首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The nucleotide sequences upstream from the carlavirus open reading frames were examined for direct sequence homology. Blocks of homology were evident upstream from the 25 K ORFs of potato virus S (PVS), potato virus M (PVM) and lily symptomless virus (LSV), and upstream from the coat protein initiation codons of PVS, PVM, LSV, carnation latent virus and Helenium virus S. These blocks, which correspond to the 5′-terminal regions of the subgenomic RNAs, were shown to contain potential ribosome recognition sequences. The distances between the binding sites and initiation codons ranged from 20 to 40 nucleotides on the viral RNAs. Whilst the majority of chloroplasts mRNAs have a distance of 8 nucleotides between binding site and initiation codon, the remaining have a distance of 23 nucleotides which is similar to that reported here for the carlaviruses.  相似文献   

3.
We have investigated the intracellular location of RNAs transcribed from transfected DNA. COS cells transfected with a clone containing the human adult beta globin gene contain three classes of globin RNAs. Their 3' termini and splice sites are indistinguishable from those of mature reticulocyte beta globin mRNA, and they are polyadenylated. However, as determined by S1 mapping, their 5' sequences are different. The 5' terminus of one is the same as that of mature beta globin mRNA (+1, cap site). The presumed 5' terminus of the second is located 30 nucleotides downstream from the cap site (+30). The third class contains additional nucleotides transcribed from sequences located 5' to the cap site (5' upstream RNA). The 5' upstream RNA molecules are restricted to the nucleus and are more stable than heterogeneous nuclear RNA. The +30 and +1 RNAs are located primarily in the cytoplasm. The data support the notion that nucleotide sequences and/or secondary modifications in the 5' region determine if an RNA is to be transported.  相似文献   

4.
Most of the 400 RNA editing sites in flowering plant mitochondria are found in mRNAs. Consequently, the sequence vicinities of homologous sites are highly conserved between different species and are presumably recognized by likewise conserved trans-factors. To investigate the evolutionary adaptation to sequence variation, we have now analyzed the recognition elements of an editing site with divergent upstream sequences in the two species pea and cauliflower. This variation is tolerated at the site selected, because the upstream cis-elements reach into the 5'-UTR of the mRNA. To compare cis-recognition features in pea and cauliflower mitochondria, we developed a new in vitro RNA editing system for cauliflower. In vitro editing assays with deleted and mutated template RNAs show that the major recognition elements for both species are located within the conserved sequence. In cauliflower, however, the essential upstream nucleotides extend further upstream than they do in pea. In-depth analysis of single-nucleotide mutations reveals critical spacing of the editing site and the specific recognition elements, and shows that the +1 nucleotide identity is important in cauliflower, but not in pea.  相似文献   

5.
6.
7.
Both experimental work and surveys of the lengths of internal exons in nature have suggested that vertebrate internal exons require a minimum size of approximately 50 nucleotides for efficient inclusion in mature mRNA. This phenomenon has been ascribed to steric interference between complexes involved in recognition of the splicing signals at the two ends of short internal exons. To determine whether U1 small nuclear ribonucleoprotein, a multicomponent splicing factor that is involved in the first recognition of splice sites, contributes to the lower size limit of vertebrate internal exons, we have taken advantage of our previous observation that U1 small nuclear RNAs (snRNAs) which bind upstream or downstream of the 5' splice site (5'SS) stimulate splicing of the upstream intron. By varying the position of U1 binding relative to the 3'SS, we show that U1-dependent splicing of the upstream intron becomes inefficient when U1 is positioned 48 nucleotides or less downstream of the 3'SS, suggesting a minimal distance between U1 and the 3'SS of approximately 50 nucleotides. This distance corresponds well to the suggested minimum size of internal exons. The results of experiments in which the 3'SS region of the reporter was duplicated suggest an optimal distance of greater than 72 nucleotides. We have also found that inclusion of a 24-nucleotide miniexon is promoted by the binding of U1 to the downstream intron but not by binding to the 5'SS. Our results are discussed in the context of models to explain constitutive splicing of small exons in nature.  相似文献   

