首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In experiments, which were carried out with the use of a radioactive label (45Ca2+) on the suspension of rat uterus myocytes treated by digitonin solution (0.1 mg/ml), influence of Mg ions and spermine on Mg2+, ATP-dependent Ca2+ transport in mitochondria and sarcoplasmic reticulum was investigated. Ca2+ accumulation in mitochondria (1324 +/- 174 pmol Ca2+/10(6) cells for 1 min - the control) was tested as such which was not sensitive to thapsigargin (100 nM) and was blocked by ruthenium red (10 microM). Oxalate-stimulated Ca2+ accumulation in sarcoplasmic reticulum (136 +/- 17 pmol Ca2+/10(6) cells for 1 min - the control) was tested as such which was not sensitive to ruthenium red and was blocked by thapsigargin. It has been shown, that initial speed and level of energy-dependent Ca2+ accumulation in mitochondria considerably exceeded the values of these parameters for sarcoplasmic reticulum Ca2+-accumulation system. Ca2+ accumulation kinetic in mitochondria was characterized by a steady-state phase (for 5-10 min. of incubation) while accumulation kinetic of this cation in sarcoplasmic reticulum corresponded to zero order reaction. Increase of Mg2+ concentration up to 5 mM led to activation of Ca2+-accumulation systems in mitochondria and sarcoplasmic reticulum (values of activation constants K(Mg) for Mg2+ were 2.8 and 0.6 mM, accordingly). Concentration dependence of spermine action on Ca2+ accumulation in mitochondria was described by a dome-shaped curve with a maximum at 1 mM spermine. In case of sarcoplasmic reticulum Ca2+ pump only the inhibition phase was tested at spermine concentration above 1 mM. However values of inhibition constants for both transporting systems were practically identical--5.2 +/- 0.6 and 5.7 +/- 0.7 mM, accordingly. Hence, Mg ions carry out the important role in regulation of energy-dependent Ca2+ transporting systems both in uterus smooth muscle mitochondria and sarcoplasmic reticulum. Spermine acts first of all on mitochondrial calcium uniporter.  相似文献   

2.
The effects of ethanol and other aliphatic alcohols on energy-dependent Ca2+ transport in endoplasmic reticulum and mitochondria were studied in digitonin-treated myometrium cells. The Ca2+ uptake in mitochondria increased (on 15-20%) with increasing methanol, ethanol and propanol concentrations in medium, whereas further rise of concentration inhibited this process. Treatments of myometrial cells with short-chain alcohols caused an inhibition of calcium uptake in endoplasmic reticulum. Butanol inhibited both calcium uptake in mitochondria and endoplasmic reticulum. Ca2+ accumulation in intracellular pools is inhibited by aliphatic alcohols in the following order of potency: butanol > propanol > ethanol > methanol. It is concluded that modifying effect of aliphatic alcohols on energy dependent calcium accumulation in intracellular membrane structures is defined as on origin of Ca(2+)-transporting system and (or) properties of these membrane structures so on properties of alcohols.  相似文献   

3.
The effect of trifluoroperazine on the sarcoplasmic reticulum membrane   总被引:1,自引:0,他引:1  
The inhibitory effect of trifluoroperazine (25-200 microM) on the sarcoplasmic reticulum calcium pump was studied in sarcoplasmic reticulum vesicles isolated from skeletal muscle. It was found that the lowest effective concentrations of trifluoroperazine (10 microM) displaces the Ca2+ dependence of sarcoplasmic reticulum ATPase to higher Ca2+ concentrations. Higher trifluoroperazine concentrations (100 microM) inhibit the enzyme even at saturating Ca2+. If trifluoroperazine is added to vesicles filled with calcium in the presence of ATP, inhibition of the catalytic cycle is accompanied by rapid release of accumulated calcium. ATPase inhibition and calcium release are produced by identical concentrations of trifluoroperazine and, most likely, by the same enzyme perturbation. These effects are related to partition of trifluoroperazine ino the sarcoplasmic reticulum membrane, and consequent alteration of the enzyme assembly within the membrane structure, and of the bilayer surface properties. The effect of trifluoroperazine was also studied on dissociated ('chemically skinned') cardiac cells undergoing phasic contractile activity which is totally dependent on calcium uptake and release by sarcoplasmic reticulum, and is not influenced by inhibitors of slow calcium channels. It was found that trifluoroperazine interferes with calcium transport by sarcoplasmic reticulum in situ, as well as with the role of sarcoplasmic reticulum in contractile activation.  相似文献   

