首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seasonal variation in denitrification activity was measured in twoflooded water meadows, one on peaty and one on sandy soil, over a three-yearperiod. Measurements were taken during flooded and drained periods, usingthe acetylene-blockage technique, and the rates were compared to massbalance estimates of nitrate removal in the percolating water.Denitrification activity was higher in sandy soil than in peaty soil. Higherwater infiltration rate and thereby higher nitrate load was considered to bethe cause of the higher denitrification in the sandy soil. Floodingsignificantly increased denitrification, and the rates were higher in autumnand winter than in spring. This was considered to be a result of highernitrogen concentration in inflowing stream water during winter. Annualdenitrification was estimated to 430–460 kg N ha-1yr-1 in the sandy soil meadow, and 220 kg N ha-1yr-1 in the peaty soil meadow. In the sandy soil there was alarge discrepancy between nitrate removal rates and denitrification rates,which can be explained by nitrification of ammonium released from the soil.In the peaty soil nitrate disappearance and denitrification correspondedfairly well.  相似文献   

2.
Intensive dairy farming systems are a large source of emission of the greenhouse gas nitrous oxide (N2O), because of high nitrogen (N) application rates to grasslands and silage maize fields. The objective of this study was to compare measured N2O emissions from two different soils to default N2O emission factors, and to look at alternative emission factors based on (i) the N uptake in the crop and (ii) the N surplus of the system, i.e., N applied minus N uptake by the crop. Twelve N fertilization regimes were implemented on a sandy soil (typic endoaquoll) and a clay soil (typic endoaquept) in the Netherlands, and N2O emissions were measured throughout the growing season. Highest cumulative fluxes of 1.92 and 6.81 kg N2O-N ha–1 for the sandy soil and clay soil were measured at the highest slurry application rate of 250 kg N ha–1. Background emissions from unfertilized soils were 0.14 and 1.52 kg N2O-N ha–1 for the sandy soil and the clay soil, respectively. Emission factors for the sandy soil averaged 0.08, 0.51 and 0.26% of the N applied via fertilizer, slurry, and combinations of both. For the clay soil, these numbers were 1.18, 1.21 and 1.69%, respectively. Surplus N was linearly related to N2O emission for both the sandy soil (R2=0.60) and the clay soil (R2=0.40), indicating a possible alternative emission factor. We concluded that, in our study, N2O emission was not linearly related to N application rates, and varied with type and application rate of fertilizer. Finally, the relatively high emission from the clay soil indicates that background emissions might have to be taken into account in N2O budgets.  相似文献   

3.
Urine patches are considered to be important sites for nitrous oxide (N2O) production through nitrification and denitrification due to their high concentration of nitrogen (N). The aim of the present study was to determine the microbial source and size of production of N2O in different zones of a urine patch on grassland on peat soil. Artificial urine was applied in elongated patches of 4.5 m. Four lateral zones were distinguished and sampled for four weeks using an intact soil core incubation method. Incubation of soil cores took place without any additions to the headspace to determine total N2O production, with acetylene addition to determine total denitrification (N2O+N2), and with methyl fluoride to determine the N2O produced through denitrification.Nitrous oxide production was largest in the centre and decreased towards the edge of the patch. Maximum N2O production was about 50 mg N m–2 d–1 and maximum denitrification activity was 70 mg N m–2 d–1. Nitrification was the main N2O producing process. Nitrous oxide production through denitrification was only of significance when denitrification activity was high. Total N loss through nitrification and denitrification over 31 days was 4.1 g N per patch which was 2.2% of the total applied urine-N.  相似文献   

