首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
甜瓜子叶离体培养直接再生不定芽的形态学和解剖学观察   总被引:7,自引:0,他引:7  
对甜瓜品种“西莫洛托”子叶离体培养直接再生不定芽过程进行了形态学和解剖学观察,结果表明:以子叶远轴面接触培养基培养能直接再生不定芽,以子叶近轴面接触培养基培养只能得到无序组织块;不定芽再生过程中,培养4d时,子叶变绿,但还不见有细胞分裂,约6d时,在子叶外植体的形态学下端切口处的近轴面到有局部的表皮细胞和亚表皮细胞分裂活跃,初步形成了拟分生组织,7-9d时,这些拟分生组织形成了肉眼可见的小突起,10-14d时,这些突起变得狭长,发育成幼叶或叶状体,它们在外植体上成族存在,但此时还没有典型的“芽”结构出现,15-20d时,成族突起形成幼叶丛,一些幼叶和叶状体的近轴面的基部出现叶腋分生组织,这些将外植体转入伸长培养基,3-5d后,幼叶充分展开,成丛叶状,多个叶腋分生组织同时发育成芽,再过2-7d,相继有不定芽从丛叶外植体上伸长,将伸长的不定芽切下,可促使外 植体上的其它不定芽伸长。  相似文献   

2.
Summary Adventitious shoots were induced on the proximal portion of leaves excised from Fagus orientalis shoot cultures derived from a 2-mo.-old or a 4-yr-old seedling. Up to 90% of the explants formed between 13 and 19 buds after culture on Woody Plant Medium containing 2.9 μM indole-3-acetic acid and 4.5 μM thidiazuron. Adventitious buds developed mostly on petiole stub callus, but also on the midvein. The histological events leading to shoot organogenesis were examined. Some shoots developed directly from subepidermis or epidermis, but most originated indirectly from cell file proliferation produced by periclinally dividing cells subadjacent to the epidermis. Some cells in the outermost layers of these files became meristematic and divided extensively, resulting in the formation of meristemoids after 16 d of culture. Dedifferentiation into meristematic cells, which exhibited a large, prominent nucleus, densely-stained cytoplasm, and a high nucleus-to-cell area ratio, was generally associated with anticlinal divisions in cells previously originated by periclinal division. Subepidermal cell proliferation occurred mainly in the abaxial surface of the explant, which initially formed a diffuse cambium and later evolved to a phellogenic cambium. Some meristemoids were also differentiated by lenticel phellogen. Organized cell divisions in meristemoids gave rise to bud primordia that emerged from the explant surface and differentiated a protoderm. The progressive structural differentiation of the apical meristem, leaf primordia, and procambial strands led, after about 28 d of culture, to shoots with vascular connections with treachery elements previously differentiated in adjacent tissues.  相似文献   

3.
In vitro morphogenesis of Cucumis melo var. inodorus   总被引:2,自引:0,他引:2  
In vitro morphogenesis of C. melo L. var. inodorus was studied by the induction of adventitious buds and somatic embryos. Organogenesis was obtained from cotyledon segments and leaf discs in culture medium supplemented with benzylaminopurine (1 mg l−1) and somatic embryogenesis was induced in medium containing 2,4-dichlorophenoxyacetic acid (5 mg l−1) + thidiazuron (1 mg l−1). Through histological analysis it was possible to verify that in cotyledonary explants, protuberances that do not develop into well-formed shoot buds and leaf primordia are more frequently formed than complete shoot buds, resulting in a low frequency of plant recovery in the organogenic process. A high percentage of explants responded with the formation of somatic embryos; the microscopical analysis showed that the somatic embryos lacking well developed apical meristems had a low conversion rate into plants. Plant recovery was not obtained from leaf-disc explants, with high rates of contamination and formation of protuberances which did not develop into shoot buds. Histological sections showed the development of epidermis and leaf hairs, indicating those structures could be leaf primordia; however, these were not associated with a shoot apical meristem. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