4.
In experiments with 45Ca2+ conducted on digitonin-treated (0.1 mg/ml) myometrium cells suspension, the properties of ruthenium red-insensitive, oxalate- or phosphate-stimulated and thapsigargin- or cyclopiasonic acid-suppressed Mg2+, ATP-dependent calcium pump of myometrium sarcoplasmic reticulum was studied. The Ca2+ accumulation increased linearly in time up to 10 min, the average initial rate was 80-130 pmol Ca2+/10(6) cells per min. In the presence of 10 mM oxalate the values of the activation constant KMg for Mg2+ and K(m) for ATP were 0.6 and 1.0 mM, respectively. The relative efficiency of the different cations in insuring of the ATP-dependent Ca2+ accumulation was Mg2+ > Mn2+ = Co2+ > Ni2+; the Ca2+ accumulation was not observed in the presence of 3 mM Zn2+ or Cu2+. We observed the suppression of calcium pump activity by different inhibitors such as thapsigargin, cyclopiazonic acid, p-chloromercuribenzoic acid, eosin Y ad Na3 VO4: the values of K0.5 were 2.0 nM, 0.3 microM, 0.6 microM, 0.8 microM and 45 microM respectively. The conclusion was made that suspension of myometrial cells treated with digitonin represent a suitable experimental model for studying the properties of myometrium sarcoplasmic reticulum calcium pump.  相似文献   

5.
Wang Y  Li X  Duan H  Fulton TR  Eu JP  Meissner G 《Cell calcium》2009,45(1):29-37
Triadin and junctin are integral sarcoplasmic reticulum membrane proteins that form a macromolecular complex with the skeletal muscle ryanodine receptor (RyR1) but their roles in skeletal muscle calcium homeostasis remain incompletely understood. Here we report that delivery of siRNAs specific for triadin or junctin into C2C12 skeletal myoblasts reduced the expression of triadin and junctin in 8-day-old myotubes by 80 and 100%, respectively. Knocking down either triadin or junctin in these cells reduced Ca2+ release induced by depolarization (10mM KCl) by 20-25%. Unlike triadin knockdown myotubes, junctin knockdown and junctin/triadin double knockdown myotubes also had reduced Ca2+ release induced by 400 microM 4-chloro-m-cresol, 10mM caffeine, 400 microM UTP, or 1 microM thapsigargin. Thus, knocking down junctin compromised the Ca2+ stores in the sarcoplasmic reticulum of these cells. Our subsequent studies showed that in junctin knockdown myotubes at least two sarcoplasmic reticulum proteins (RyR1 and skeletal muscle calsequestrin) were down-regulated while these proteins' mRNA expression was not affected. The results suggest that triadin has a role in facilitating KCl depolarization-induced Ca2+ release in contrast to junctin which has a role in maintaining sarcoplasmic reticulum Ca2+ store size in C2C12 myotubes.  相似文献   