4.
Nitrogen loss from grassland on peat soils through nitrous oxide production   总被引:2,自引:0,他引:2  
Koops  J.G.  van Beusichem  M.L.  Oenema  O. 《Plant and Soil》1997,188(1):119-130
Nitrous oxide (N2O) in soils is produced through nitrification and denitrification. The N2O produced is considered as a nitrogen (N) loss because it will most likely escape from the soil to the atmosphere as N2O or N2. Aim of the study was to quantify N2O production in grassland on peat soils in relation to N input and to determine the relative contribution of nitrification and denitrification to N2O production. Measurements were carried out on a weekly basis in 2 grasslands on peat soil (Peat I and Peat II) for 2 years (1993 and 1994) using intact soil core incubations. In additional experiments distinction between N2O from nitrification and denitrification was made by use of the gaseous nitrification inhibitor methyl fluoride (CH3F).Nitrous oxide production over the 2 year period was on average 34 kg N ha-1 yr-1 for mown treatments that received no N fertiliser and 44 kg N ha-1 yr-1 for mown and N fertilised treatments. Grazing by dairy cattle on Peat I caused additional N2O production to reach 81 kg N ha-1 yr-1. The sub soil (20–40 cm) contributed 25 to 40% of the total N2O production in the 0–40 cm layer. The N2O production:denitrification ratio was on average about 1 in the top soil and 2 in the sub soil indicating that N2O production through nitrification was important. Experiments showed that when ratios were larger than l, nitrification was the major source of N2O. In conclusion, N2O production is a significant N loss mechanism in grassland on peat soil with nitrification as an important N2O producing process.  相似文献   

5.
In a field experiment using microplots, a flooded Crowley silt loam (Typic Albaqualfs) rice soil was fertilized with 15N labelled (60–74 atom %) urea and KNO3. Emission of N2, N2O and CH4 and accumulation in soil were measured for 21 d after fertilizer application.Emission of 15N2-N measured from the urea and KNO3 treated plots ranged from <15 to 570 and from 330 to 3,420 g ha–1 d–1, respectively. Entrapped 15N2-N in the urea treated microplots was significantly lower (<15 g to 2.1 kg ha–1) on all sampling dates compared to the 15N2-N gas accumulation in the KNO3 treated plots (6.4 to 31.5 kg ha–1). Emissions of N2O-N were low and did not exceed 4 g ha–1 d–1. Fluxes of CH4 from the fertilizer and control plots were low and never exceeded 33 g ha–1 d–1. Maximum accumulation of CH4 in the flooded soil measured 460 and 195 g ha–1 for the urea and KNO3 treatments, respectively.  相似文献   

6.
Denitrification and N2O emission from urine-affected grassland soil   总被引:1,自引:0,他引:1  
Denitrification and N2O emission rates were measured following two applications of artificial urine (40 g urine-N m–2) to a perennial rye-grass sward on sandy soil. To distinguish between N2O emission from denitrification or nitrification, urine was also applied with a nitrification inhibitor (dicyandiamide, DCD). During a 14 day period following each application, the soil was frequently sampled, and incubated with and without acetylene to measure denitrification and N2O emission rates, respectively.Urine application significantly increased denitrification and N2O emission rates up to 14 days after application, with rates amounting to 0.9 and 0.6 g N m–2 day–1 (9 and 6 kg N ha–1 day–1), respectively. When DCD was added to the urine, N2O emission rates were significantly lower from 3 to 7 days after urine application onwards. Denitrification was the main source of N2O immediately following each urine application. 14 days after the first application, when soil water contents dropped to 15% (v/v) N2O mainly derived from nitrification.Total denitrification losses during the 14 day periods were 7 g N m–2, or 18% of the urine-N applied. Total N2O emission losses were 6.5 and 3 g N m–2, or 16% and 8% of the urine-N applied for the two periods. The minimum estimations of denitrification and N2O emission losses from urine-affected soil were 45 to 55 kg N ha–1 year–1, and 20 to 50 kg N ha–1 year–1, respectively.  相似文献   

7.
Summary Emissions of nitrous oxide and soil nitrogen pools and transformations were measured over an annual cycle in two forests and one pasture in tropical deciduous forest near Chamela, México. Nitrous oxide flux was moderately high (0.5–2.5 ng cm–2 h–1) during the wet season and low (<0.3 ng cm–2 h–1) during the dry season. Annual emissions of nitrogen as nitrous oxide were calculated to be 0.5–0.7 kg ha–1 y–1, with no substantial difference between the forests and pasture. Wetting of dry soil caused a large but short-lived pulse of N2O flux that accounted for <2% of annual flux. Variation in soil water through the season was the primary controlling factor for pool sizes of ammonium and nitrate, nitrogen transformations, and N2O flux.  相似文献   