8.
In an effort to explore the molecular basis for agonist-induced destabilization of beta-adrenergic receptor mRNA, we investigated the nature of RNA-binding proteins both in untreated and agonist-treated DDT1-MF2 smooth muscle cells. Messenger RNAs for the alpha 1b-, beta 1-, and beta 2-adrenergic receptors as well as for beta-globin were transcribed in vitro, incubated with cytosolic fractions, covalently cross-linked by short-wave UV light, and analyzed by SDS-polyacrylamide gel electrophoresis. A prominent M(r) 35,000 radiolabeled protein(s) with the following characteristics was identified: (i) binds selectively to beta 1- and beta 2-adrenergic receptor mRNAs, both of which undergo agonist-induced down-regulation; (ii) does not bind to either alpha 1b-adrenergic receptor mRNA, which does not undergo agonist induced down-regulation, or to beta-globin mRNA; (iii) displays binding to beta 2-adrenergic receptor mRNA that is selectively competed by poly(U) RNA, but not poly(A), -(C), or -(G) RNA; and (iv) displays binding to receptor mRNA that can be competed by RNA harboring destabilizer sequences that are AU-rich and AUUUA pentamer-rich. The abundance of the M(r) 35,000 RNA-binding protein selective for beta-adrenergic receptor message, a factor we term beta ARB protein, varies inversely with the level of receptor mRNA, being induced by agonists that down-regulate receptor mRNA.  相似文献   

9.
5-Noncoding sequences have been tabulated for 211 messenger RNAs from higher eukaryotic cells. The 5'-proximal AUG triplet serves as the initiator codon in 95% of the mRNAs examined. The most conspicuous conserved feature is the presence of a purine (most often A) three nucleotides upstream from the AUG initiator codon; only 6 of the mRNAs in the survey have a pyrimidine in that position. There is a predominance of C in positions -1, -2, -4 and -5, just upstream from the initiator codon. The sequence CCAGCCAUG (G) thus emerges as a consensus sequence for eukaryotic initiation sites. The extent to which the ribosome binding site in a given mRNA matches the -1 to -5 consensus sequence varies: more than half of the mRNAs in the tabulation have 3 or 4 nucleotides in common with the CCACC consensus, but only ten mRNAs conform perfectly.  相似文献   

10.
We have determined the DNA sequence of a 770 by Pst I fragment containing 450 nucleotides of the 5′ flanking region of the chicken lysozyme gene. S1-nuclease mapping was performed to localize the 5′ end of nuclear RNA containing lysozyme-specific sequences and of the mRNA. We present evidence that the 5′ noncoding region of the chicken lysozyme mRNA is heterogeneous in length. The 5′ termini of the different mRNAs map 29, 31 and 53 nucleotides upstream from their common initiation codon. The 5′ ends of lysozyme-specific nuclear RNAs map at positions similar to that of the mRNA. AT-rich regions and sequences similar to the E. coli RNA polymerase recognition sequence are found around 30 and 70 nucleotides upstream from each of these 5′ termini. The AT-rich regions differ, however, from the canonical Goldberg-Hogness box in that they do not contain the extremely conserved TATA sequence motif. Sequence comparison at the 5′ end of the lysozyme, conalbumin and ovalbumin genes reveals only one region of partial homology, 140 nucleotides upstream from the mRNA start sites.  相似文献   

11.
12.
13.
14.
Mapping contacts between gRNA and mRNA in trypanosome RNA editing.   总被引:6,自引:1,他引:5       下载免费PDF全文
All guide RNAs (gRNAs) identified to date have defined 5' anchor sequences, guiding sequences and a non-encoded 3' uridylate tail. The 5' anchor is required for in vitro editing and is thought to be responsible for selection and binding to the pre-edited mRNA. Little is known, however, about how the gRNAs are used to direct RNA editing. Utilizing the photo-reactive crosslinking agent, azidophenacyl (APA), attached to the 5'- or 3'-terminus of the gRNA, we have begun to map the structural relationships between the different defined regions of the gRNA with the pre-edited mRNA. Analyses of crosslinked conjugates produced with a 5'-terminal APA group confirm that the anchor of the gRNA is correctly positioning the interacting molecules. 3' Crosslinks (X-linker placed at the 3'-end of a U10tail) have also been mapped for three different gRNA/mRNA pairs. In all cases, analyses indicate that the U-tail can interact with a range of nucleotides located upstream of the first edited site. It appears that the U-tail prefers purine-rich sites, close to the first few editing sites. These results suggest that the U-tail may act in concert with the anchor to melt out secondary structure in the mRNA in the immediate editing domain, possibly increasing the accessibility of the editing complex to the proper editing sites.  相似文献   