6.
The rate of calcium transport by sarcoplasmic reticulum vesicles from dog heart assayed at 25 degrees C, pH 7.0, in the presence of oxalate and a low free Ca2+ concentration (approx. 0.5 microM) was increased from 0.091 to 0.162 mumol . mg-1 . min-1 with 100 nM calmodulin, when the calcium-, calmodulin-dependent phosphorylation was carried out prior to the determination of calcium uptake in the presence of a higher concentration of free Ca2+ (preincubation with magnesium, ATP and 100 microM CaCl2; approx. 75 microM free Ca2+). Half-maximal activation of calcium uptake occurs under these conditions at 10-20 nM calmodulin. The rate of calcium-activated ATP hydrolysis by the Ca2+-, Mg2+-dependent transport ATPase of sarcoplasmic reticulum was increased by 100 nM calmodulin in parallel with the increase in calcium transport; calcium-independent ATP splitting was unaffected. The calcium-, calmodulin-dependent phosphorylation of sarcoplasmic reticulum, preincubated with approx. 75 microM Ca2+ and assayed at approx. 10 microM Ca2+ approaches maximally 3 nmol/mg protein, with a half-maximal activation at about 8 nM calmodulin; it is abolished by 0.5 mM trifluperazine. More than 90% of the incorporated [32P]phosphate is confined to a 9-11 kDa protein, which is also phosphorylated by the catalytic subunit of the cAMP-dependent protein kinase and most probably represents a subunit of phospholamban. The stimulatory effect of 100 nM calmodulin on the rate of calcium uptake assayed at 0.5 microM Ca2+ was smaller following preincubation of sarcoplasmic reticulum vesicles with calmodulin in the presence of approx. 75 microM Ca2+, but in the absence of ATP, and was associated with a significant degree of calmodulin-dependent phosphorylation. However, the stimulatory effect on calcium uptake and that on calmodulin-dependent phosphorylation were both absent after preincubation with calmodulin, without calcium and ATP, suggestive of a causal relationship between these processes.  相似文献   

7.
To further define the possible involvement of sarcoplasmic reticulum calcium accumulation and release in the skeletal muscle disorder malignant hyperthermia (MH), we have examined various properties of sarcoplasmic reticulum fractions isolated from normal and MH-susceptible pig muscle. A sarcoplasmic reticulum preparation enriched in vesicles derived from the terminal cisternae, was further fractionated on discontinuous sucrose density gradients (Meissner, G. (1984) J. Biol. Chem. 259, 2365-2374). The resultant MH-susceptible and normal sarcoplasmic reticulum fractions, designated F0-F4, did not differ in yield, cholesterol and phospholipid content, or nitrendipine binding capacity. Calcium accumulation (0.27 mumol Ca/mg per min at 22 degrees C), Ca2+-ATPase activity (0.98 mumol Pi/mg per min at 22 degrees C), and calsequestrin content were also similar for MH-susceptible and normal sarcoplasmic reticulum fraction F3. To examine sarcoplasmic reticulum calcium release, fraction F3 vesicles were passively loaded with 45Ca (approx. 40 nmol Ca/mg), and rapidly diluted into a medium of defined Ca2+ concentration. Upon dilution into 1 microM Ca2+, the extent of Ca2+-dependent calcium release measured after 5 s was significantly greater for MH-susceptible than for normal sarcoplasmic reticulum, 65.9 +/- 2.8% vs. 47.7 +/- 3.9% of the loaded calcium, respectively. The C1/2 for Ca2+ stimulation of this calcium release (5 s value) from MH-susceptible sarcoplasmic reticulum also appeared to be shifted towards a higher Ca2+-sensitivity when compared to normal sarcoplasmic reticulum. Dantrolene had no effect on calcium release from fraction F3, however, halothane (0.1-0.5 mM) increased the extent of calcium release (5 s) similarly in both MH-susceptible and normal sarcoplasmic reticulum. Furthermore, Mg2+ was less effective at inhibiting, while ATP and caffeine were more effective in stimulating, this Ca2+-dependent release of calcium from MH-susceptible, when compared to normal sarcoplasmic reticulum. Our results demonstrate that while sarcoplasmic reticulum calcium-accumulation appears unaffected in MH, aspect(s) of the sarcoplasmic reticulum Ca2+-induced calcium release mechanism are altered. Although the role of the Ca2+-induced calcium release mechanism of sarcoplasmic reticulum in situ is not yet clear, our results suggest that an abnormality in the regulation of sarcoplasmic reticulum calcium release may play an important role in the MH syndrome.  相似文献   