8.
Drainage of waterlogged sites has been part of the normal forestry practice in Fennoscandia, the Baltic countries, the British Isles and in some parts of Russia since the early 20th century, and currently, about 15 million hectares of peatlands and other wetlands have been drained for forestry purposes. The rate of forest clear-felling on drained peatlands will undergo a rapid increase in the near future, when a large number of these forests approach their regeneration age. A small-scale pilot survey was performed at two nutrient-rich and old peatland drainage areas in southern Finland to study if forest clear-felling has significant impacts on the exchange of nitrous oxide (N2O) and methane (CH4) between soil and atmosphere. The average N2O emissions from the two drainage areas during three growing seasons following clear-felling were 945 and 246 g m–2 d–1. The corresponding CH4 fluxes were –0.07 and –0.52 mg m–2 d–1. Clear-felling had impacts on the environmental factors known to affect the N2O and CH4 fluxes of peatlands, i.e. clear-felling raised the water table level and increased the peat temperature. However, no substantial changes in the fluxes of CH4 following clear-felling were observed. The results concerning N2O indicated a potential for increased emissions following clear-felling of drained peatland forests, but further studies are needed for a critical evaluation of the impacts of clear-felling on the fluxes of CH4 and N2O.  相似文献   

9.
Denitrification in the top and sub soil of grassland on peat soils   总被引:2,自引:0,他引:2  
Denitrification is an important process in the nitrogen (N) balance of intensively managed grassland, especially on poorly drained peat soils. Aim of this study was to quantify the N loss through denitrification in the top and sub soil of grassland on peat soils. Sampling took place at 2 sites with both control (0 N) and N fertilised (+ N) treatments. Main difference between the sites was the ground water level. Denitrification was measured on a weekly basis for 2 years with a soil core incubation technique using acetylene (C2H2) inhibition. Soil cores were taken from the top soil (0–20 cm depth) and the sub soil (20–40 cm depth) and incubated in containers for 24 hours. The denitrification rate was calculated from the nitrous oxide production between 4 and 24 hours of incubation. Denitrification capacities of the soils and the soil layers were also determined.The top soil was the major layer for denitrification with losses ranging from 9 to 26 kg N ha–1 yr–1 from the O N treatment. Losses from the top soil of the + N treatment ranged from 13 to 49 kg N ha–1 yr–1. The sub soil contributed, on average, 20% of the total denitrification losses from the 0–40 layer. Losses from the 0–40 cm layer were 2 times higher on the + N treatment than on the O N treatment and totalled up to 70 kg N ha–1 yr–1. Significant correlation coefficients were found between denitrification activity on the one hand, and ground water level, water filled pore space and nitrate content on the other, in the top soil but not in the sub soil. The denitrification capacity experiment showed that the availability of easily decomposable organic carbon was an important limiting factor for the denitrification activity in the sub soil of these peat soils.  相似文献   

10.
Increasing demand for food and fibre by the growing human population is driving significant land use (LU) change from forest into intensively managed land systems in tropical areas. But empirical evidence on the extent to which such changes affect the soil-atmosphere exchange of trace gases is still scarce, especially in Africa. We investigated the effect of LU on soil trace gas production in the Mau Forest Complex region, Kenya. Intact soil cores were taken from natural forest, commercial and smallholder tea plantations, eucalyptus plantations and grazing lands, and were incubated in the lab under different soil moisture conditions. Soil fluxes of nitrous oxide (N2O), nitric oxide (NO) and carbon dioxide (CO2) were quantified, and we approximated annual estimates of soil N2O and NO fluxes using soil moisture values measured in situ. Forest and eucalyptus plantations yielded annual fluxes of 0.3–1.3 kg N2O–N ha?1 a?1 and 1.5–5.2 kg NO–N ha?1 a?1. Soils of commercial tea plantations, which are highly fertilized, showed higher fluxes (0.9 kg N2O–N ha?1 a?1 and 4.3 kg NO–N ha?1 a?1) than smallholder tea plantations (0.1 kg N2O–N ha?1 a?1 and 2.1 kg NO–N ha?1 a?1) or grazing land (0.1 kg N2O–N ha?1 a?1 and 1.1 kg NO–N ha?1 a?1). High soil NO fluxes were probably the consequence of long-term N fertilization and associated soil acidification, likely promoting chemodenitrification. Our experimental approach can be implemented in understudied regions, with the potential to increase the amount of information on production and consumption of trace gases from soils.  相似文献   