4.
Adventitious organogenetic structures were produced in vitro using cotyledon explants excised from 14 day-old pepper seedlings. The best response was observed on MS medium containing 5.7 μM indole-3-acetic acid and 8.8 μM 6-benzylaminopurine. However, when transferred onto elongation medium (MS + 2.8 μM gibberellic acid), these structures frequently developed into leaf-like features rather than into normal shoots. Interestingly, the histological study conducted on the cut end of the cotyledonary petiole revealed a direct induction of numerous teratological protuberances that arise around the cut end of the explant. On the contrary, typical organized bud meristems were rarely observed. Thus, the low number of plants obtained after transfer onto elongation medium seems to be a consequence of this teratological developmental process, frequently associated with fasciated and degenerative meristems, rather than a defect in shoot development from available meristems.  相似文献   

5.
前文发现在基本培养基上添加赤霉素和细胞分裂素能促进离体培养的大岩桐花蕾直接再生花芽[1],后又发现细胞分裂素能协同赤霉素促进离体培养大岩桐花萼切块高频率直接再生花芽[2,3],所得结果提示,这可能是一个研究赤霉素和细胞分裂素在花分化发育中作用的良好实验系统。为了完善这一实验系统,明确离体培养的大岩桐花萼切块培养物直接再生花芽的起源以及花分化的形态进程是十分必要的。为此我们对离体培养大岩桐花萼切块的形态变化在体视显微镜下进行了系统观察,并进行了石蜡切片及电镜扫描观察。进行大岩桐(Sinningia speciosa Hiern)花萼切…  相似文献   

6.
Role of Thidiazuron (TDZ) in inducing adventitious organogenesis in Pongamia was studied. TDZ at different concentrations (0, 0.45, 2.27, 4.54, 6.71, 9.08, 11.35, 13.12 and 22.71 μM) were used for induction of caulogenic bud formation in deembryonated cotyledon explants. Each cotyledon was cut into three segments and identified as proximal, middle and distal. Duration of TDZ exposure, influence of the segment and orientation of the explant were studied. TDZ at 11.35 μM concentration was optimum for the induction of shoots and rapid elongation. Shoots induced at higher concentration elongated after several passages in growth regulator free medium, thereby extending the period of differentiation. Exposure of the explant for 20 days yielded more number of buds than 10 days. Proximal segment of the cotyledon was more responsive. Contact of abaxial surface in the medium was more effective and generated more buds than the adaxial side. Buds differentiated and elongated on transfer to MS basal medium for 8–12 passages of 15 days each. Rooting and elongation of shoots was achieved in charcoal supplemented half-strength MS medium. Rooted plantlets survived on transfer to sand soil mixture. The plants were hardened and transferred to green house. This is the first report on in vitro regeneration of Pongamia pinnata via adventitious organogenesis using TDZ. This protocol may find application in studies in genetic transformation, isolation of somaclonal variants and in induction of mutants. It also provides a system to study the inhibitory role of TDZ on shoot differentiation.  相似文献   

7.
In the present study, high frequency regeneration has been obtained via de novo direct shoot organogenesis from leaf and internode explants in Murashige and Skoog (MS) basal medium without any phytohormone supplementation in Bacopa monnieri, an indigenous traditionally used medicinal herb. Leaves and internodes from different positions were excised from 4-weeks-old in vitro propagated B. monnieri plants and cultured on MS basal medium supplemented with 3% (w/v) sucrose and 0.75% (w/v) agar for 4 weeks. The induction of de novo shoot buds was observed at petiolar cut edges of leaf and both proximal and distal cut ends of internode explants within 10–15 days of culture. The first histological changes could be observed after 4–5 days, with meristematic activity of vascular bundles. Proliferation of epidermal cells gave rise to dome-shaped protuberances followed by shoot apical meristems formation and their vascular connections with explant tissues within 2 weeks of culture. However, a basipetal gradient of shoot regeneration from both types of explants collected along the branch axis was noticed after 4 weeks of culture. Leaf and internode explants near the basal region exhibited significantly higher number of shoot buds and micro shoots (8.8/leaf explant and 15/internode explant). Microshoots (7–12 micro shoots/leaf or internode explants) elongated (shoot length 8–9 cm) within 8 weeks on phytohormone free MS medium. Excised micro shoots rooted (100%) in hormone free MS medium within two weeks of culture. Rooted plants were then acclimatized and transferred to field with 95% survival. This protocol may be used for micropropagation, genetic transformation as well as a model system for evaluation of changes associated with acquisition of competence of differentiated cells in phytohormone free medium.  相似文献   