8.
Using the isotope exchange technique including 45Ca, the Ca2+-binding and Ca2+-accumulating capacity of mitochondria, sarcolemma and sarcoplasmic reticulum of rat heart was studied. The ATP-independent binding of Ca2+ to isolated membrane fractions is by 1--2 orders of magnitude less than the ATP-dependent Ca2+-accumulating capacity of the fractions. The Ca2+-accumulating capacity of mitochondria is increased 6--8 fold after addition of physiological concentrations of succinate and Pi to the incubation medium. Under these conditions the ratio of Ca2+-accumulating capacity of mitochondria, sarcolemma and sarcoplasmic reticulum of the heart is 100:3,12:2,9. The initial rate of Ca2+-uptake by the sarcoplasmic reticulum is much higher in comparison with sarcolemma and mitochondria. A high Ca2+-accumulating capacity of heart mitochondria probably determines a long-term regulation of the concentration of "troponin-accessible" Ca2+ in the sarcoplasm, whereas the high initial rate of Ca2+ accumulation by the sarcoplasmic reticulum provides for a rapid decrease of Ca2+ concentration during rhythmic contractions of the heart.  相似文献   

9.
Thrombin is a serine protease activated during injury and inflammation. Thrombin and other proteases generated by periodontal pathogens affect the behavior of periodontal cells via activation of protease-activated receptors (PARs). We noted that thrombin and PAR-1 agonist peptide stimulated intracellular calcium levels ([Ca2+]i) of gingival fibroblasts (GF). This increase of [Ca2+]i was inhibited by EGTA and verapamil. U73122 and neomycin inhibited thrombin- and PAR-1-induced [Ca2+]i. Furthermore, 2-APB (75-100 microM, inositol triphosphate [IP3] receptor antagonist), thapsigargin (1 microM), SKF-96365 (200 microM) and W7 (50 and 100 microM) also suppressed the PAR-1- and thrombin-induced [Ca2+]i. However, H7 (100, 200 microM) and ryanodine showed little effects. Blocking Ca2+ efflux from mitochondria by CGP37157 (50, 100 microM) inhibited both thrombin- and PAR-1-induced [Ca2+]i. Thrombin induced the IP3 production of GF within 30-seconds of exposure, which was inhibited by U73122. These results indicate that mitochondrial calcium efflux and calcium-calmodulin pathways are related to thrombin and PAR-1 induced [Ca2+]i in GF. Thrombin-induced [Ca2+]i of GF is mainly due to PAR-1 activation, extracellular calcium influx via L-type calcium channel, PLC activation, then IP3 binding to IP3 receptor in sarcoplasmic reticulum, which leads to intracellular calcium release and subsequently alters cell membrane capacitative calcium entry.  相似文献   

10.
The vitamin E deficiency in the rat diet was studied for its effect on the activity of Ca2+-pump and phosphorylation of sarcoplasmic reticulum membrane fragments of myocardium. It is shown that under such an antioxidant deficiency ATP-dependent accumulation of calcium is 2.5 times as low, from 490 down to 190 nmol/mg of protein for 5 min. The administration of ionol, a synthetic antioxidant, to animals reduces the level of calcium accumulation, it is 1.8 times as high as that with vitamin E deficiency; cAMP-dependent phosphorylation of the sarcoplasmic reticulum preparation membranes of the test animal myocardium produces a 1.6-2.1 times increase in them of the ATP-dependent accumulation of calcium, the kinetics of Ca2+ accumulation is unchanged.  相似文献   

11.
Calmodulin has been shown to stimulate the initial rates of Ca2+-uptake and Ca2+-ATPase in cardiac sarcoplasmic reticulum, when it is present in the reaction assay media for these activities. To determine whether the stimulatory effect of calmodulin is mediated directly through its interaction with the Ca2+-ATPase, or indirectly through phosphorylation of phospholamban by an endogenous protein kinase, two approaches were taken in the present study. In the first approach, the effects of calmodulin were studied on a Ca2+-ATPase preparation, isolated from cardiac sarcoplasmic reticulum, which was essentially free of phospholamban. The enzyme was preincubated with various concentrations of calmodulin at 0 degrees C and 37 degrees C, but there was no effect on the Ca2+-ATPase activity assayed over a wide range of [Ca2+] (0.1-10 microM). In the second approach, cardiac sarcoplasmic reticulum vesicles were prephosphorylated by an endogenous protein kinase in the presence of calmodulin. Phosphorylation occurred predominantly on phospholamban, an oligomeric proteolipid. The sarcoplasmic reticulum vesicles were washed prior to assaying for Ca2+ uptake and Ca2+-ATPase activity in order to remove the added calmodulin. Phosphorylation of phospholamban enhanced the initial rates of Ca2+-uptake and Ca2+-ATPase, and this stimulation was associated with an increase in the affinity of the Ca2+-pump for calcium. The EC50 values for calcium activation of Ca2+-uptake and Ca2+-ATPase were 0.96 +/- 0.03 microM and 0.96 +/- 0.1 microM calcium by control vesicles, respectively. Phosphorylation decreased these values to 0.64 +/- 0.12 microM calcium for Ca2+-uptake and 0.62 +/- 0.11 microM calcium for Ca2+-ATPase. The stimulatory effect was associated with increases in the apparent initial rates of formation and decomposition of the phosphorylated intermediate of the Ca2+-ATPase. These findings suggest that calmodulin regulates cardiac sarcoplasmic reticulum function by protein kinase-mediated phosphorylation of phospholamban.  相似文献   