11.
Soil nitrogen transformations and nitrous oxide fluxes were measured in a range of sagebrush steppe ecosystems in south-central Wyoming. Net nitrate production, measured in laboratory incubations, was highest in the ecosystem type dominated by Artemisia tridentata ssp. vaseyana, especially early in the growing season. Fluxes of nitrous oxide, measured in closed chambers and analyzed by gas chromatography, also tended to be higher in the same type, but only for short periods in the spring. Thereafter, all nitrous oxide fluxes were low and did not differ consistently among types. Estimated average annual fluxes for three Artemisia ecosystem types (dominated by Artemisia tridentata ssp. vaseyana, Artemisia tridentata ssp. wyomingensis, and Artemisia nova) were 0.32, 0.23 and 0.13 kg N2O-N ha–1 y–1 repsectively. Average annual flux, weighted by the areal extent of these and other vegetation types in the region, was approximately 0.21 kg N2O-N ha–1y–1. Assuming this landscape is representative of sagebrush steppe, we calculate a flux of 9.5 × 109 g y–1 of N2O-N from U.S. sagebrush steppe, and a flux of 1.1 × 1011 g y–1 of N20-N from analogous desert and semi-desert shrublands of the world.  相似文献   

12.
Understanding nitrous oxide (N2O) and methane (CH4) fluxes from agricultural soils in semi‐arid climates is necessary to fully assess greenhouse gas emissions from bioenergy cropping systems, and to improve our knowledge of global terrestrial gaseous exchange. Canola is grown globally as a feedstock for biodiesel production, however, resulting soil greenhouse gas fluxes are rarely reported for semi‐arid climates. We measured soil N2O and CH4 fluxes from a rain‐fed canola crop in a semi‐arid region of south‐western Australia for 1 year on a subdaily basis. The site included N fertilized (75 kg N ha?1 yr?1) and nonfertilized plots. Daily N2O fluxes were low (?1.5 to 4.7 g N2O‐N ha?1 day?1) and culminated in an annual loss of 128 g N2O‐N ha?1 (standard error, 12 g N2O‐N ha?1) from N fertilized soil and 80 g N2O‐N ha?1 (standard error, 11 g N2O‐N ha?1) from nonfertilized soil. Daily CH4 fluxes were also low (?10.3 to 11.9 g CH4‐C ha?1 day?1), and did not differ with treatments, with an average annual net emission of 6.7 g CH4–C ha?1 (standard error, 20 g CH4–C ha?1). Greatest daily N2O fluxes occurred when the soil was fallow, and following a series of summer rainfall events. Summer rainfall increased soil water contents and available N, and occurred when soil temperatures were >25 °C, and when there was no active plant growth to compete with soil microorganisms for mineralized N; conditions known to promote N2O production. The proportion of N fertilizer emitted as N2O, after correction for emissions from the no N fertilizer treatment, was 0.06%; 17 times lower than IPCC default value for the application of synthetic N fertilizers to land (1.0%). Soil greenhouse gas fluxes from bioenergy crop production in semi‐arid regions are likely to have less influence on the net global warming potential of biofuel production than in temperate climates.  相似文献   

13.
Rates and pathways of nitrous oxide production in a shortgrass steppe   总被引:5,自引:2,他引:3  
Most of the small external inputs of N to the Shortgrass steppe appear to be conserved. One pathway of loss is the emission of nitrous oxide, which we estimate to account for 2.5–9.0% of annual wet deposition inputs of N. These estimates were determined from an N2O emission model based on field data which describe the temporal variability of N2O produced from nitrification and denitrification from two slope positions. Soil water and temperature models were used to translate records of air temperature and precipitation between 1950 and 1984 into variables appropriate to drive the gas flux model, and annual N2O fluxes were estimated for that period. The mean annual fluxes were 80 g N ha–1 for a midslope location and 160 g N ha–1 for a swale. Fluxes were higher in wet years than in dry, ranging from 73 to 100 g N ha–1y–1at the midslope, but the variability was not high. N2O fluxes were also estimated from cattle urine patches and these fluxes while high within a urine patch, did not contribute significantly to a regional budget. Laboratory experiments using C2H2 to inhibit nitrifiers suggested that 60–80% of N2O was produced as a result of nitrification, with denitrification being less important, in contrast to our earlier findings to the contrary. Intrasite and intraseasonal variations in N2O flux were coupled to variations in mineral N dynamics, with high rates of N2O flux occurring with high rates of inorganic N turnover. We computed a mean flux of 104 g N ha–1 y–1 from the shortgrass landscape, and a flux of 2.6 × 109 g N y from all shortgrass steppe (25 × 106 ha).  相似文献   