8.
Histological events during adventitious shoot formation in cultured shoot apex of 10–12-day-old seedlings and adventitious root formation in the elongated shoot of Taiwania floudana Gaussen were examined. Ceils of the peripheral subsurface layers of the shoot apex responded to cytokinin and divided into meristematic cells from which the shoot primordia were proliferated. A few bud primordia also originated from the epidermis and hypodermis of the adaxial surface of the cotyledon. The parenchyma of leaf gap of the shoots cultured in rooting medium dedifferentiated to regain the capacity of division and form adventitious root. Besides, cells that had relatively low potential of differentiation, such as the cortex parenchyma, pith ray, phloem parenchyma and cambium zone, albeit initiated to divide, but seldom formed root primordium. The origin of the adventitious roots in the leaf gap facilitated the establishment of the vascular connection between the shoot and root.  相似文献   

9.
Summary Tamarind, a multipurpose tropical tree species, is economically important for sustainable development of wasteland due to its hardy nature and adaptability to various agroclimatic ocnditions. Reports on in vitro morphogenesis in this species are limited, due to its recalcitrant and callogenic nature. To overcome these limitations, an attempt was made to induce meristematic activity in seedling explants. Seedlings were germinated in medium with or without thidiazuron (4.54, 9.08, 13.12, 18.16 μM). This growth regulator restricted the differentiation of the apical meristem to form shoots. It triggered proliferation of the meristematic tissue at the cotyledonary node and a large number of meristematic buds appeared in a ridial pattern around the node. The meristematic activity extended to the junction of the epicotyl and hypocotyl, giving rise to buds in the form of protuberances in all sides of the junction. These buds differentiated to form shoot primordia and subsequently to shoots in medium devoid of growth regulators. Plants developed by micrografting of these shoots on seedling-derived rootstocks survived in soil.  相似文献   

10.
Summary Hypocotyl explants of melon (Cucumis melo L.) are capable of regenerating multiple shoots on Murashige and Skoog (1962) medium, augmented with 4.4 μM benzylademne. Regeneration from the hypocotyl is much more rapid than the more commonly reported regeneration from cotyledonary explants, producing shoots within 2 wk compared to more than a month required for cotyledon explants. The rapid regeneration response depends on the presence of a fragment of the cotyledon remaining attached to the hypocotyl. Controls were performed to ensure that the regeneration was not due to the presence of the shoot apical bud of the melon seedling after explant production. Scanning electron microscopy revealed that microsurgery to remove the apical bud left no excess bud material. Regeneration from the proximal part of the hypocotyl was due to production of a new shoot apical meristem, observed by histology. The apical meristem can be produced before leaf primordia in regeneration from the hypocotyl, in contrast to the regeneration process from the melon cotyledon.  相似文献   

11.
In vitro culture of hypocotyl explants from Kandelia candel, a common mangrove species, on hormone-free Murashige and Skoog (MS) medium resulted in shoot formation. Since the hypocotyls showed good potential for in vitro shoot multiplication, the process of bud primordium formation was analyzed from a histological viewpoint. A wound periderm first appeared at the top, exposed cut surface of the explants. The wound-induced meristem continued to divide giving rise to suberized cells oriented towards the cut surface. After formation of the suberized cell layers, the meristem and its inner derivatives differentiated into multilayered, uniformly packed parenchyma cells. Bud primordia differentiated from the dense cytoplasmic cells of the wound-induced meristem just beneath the suberized layer near the severed vascular bundles. Each explant produced several visible shoot buds. Furthermore, histological sections revealed that additional bud primordia were present within the explant just underneath the suberized cells and that these bud primordia appeared to be arrested in their development. The fact that additional bud primordia were present within the explant suggests that further manipulation of the explant is helpful to maximize the potential of this system.  相似文献   

12.
The tumor-like callus, obtained usually from the surface of explant of woody plant, may be originated from various parts, involving especially epidermis or hypodermis, distal from the cut surface of the explant. These experimental evidences may be used to support the conception of that exogenous hormones play an important role in the induction of callus. The developmental stages of establishment of the callus may be characterized by changes in cell morphology and metabolic condition of the tissue. During the induction or activation phase, a regressive change appears in the peripheral layers of the explant, involving a progress return to a meristematic state denoted by increasing nucleus and nucleolus size and accmnulation of RNA and results in the dedifferentiation of the cells. This is followed by a division stage with substantial accumulation of RNA and active cell division, thus, the peripheral tissue of the explant has been activated and become embryonic tissue and then, the division stage cannot be considered as the phase of regressive change or dedifferentiation. The formation of meristematic nodules in a common feature in developing callus culture and they are originated at random from solitary parenchymatons cells, which by means of dediffercntiation have become meristematic in character. The meristematic  相似文献   

