suggest that inhibition of membrane-bound F1-ATPase arises from steric effects of the antibody.  相似文献   

16.
F1-ATPase, a soluble part of the F0F1-ATP synthase, has subunit structure alpha3beta3gammadeltaepsilon in which nucleotide-binding sites are located in the alpha and beta subunits and, as believed, in none of the other subunits. However, we report here that the isolated epsilon subunit of F1-ATPase from thermophilic Bacillus strain PS3 can bind ATP. The binding was directly demonstrated by isolating the epsilon subunit-ATP complex with gel filtration chromatography. The binding was not dependent on Mg2+ but was highly specific for ATP; however, ADP, GTP, UTP, and CTP failed to bind. The epsilon subunit lacking the C-terminal helical hairpin was unable to bind ATP. Although ATP binding to the isolated epsilon subunits from other organisms has not been detected under the same conditions, a possibility emerges that the epsilon subunit acts as a built in cellular ATP level sensor of F0F1-ATP synthase.  相似文献   

17.
Isolation of novel membrane-associated ATPases, presumably soluble parts of the H+-ATPases, from archaebacteria has been recently reported, and their properties were found to be significantly different from the usual F1-ATPase. In order to assess the relationship of the archaebacterial ATPases to the F1-ATPases and other known ATPases, the amino acid sequence of the alpha subunit of the ATPase from Sulfolobus acidocaldarius, an acidothermophilic archaebacterium, was compared with the sequences of other ATPases. The gene encoding its alpha subunit was cloned from the genomic library of S. acidocaldarius, and the nucleotide sequence was determined. The 591-amino acid sequence deduced from the nucleotide sequence contains a small number of short stretches that shows sequence similarity to the alpha and beta subunits of F1-ATPase. However, the overall similarity is too weak to consider it to be a typical member of the F1-ATPase family when the highly conserved sequences of the F1-ATPase subunits among various organisms are taken into account. Moreover, most of these stretches overlap the consensus sequences that are commonly found in some nucleotide-binding proteins. There is no significant sequence similarity to the ion-translocating ATPases, which form phosphorylated intermediates, such as animal Na+,K+-ATPases. Thus, the S. acidocaldarius ATPase and probably other archaebacterial ATPases also appear to belong to a new group of ion-translocating ATPases that has only a distant relationship to F1-ATPase.  相似文献   

18.
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) from bovine heart is a complicated multisubunit, membrane-bound assembly. Seven subunits are encoded by mitochondrial DNA, and the sequences of 36 nuclear encoded subunits have been described. The subunits of complex I and two subcomplexes (Ialpha and Ibeta) were resolved on one- and two-dimensional gels and by reverse-phase high performance liquid chromatography. Mass spectrometric analysis revealed two previously unknown subunits in complex I, named B14.7 and ESSS, one in each subcomplex. Coding sequences for each protein were identified in data bases and were confirmed by cDNA cloning and sequencing. Subunit B14.7 has an acetylated N terminus, no presequence, and contains four potential transmembrane helices. It is homologous to subunit 21.3b from complex I in Neurospora crassa and is related to Tim17, Tim22, and Tim23, which are involved in protein translocation across the inner membrane. Subunit ESSS has a cleaved mitochondrial import sequence and one potential transmembrane helix. A total of 45 different subunits of bovine complex I have now been characterized.  相似文献   

19.
The F1 ATPase of Bacillus subtilis BD99 was extracted from everted membrane vesicles by low-ionic-strength treatment and purified by DEAE-cellulose chromatography, hydrophobic interaction chromatography, and anion-exchange high-performance liquid chromatography. The subunit structure of the enzyme was examined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the absence and presence of urea. In the absence of urea, the alpha and beta subunits comigrated and the ATPase was resolved into four bands. The mobility of the beta subunit, identified by immunoblotting with anti-beta from Escherichia coli F1, was altered dramatically by the presence of urea, causing it to migrate more slowly than the alpha subunit. The catalytic activity of the ATPase was strongly metal dependent; in the absence of effectors, the Ca2+-ATPase activity was 15- to 20-fold higher than the Mg2+ -ATPase activity. On the other hand, sulfite anion, methanol, and optimally, octylglucoside stimulated the Mg2+ -ATPase activity up to twice the level of Ca2+ -ATPase activity (specific activity, about 80 mumol of Pi per min per mg of protein). The F1 ATPase was also isolated from mutants of B. subtilis that had been isolated and characterized in this laboratory by their ability to grow in the presence of protonophores. The specific activities of the ATPase preparations from the mutant and the wild type were very similar for both Mg2+- and Ca2+ -dependent activities. Kinetic parameters (Vmax and Km for Mg-ATP) for octylglucoside-stimulated Mg2+ -ATPase activity were similar in both preparations. Structural analysis by polyacrylamide gel electrophoresis and isoelectric focusing indicated that the five F1 subunits from ATPase preparations from the mutant and wild-type strains had identical apparent molecular weights and that no charge differences were detectable in the alpha and beta subunits in the two preparations. Thus, the increased ATPase activity that had been observed in the uncoupler-resistant mutants is probably not due to a mutation in the F1 moiety of the ATPase complex.  相似文献   

20.
The a subunit, a membrane protein from the E. coli F1F0 ATP synthase has been examined by Fourier analysis of hydrophobicity and of amino-acid residue variation. The amino-acid sequences of homologous subunits from Vibrio alginolyticus, Saccharomyces cerevisiae, Neurospora crassa, Aspergillus nidulans, Schizosaccharomyces pombe and Candida parapsilosis were used in the variability analysis. By Fourier analysis of sequence variation, two transmembrane helices are predicted to have one face in contact with membrane lipids, while the other spans are predicted to be more shielded from the lipids by protein. By Fourier analysis of hydrophobicity, six amphipathic alpha-helical segments are predicted in extra-membrane regions, including the region from Glu-196 to Asn-214. Fourier analysis of sequence variation in the b- and the c-subunits of the Escherichia coli F1F0 ATP synthase indicates that the single transmembrane span of the b-subunit and the C-terminal span of the c subunit each have a face in contact with membrane lipids. On the basis of this analysis topographical models for the a- and c-subunits and for the F0 complex are proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号