15.
Internal exon size in vertebrates occurs over a narrow size range. Experimentally, exons shorter than 50 nucleotides are poorly included in mRNA unless accompanied by strengthened splice sites or accessory sequences that act as splicing enhancers, suggesting steric interference between snRNPs and other splicing factors binding simultaneously to the 3' and 5' splice sites of microexons. Despite these problems, very small naturally occurring exons exist. Here we studied the factors and mechanism involved in recognizing a constitutively included six-nucleotide exon from the cardiac troponin T gene. Inclusion of this exon is dependent on an enhancer located downstream of the 5' splice site. This enhancer contains six copies of the simple sequence GGGGCUG. The enhancer activates heterologous microexons and will work when located either upstream or downstream of the target exon, suggesting an ability to bind factors that bridge splicing units. A single copy of this sequence is sufficient for in vivo exon inclusion and is the binding site for the known bridging mammalian splicing factor 1 (SF1). The enhancer and its bound SF1 act to increase recognition of the upstream exon during exon definition, such that competition of in vitro reactions with RNAs containing the GGGGCUG repeated sequence depress splicing of the upstream intron, assembly of the spliceosome on the 3' splice site of the exon, and cross-linking of SF1. These results suggest a model in which SF1 bridges the small exon during initial assembly, thereby effectively extending the domain of the exon.  相似文献   

16.
We describe an affinity chromatography method to isolate specific RNAs and RNA-protein complexes formed in vivo or in vitro. It exploits the highly selective binding of the coat protein of bacteriophage R17 to a short hairpin in its genomic RNA. RNA containing that hairpin binds to coat protein that has been covalently bound to a solid support. Bound RNA-protein complexes can be eluted with excess R17 recognition sites. Using purified RNA, we demonstrate that binding to immobilized coat protein is highly specific and enables one to separate an RNA of interest from a large excess of other RNAs in a single step. Surprisingly, binding of an RNA containing non-R17 sequences to the support requires two recognition sites in tandem; a single site is insufficient. We determine optimal conditions for purification of specific RNAs by comparing specific binding (retention of RNAs with recognition sites) to non-specific binding (retention of RNAs without recognition sites) over a range of experimental conditions. These results suggest that binding of immobilized coat protein to RNAs containing two sites is cooperative. We illustrate the potential utility of the approach in purifying RNA-protein complexes by demonstrating that a U1 snRNP formed in vivo on an RNA containing tandem recognition sites is selectively retained by the coat protein support.  相似文献   

17.
P element somatic inhibitor (PSI) is a 97-kDa RNA-binding protein with four KH motifs that is involved in the inhibition of splicing of the Drosophila P element third intron (IVS3) in somatic cells. PSI interacts with a negative regulatory element in the IVS3 5' exon. This element contains two pseudo-5' splice sites, termed F1 and F2. To identify high affinity binding sites for the PSI protein, in vitro selection (SELEX) was performed using a random RNA oligonucleotide pool. Alignment of high affinity PSI-binding RNAs revealed a degenerate consensus sequence consisting of a short core motif of CUU flanked by alternative purines and pyrimidines. Interestingly, this sequence resembles the F2 pseudo-5' splice site in the P element negative regulatory element. Additionally, a negative in vitro selection of PCR-mutagenized P element 5' exon regulatory element RNAs identified two U residues in the F1 and F2 pseudo-5' splice sites as important nucleotides for PSI binding and the U residue in the F2 region is a nearly invariant nucleotide in the consensus SELEX motif. The high affinity PSI SELEX sequence acted as a splicing inhibitor when placed in the context of a P element splicing pre-mRNA in vitro. Data from in vitro splicing assays, UV crosslinking and RNA-binding competition experiments indicates a strong correlation between the binding affinities of PSI for the SELEX sequences and their ability to modulate splicing of P element IVS3 in vitro.  相似文献   

18.
Identification of cellular mRNA targets for RNA-binding protein Sam68   总被引:5,自引:0,他引:5  
  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号