13.
白菜(Brassica campestris Lssp.chinensis Makino)起源于欧洲的野生芸薹,有许多变种和类型,是我国尤其是长江流域及南方各省普遍栽培的重要蔬菜种类之一,在农业生产中占有重要的地位。由于白菜的植株再生频率同其他芸薹属作物相比较低,因此,影响了基因工程技术在白菜品种改良上的应用。虽  相似文献   

14.
Green bean (Phaseolus vulgaris L.) plants were regenerated from 3-day old seedling explants via organogenesis. The explants contained a cotyledon and a small portion (2–3 mm) of embryonic axis split in half. Explants were cultured on a defined medium containing glutamine as the sole nitrogen source. A ring of meristematic tissue was produced at the base of the axillary bud located at the cotyledonary node. The meristematic tissue was produced only if the axillary bud was present together with the cotyledon in the explant. Buds and shoots developed from the meristematic ring. Selected shoots produced roots when excised from the cluster of buds and transferred to root induction medium. Rooted shoots (plantlets) grew well and produced viable seeds when grown in the greenhouse. Histological studies revealed the origin of buds from the peripheral layers of the meristematic ring.Production of buds and shoots was a continuous process, so that new shoots could be removed from the explant for plantlet production every 10–14 days. With the cultivar Dark Red Kidney, an average of 49 buds and 8 shoots were regenerated per explant by 30 days after culture initiation. Sixty-seven percent of the shoots produced roots, and 90–95% of the plantlets survived greenhouse acclimatization to produce healthy plants.  相似文献   

15.
Summary In vitro plantlet regeneration was obtained from cultured cotyledon and young leaf explants of five Indian chile pepper cultivars (Capsicum annuum L. evs. Gujarat-1, Gujarat-2, Guntur-4, Selection-49, and Jwala). Adventitious shoot buds (ASB) were regenerated directly from cotyledon and young leaf explants in all the five cultivars on media containing benzyladenine (BA) alone or in combination with 1-naphthaleneacetic acid (NAA). Regeneration frequency was highly influenced by cultivar explant type, media combination and their interactions, except the interaction between cultivar and explant, for number of ASB per explant. Percent contribution of individual source suggested that selection of explant type followed by medium combination and cultivars was essential for obtaining high-frequency ASB induction. Across different cultivars the young leaf explant was found to be the most responsive explant, while Murashige and Skoog (MS) medium containing BA alone (17.8, 26.6, and 35.5 μM) was found to be the best medium for the production of maximum number of ASB. Between the two explants, shoot elongation was observed with ASB obtained from young leaf explants on MS medium containing BA (2.2 and 4.4 μM) and gibberellie acid (GA3) (1.4, 2.9, 4.3 and 5.8 μM). The MS medium fortified with 4.4 μM BA+2.9μM GA3 was optimum for shoot elongation. Elongated shoots were rooted on liquid MS medium supplemented with 2.9 μM indole-3-acetic acid (IAA) and successfully established ex vitro.  相似文献   

16.
In both Chamaedorea seifrizii Burret and C. cataractarum Martius each adult foliage leaf subtends one axillary bud. The proximal buds in C. seifrizii are always vegetative, producing branches (= new shoots or suckers); and the distal buds on a shoot are always reproductive, producing inflorescences. The prophyll and first few scale leaves of a vegetative branch lack buds. Transitional leaves subtend vegetative buds and adult leaves subtend reproductive buds. Both types of buds are first initiated in the axil of the second or third leaf primordia from the apex, P2 or P3. Later development of both types of bud tends to be more on the adaxial surface of the subtending leaf base than on the shoot axis. Axillary buds of C. cataractarum are similarly initiated in the axil of P2 or P3 and also have an insertion that is more foliar than cauline. However, all buds develop as inflorescences. Vegetative branches arise irregularly by a division of the apex within an enclosing leaf (= P1). A typical inflorescence bud is initiated in the axil of the enclosing leaf when it is in the position of P2 and when each new branch has initiated its own P1. No scale leaves are produced by either branch and the morphological relationship among branches and the enclosing leaf varies. Often the branches are unequal and the enclosing leaf is fasciated. The vegetative branching in C. cataractarum is considered to be developmentally a true dichotomy and is compared with other examples of dichotomous (= terminal) branching in the Angiospermae.  相似文献   