12.
Investigation the influence of calyx[4]arenes C-90, C-91, C-97 and C-99 (codes are indicated) on the enzymatic activity of four functionally different Mg2+ -dependent ATPases from smooth muscle of the uterus: actomyosin ATPase, transporting Ca2+, Mg2+ -ATPase, ouabain-sensible Na+, K+ -ATPase and basal Mg2+ -ATPase. It was shown that calixarenes C-90 and C-91 in concentration 100 microM act multidirectionally on the functionally different Mg2+ -dependent ATP-hydrolase enzymatic systems. These compounds activate effectively the actomyosin ATPase (Ka = 52 +/- 11 microM [Ukrainian character: see text] 8 +/- 2 microM, accordingly), at the same time calixarene C-90 inhibited effectively activity of transporting Ca2+, Mg2+ -ATPase of plasmatic membranes (I(0,5) = 34.6 +/- 6.4 microM), but influence on membrane-bound Na+, K+ -ATPase and basal Mg2+ -ATPase. Calixarene C-91 reduce effectively basal Mg2+ -ATPase activity, insignificantly activating Na+, K+ -ATPase but has no influence on transporting Ca2+, Mg2+ -ATPase activity of plasmatic membranes. Calixarenes C-97 and C-99 (100 microM), which have similar structure, have monodirectional influence on activity of three functionally different Mg2+-dependent ATPases of the myometrium: actomyosin ATPase and two ATPases, that related to the ATP-hydrolases of P-type--Ca2+, Mg2+ -ATPase and Na+, K+ -ATPase of plasmatic membranes. Basal Mg2+ -ATPase is resistant to the action of these two connections. Results of comparative experiments that were obtained by catalytic titration of calixarenes C-97 and C-99 by actomyosin ATPase (I(0,5) = 88 +/- 9 and 86 +/- 8 microM accordingly) and Na+, K+ -ATPase from plasmatic membranes (I(0,5) = 33 +/- 4 and 98 +/- 8 nM accordingly) indicate to the considerably more sensitiveness of Na+, K+ -ATP-ase to these calixarenes than ATPase of contractile proteins. Thus, it is shown that calixarenes have influence on activity of a number of important enzymes, involved in functioning of the smooth muscle of the uterus and related to energy-supplies of the process of the muscle contracting and support of intracellular ionic homeostasis. The obtained results can be useful in further researches, directed at the use of calixarenes as pharmaceutical substance, able to normalize the contractile function of the uterus at some pregnancy pathologies in women's.  相似文献   