14.
Clough  T.J.  Ledgard  S.F.  Sprosen  M.S.  Kear  M.J. 《Plant and Soil》1998,199(2):195-203
A field lysimeter experiment was conducted over a 406 day period to determine the effect of different soil types on the fate of synthetic urinary nitrogen (N). Soil types included a sandy loam, silty loam, clay and peat. Synthetic urine was applied at 1000 kg N ha-1, during a winter season, to intact soil cores in lysimeters. Leaching losses, nitrous oxide (N2O) emissions, and plant uptake of N were monitored, with soil 15N content determined upon destructive sampling of the lysimeters. Plant uptake of urine-N ranged from 21.6 to 31.4%. Soil type influenced timing and form of inorganic-N leaching. Macropore flow occurred in the structured silt and clay soils resulting in the leaching of urea. Ammonium (NH 4 + –N), nitrite (NO 2 - –N) and nitrate (NO3 -–N) all occurred in the leachates with maximum concentrations, varying with soil type and ranging from 2.3–31.4 g NH 4 + –N mL-1, 2.4–35.6 g NO 2 - –N mL-1, and 62–102 g NO 3 - –N mL-1, respectively. Leachates from the peat and clay soils contained high concentrations of NO 2 - –N. Gaseous losses of N2O were low (<2% of N applied) over a 112 day measurement period. An associated experiment showed the ratio of N2–N:N2O–N ranged from 6.2 to 33.2. Unrecovered 15N was presumed to have been lost predominantly as gaseous N2. It is postulated that the high levels of NO 2 - –N could have contributed to chemodenitrification mechanisms in the peat soil.  相似文献   

15.
Nitrous oxide emissions from a cropped soil in a semi-arid climate   总被引:5,自引:0,他引:5  
Understanding nitrous oxide (N2O) emissions from agricultural soils in semi‐arid regions is required to better understand global terrestrial N2O losses. Nitrous oxide emissions were measured from a rain‐fed, cropped soil in a semi‐arid region of south‐western Australia for one year on a sub‐daily basis. The site included N‐fertilized (100 kg N ha?1 yr?1) and nonfertilized plots. Emissions were measured using soil chambers connected to a fully automated system that measured N2O using gas chromatography. Daily N2O emissions were low (?1.8 to 7.3 g N2O‐N ha?1 day?1) and culminated in an annual loss of 0.11 kg N2O‐N ha?1 from N‐fertilized soil and 0.09 kg N2O‐N ha?1 from nonfertilized soil. Over half (55%) the annual N2O emission occurred from both N treatments when the soil was fallow, following a series of summer rainfall events. At this time of the year, conditions were conducive for soil microbial N2O production: elevated soil water content, available N, soil temperatures generally >25 °C and no active plant growth. The proportion of N fertilizer emitted as N2O in 1 year, after correction for the ‘background’ emission (no N fertilizer applied), was 0.02%. The emission factor reported in this study was 60 times lower than the IPCC default value for the application of synthetic fertilizers to land (1.25%), suggesting that the default may not be suitable for cropped soils in semi‐arid regions. Applying N fertilizer did not significantly increase the annual N2O emission, demonstrating that a proportion of N2O emitted from agricultural soils may not be directly derived from the application of N fertilizer. ‘Background’ emissions, resulting from other agricultural practices, need to be accounted for if we are to fully assess the impact of agriculture in semi‐arid regions on global terrestrial N2O emissions.  相似文献   