17.
Explanted cotyledons of mungbean Vigna radiata (L). Wilczek, variety Pag-asa-1, regenerated shoots directly from the basal adaxial side of the petiolar residue on MS medium supplemented with 8.9 M 6-benzyladenine. A simplified and rapid procedure for glycol methacrylate sectioning for histological observations was used to observe shoot initiation. At the time of culture, comparatively smaller and differentially stained epidermal cells were present on the basal adaxial region of the petiolar residue. A meristematic cell mass that developed at 48 h after culture appeared to be of epidermal and subepidermal cell origin. Scanning electron microscopy revealed shoot primordia and approximately 2 nodules at the base of the petiole as early as 48 h after culture. All of these structures developed into shoots during incubation.Abbreviations FAA formalin 5%–70% ethanol, 90%-acetic acid 5% - GMA glycol methacrylate - BA 6-benzyladenine  相似文献   

18.
The distribution of several arabinogalactan protein and pectic epitopes were studied during organogenesis in androgenic callus of wheat. In cell wall of mature and degenerating parenchyma cells, the arabinogalactan epitopes JIM4, JIM14, JIM16 or LM2 were expressed differently according to the cells location. LM2 was observed also in meristematic cells of regenerated shoot buds and leaves. Anti-pectin JIM7 labelled the wall of meristematic cells but fluorescence was strongest in outer walls of surface cells of callus and shoot buds coated by extracellular matrix surface network (ECMSN). During leaves growth the ECMSN disappeared, and JIM7 fluorescence decreased. JIM5 epitope was abundant in the cell walls lining the intercellular spaces of callus parenchyma and in tricellular junctions within regenerated buds and leaves.  相似文献   

19.
Cotyledon explants from zygotic embryos of Panax ginseng produced somatic embryos on Murashige and Skoog basal medium without growth regulators. Somatic embryos developed directly from epidermal cells at the cotyledon base. Somatic embryos were always formed from the side of the cotyledon opposite to the one attached to the medium surface regardless of cotyledon orientation. The frequency of somatic embryo formation from the abaxial epidermis (66%) was much higher than that from the adaxial epidermis (12%). Differences in embryogenic response were likely related to cell structure. Abaxial epidermal cells were filled with reserve materials (lipid bodies), while adaxial epidermal cells were devoid of any prominent reserves. During germination, the reserve materials in the cells of the cotyledons disappeared rapidly. At the same time, the competency of somatic embryo formation from cotyledon explants declined rapidly to zero. Upon culture of the cotyledon explants (for somatic embryo induction), lipid bodies slowly disappeared, but starch grains accumulated prominently. Reserve materials disappeared after commencement of embryogenic cell division. During germination, lipid bodies rapidly disappeared, and chloroplasts developed instead of starch grains. Received: 29 January 1997 / Revised version received: 16 April 1997 / Accepted: 9 May 1997  相似文献   

20.
In vitro shoot regeneration from sunflower cotyledonary explants can be obtained in the presence of kinetin and indole-3-acetic acid. In contrast, callus proliferation is obtained in the presence of 2,4-dichlorophenoxyacetic acid on culture medium. The purpose of this study was to investigate changes in protein profiles during callus and shoot development from cotyledonary explants and to correlate them with ontogenic stages during in vitro culture. Cotyledons cultured in the presence of 2,4-dichlorophenoxyacetic acid produced friable callus as a result of early division of parenchymatic cells associated with the vascular bundles of the explant. The callogenic ability was independent of the cotyledonary region used as starting explant. Direct shoot organogenesis was observed from the same type of cells growing in culture media supplemented with kinetin and indole-3-acetic acid. In this case, the regeneration potential varied among regions from which the explants were obtained. Protein profiles revealed differences associated with shoots or callus developmental programs. A 27-kDa polypeptide was uniquely detected in the explants undergoing shoot organogenesis. The amount of this polypeptide during the first 4 d of culture increased and was followed by the appearance of meristematic centers in histologically analyzed samples. This polypeptide could be used as a specific marker for in vitro shoot development in this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号