13.
Mg2+, ATP-dependent Ca2+ accumulation in the rat myometrial mitochondria was investigated in complex experiment using Ca2+ isotope (45Ca2+) and Ca(2+)-sensitive label tetracycline. Monotonous increase of the fluorescence signal, insensitive to thapsigargin (100 nM) was observed with following establishing the stationary state of incubation at 2 min. which correlates with results obtained using isotope technique. Experiments with isotope label signify, that protonophore CCCP, ruthenium red and sodium azide, in concentration 1 microM, 10 microM and 10 mM respectively, totally inhibits the accumulation of the Ca ions in mitochondria. At the same time, in conditions of Mg2+, ATP-dependent Ca2+ accumulation modeling in these cellular structures, CCCP and sodium azide, used in the same concentration, diminished tetracycline fluorescence signal increase. In the same conditions, the introduction of the CCCP (1 mM) into the incubation medium at 75 sec. after initiation of the transport process induced reversible quenching of the tetracycline fluorescence signal to the level, observed in case of initial CCCP presence in the medium. According to data obtained in the experiment, using Ca2+ isotope, Ca(2+)-ionophore A-23187 induces both the reversible release of previously accumulated Ca ions, and cause reversible quenching of the tetracycline fluorescence signal to the level, observed in case of initial CCCP (1 mM) and sodium azide (10 mM) presence in the incubation medium. Conclusion was drawn that the thapsigargin-insensitive and CCCP, sodium azide and A-23187-sensitive tetracycline fluorescence increasing in case of modeling of Mg2+, ATP-dependent Ca2+ accumulation in myometrial mitochondria reflect the Ca2+ uniporter functioning in those subcellular structures.  相似文献   

14.
Isoproterenol-induced (5 mg/kg) disseminated necrosis of the rabbit myocardium led to a decrease in the efficiency of calcium pump of sarcoplasmic reticulum fragments. This was shown by the reduced Ca/ATP ratio, as well as by Ca2+ and Ca2+ ATPase accumulation rate. In these conditions, calcium transport to mitochondria increased. Lipid peroxidation plays a definite role in the impairment of membrane permeability since the concentration of malonic dialdehyde rises in microsomal and mitochondrial fractions.U  相似文献   

15.
Klimov AA 《Biofizika》2006,51(5):844-851
A method and a device for direct measurements of accumulation of calcium in the sarcoplasmic reticulum (SR) and its release from SR as a function of free Ca2+ in bath have been developed. About 30% of the volume inside muscle fibers of swimbladder of Opsanus tau is occupied by SR. A set of solutions was prepared for fiber dissection and making holes in outer membrane without destruction of membranes of the sarcoplasmic reticulum. Calcium was unloaded from SR using EGTA as a pCa buffer. Then solutions with 50-100 microM CaFURA2 or CabisFURA2 were used as pCa-buffer and fluorescent Ca-indicators for measurement of Ca exchange between a fiber with a volume of approximately 10 nl and a solution in the cuvette with a volume of 5 microl. An increase in fluorescence signified an increase in unbound FURA in the bath since Ca2+ pumped into the SR was removed from the bath. The slope represented the rate of Ca2+ uptake by the SR in the muscle fiber, the maximum being about 1.6 M/s per liter of solution in bath or 2.6 mM/s per liter of SR volume. In solutions without oxalate and Ruthenium Red, more Ca2+ was taken up by the SR, and oscillations of the bath free FURA level were often observed, which can be explained by calcium-induced calcium release.  相似文献   

16.
The cytosolic free Ca2+ concentration of calcium-tolerant rat myocytes has been measured by the null point titration technique using arsenazo III as a Ca2+ indicator and digitonin to permeabilize the plasma membrane. The mean value obtained for 8 separate preparations was 270 +/- 35 nM. The distribution of releasable calcium between the mitochondrial and sarcoplasmic reticular compartments was measured by the successive additions of uncoupler and A23187 to cells pretreated with ruthenium red. The relative distribution of calcium in each pool was independent of the cell calcium content up to the maximum value of releasable calcium investigated (4.5 nmol/mg of cell dry weight) and was distributed in the approximate ratio of 2:1 in favor of the sarcoplasmic reticulum. The cells contained 1 nmol of calcium/mg of cell dry weight in a form nonreleasable by A23187, which was independent of the total cell calcium content as measured by atomic absorption spectroscopy. It is calculated that the calcium content of mitochondria in heart under physiological conditions is about 5 nmol/mg of mitochondrial protein. At this level, the mitochondria are likely to provide effective buffering of the cytosolic free Ca2+ concentration of quiescent heart cells. The corresponding intramitochondrial free Ca2+ is in a range above values needed to regulate the activity of Ca2+-dependent enzymes of the citric acid cycle in heart. The physiological calcium content of the sarcoplasmic reticulum in heart cells is estimated to be about 2.5 nmol/mg of cell dry weight, which is at least 5-fold greater than the amount of calcium release calculated to cause maximum tension development of cardiac muscle.  相似文献   