16.
Primary tropical forests generally exhibit large gaseous nitrogen (N) losses, occurring as nitric oxide (NO), nitrous oxide (N2O) or elemental nitrogen (N2). The release of N2O is of particular concern due to its high global warming potential and destruction of stratospheric ozone. Tropical forest soils are predicted to be among the largest natural sources of N2O; however, despite being the world’s second-largest rainforest, measurements of gaseous N-losses from forest soils of the Congo Basin are scarce. In addition, long-term studies investigating N2O fluxes from different forest ecosystem types (lowland and montane forests) are scarce. In this study we show that fluxes measured in the Congo Basin were lower than fluxes measured in the Neotropics, and in the tropical forests of Australia and South East Asia. In addition, we show that despite different climatic conditions, average annual N2O fluxes in the Congo Basin’s lowland forests (0.97 ± 0.53 kg N ha−1 year−1) were comparable to those in its montane forest (0.88 ± 0.97 kg N ha−1 year−1). Measurements of soil pore air N2O isotope data at multiple depths suggests that a microbial reduction of N2O to N2 within the soil may account for the observed low surface N2O fluxes and low soil pore N2O concentrations. The potential for microbial reduction is corroborated by a significant abundance and expression of the gene nosZ in soil samples from both study sites. Although isotopic and functional gene analyses indicate an enzymatic potential for complete denitrification, combined gaseous N-losses (N2O, N2) are unlikely to account for the missing N-sink in these forests. Other N-losses such as NO, N2 via Feammox or hydrological particulate organic nitrogen export could play an important role in soils of the Congo Basin and should be the focus of future research.Subject terms: Microbiology, Biogeochemistry  相似文献   

17.
Pristine peatlands have generally low nitrous oxide (N2O) emissions but drainage and management practices enhance the microbial processes and associated N2O emissions. It is assumed that leaving peat soils from intensive management, such as agriculture, will decrease their N2O emissions. In this paper we report how the annual N2O emission rates will change when agricultural peat soil is either left abandoned or afforested and also N2O emissions from afforested peat extraction sites. In addition, we evaluated a biogeochemical model (DNDC) with a view to explaining GHG emissions from peat soils under different land uses. The abandoned agricultural peat soils had lower mean annual N2O emissions (5.5?±?5.4?kg?N?ha?1) than the peat soils in active agricultural use in Finland. Surprisingly, N2O emissions from afforested organic agricultural soils (12.8?±?9.4?kg?N?ha?1) were similar to those from organic agricultural soils in active use. These emissions were much higher than those from the forests on nutrient rich peat soils. Abandoned and afforested peat extraction sites emitted more N2O, (2.4?±?2.1?kg?N?ha?1), than the areas under active peat extraction (0.7?±?0.5?kg?N?ha?1). Emissions outside the growing season contributed significantly, 40% on an average, to the annual emissions. The DNDC model overestimated N2O emission rates during the growing season and indicated no emissions during winter. The differences in the N2O emission rates were not associated with the age of the land use change, vegetation characteristics, peat depth or peat bulk density. The highest N2O emissions occurred when the soil C:N ratio was below 20 with a significant variability within the measured C:N range (13–27). Low soil pH, high nitrate availability and water table depth (50–70?cm) were also associated with high N2O emissions. Mineral soil has been added to most of the soils studied here to improve the fertility and this may have an impact on the N2O emissions. We infer from the multi-site dataset presented in this paper that afforestation is not necessarily an efficient way to reduce N2O emissions from drained boreal organic fields.  相似文献   

18.
I. Watanabe 《Plant and Soil》1986,90(1-3):343-357
Summary Of the 143 million hectares of cultivated rice land in the world, 75% are planted to wetland rice. Wet or flooded conditions favour biological nitrogen fixation by providing (1) photic-oxic floodwater and surface soil for phototrophic, free-living or symbiotic blue-green algae (BGA), and (2) aphotic-anoxic soil for anaerobic or microaerobic, heterotrophic bacteria. TheAzolla-Anabaena symbiosis can accumulate as much as 200 kg N ha–1 in biomass. In tropical flooded fields, biomass production from a singleAzolla crop is about 15 t fresh weight ha–1 or 35 kg N ha–1. Low tolerance for high temperature, insect damage, phosphorus requirement, and maintenance of inoculum, limit application in the tropics. Basic work on taxonomy, sporulation, and breeding ofAzolla is needed. Although there are many reports of the positive effect of BGA inoculation on rice yield, the mechanisms of yield increase are not known. Efficient ways to increase N2-fixation by field-grown BGA are not well exploited. Studies on the ecology of floodwater communities are needed to understand the principles of manipulating BGA. Bacteria associated with rice roots and the basal portion of the shoot also fix nitrogen. The system is known as a rhizocoenosis. N2-fixation in rhizocoenosis in wetland rice is lower than that ofAzolla or BGA. Ways of manipulating this process are not known. Screening rice varieties that greatly stimulate N2-fixation may be the most efficient way of manipulating the rhizocoenosis. Stimulation of N2-fixation by bacterial inoculation needs to be quantified.  相似文献   

19.
The increasing atmospheric N2O concentration and the imbalance in its global budget have triggered the interest in quantifying N2O fluxes from various ecosystems. This study was conducted to estimate the annual N2O emissions from a transitional grassland-forest region in Saskatchewan, Canada. The study region was stratified according to soil texture and land use types, and we selected seven landscapes (sites) to cover the range of soil texture and land use characteristics in the region. The study sites were, in turn, stratified into distinguishable spatial sampling units (i.e., footslope and shoulder complexes), which reflected the differences in soils and soil moisture regimes within a landscape. N2O emission was measured using a sealed chamber method. Our results showed that water-filled pore space (WFPS) was the variable most correlated to N2O fluxes. With this finding, we estimated the total N2O emissions by using regression equations that relate WFPS to N2O emission, and linking these regression equations with a soil moisture model for predicting WFPS. The average annual fluxes from fertilized cropland, pasture/hay land, and forest areas were 2.00, 0.04, and 0.02 kg N2O-N ha–1 yr–1, respectively. The average annual fluxes for the medium- to fine-textured and sandy-textured areas were 1.40 and 0.04 kg N2O-N ha–1 yr–1, respectively. The weighted-average annual flux for the study region is 0.95 kg N2O-N ha–1yr–1. The fertilized cropped areas covered only 47% of the regional area but contributed about 98% of the regional flux. We found that in the clay loam, cropped site, 2% and 3% of the applied fertilizer were emitted as N2O on the shoulders and footslopes, respectively.Contribution no. R824 of Saskatchewan Center for Soil Research, Saskatoon, Saskatchewan, Canada  相似文献   

20.
The objectives of this study were (1) to determine the effect of land use on N2O emissions from Inner Mongolian semi-arid grasslands of China and (2) to evaluate the process-based DNDC model to extrapolate our field measurements from a limited number of sites to a larger temporal and spatial scale. The results suggest the following. Rainfall event was the dominant controlling factor for the seasonal variations of the N2O fluxes. The seven selected sites exhibited a similar seasonal trend in N2O emission, despite their different vegetation, land use and textures. In the typical steppe, N2O fluxes generally decrease with decreasing soil organic C (SOC) and total N content, indicating that soil C and N pools are very important in determining the spatial magnitude of the N2O flux. N2O emissions were very small during the entire growing season, averaging only 0.76 g N2O-N ha–1 day–1 for the five typical steppe sites, 0.35 g N2O-N ha–1 day–1 for the mown meadow steppe site, and 0.83 g N2O-N ha–1 day–1 from the cropped meadow steppe site. No enhanced effect due to overgrazing was observed for the N2O emission from the semi-arid grasslands. This was mainly results from the decreased SOC content due to overgrazing, which may have reduced the promoting effect of increased soil bulk density by trampling and animal excreta. Except for the mown steppe site, the model predictions of the N2O flux for the six different sites agree well with the observed values (r 2 ranging from 0.35 to 0.68). It would be concluded that the DNDC model captured the key driving process for N2O emission. Nitrification was the predominant process, contributing 64–88% to the N2O emission. However, in terms of the magnitude of the N2O emission, further modifications should focus on the underestimated N2O flux during the spring and autumn periods (nitrification, freeze/thaw cycles) and the effect of topography and the mowing on N2O emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号