17.
Sarcoplasmic reticulum isolated from moderately fast rabbit skeletal muscle contains intrinsic adenosine 3',5'-monophosphate (cAMP)-independent protein kinase activity and a substrate of 100 000 Mr. Phosphorylation of skeletal sarcoplasmic reticulum by either endogenous membrane bound or exogenous cAMP-dependent protein kinase results in stimulation of the initial rates of Ca2+ transport and Ca2+-ATPase activity. To determine the molecular mechanism by which protein kinase-dependent phosphorylation regulates the calcium pump in skeletal sarcoplasmic reticulum, we examined the effects of protein kinase on the individual steps of the Ca2+-ATPase reaction sequence. Skeletal sarcoplasmic reticulum vesicles were preincubated with cAMP and cAMP-dependent protein kinase in the presence (phosphorylated sarcoplasmic reticulum) and absence (control sarcoplasmic reticulum) of adenosine 5'-triphosphate (ATP). Control and phosphorylated sarcoplasmic reticulum were subsequently assayed for formation (5-100 ms) and decomposition (0-73 ms) of the acid-stable phosphorylated enzyme (E approximately P) of Ca2+-ATPase. Protein kinase mediated phosphorylation of skeletal sarcoplasmic reticulum resulted in pronounced stimulation of initial rates and levels of E approximately P in sarcoplasmic reticulum preincubated with either ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid (EGTA) prior to assay (Ca2+-free sarcoplasmic reticulum), or with calcium/EGTA buffer (Ca2+-bound sarcoplasmic reticulum). These effects were evident within a wide range of ionized Ca2+. Phosphorylation of skeletal sarcoplasmic reticulum by protein kinase also increased the initial rate of E approximately P decomposition. These findings suggest that protein kinase-dependent phosphorylation of skeletal sarcoplasmic reticulum regulates several steps in the Ca2+-ATPase reaction sequence which result in an overall stimulation of the active calcium transport observed at steady state.  相似文献   

18.
Calcium fluxes across the membrane of sarcoplasmic reticulum vesicles   总被引:3,自引:0,他引:3  
The relationship between calcium exchange across the membrane of sarcoplasmic reticulum vesicles and phosphoenzyme (EP) was examined in calcium transport reactions using a limited amount of ATP as substrate. Rapid calcium influx and efflux (approximately 385 nmol.(mg.min)-1), measured in reactions in which ATP concentration fell from 20 microM, was accompanied by a shift in the equilibrium between an ADP-sensitive EP and an ADP-insensitive EP toward the former. Rapid exchange between ATP and ADP (approximately 1500 nmol.(mg.min)-1) was also observed under conditions where no significant incorporation of Pi into ATP took place, suggesting that ATP in equilibrium ADP exchange can occur without Cao in equilibrium Cai exchange. Ca2+ permeability during the calcium transport reaction was estimated in reactions carried out with acetylphosphate, which produces a hydrolytic product that does not participate in the backward reaction of the calcium pump. Under conditions where the calcium content exceeded 43 nmol.mg-1, a level that may reflect the binding of calcium ions to sites inside the sarcoplasmic reticulum, the rate constant for Ca2+ efflux was 0.33 min-1. These data allow the rate of passive Ca2+ efflux to be estimated as approximately 17 nmol.(mg.min)-1 at the time when calcium content was maximal and a rapid Cao in equilibrium Cai was observed. It is concluded that the majority of the rapid Ca2+ efflux is mediated by partial backward reactions of the calcium pump ATPase.  相似文献   

19.
Activation of calcium-ion (Ca2+) channels on the plasma membrane and on intracellular Ca2+ stores, such as the endoplasmic reticulum, generates local transient increases in the cytosolic Ca2+ concentration that induce Ca2+ uptake by neighbouring mitochondria. Here, by using mitochondrially targeted aequorin proteins with different Ca2+ affinities, we show that half of the chromaffin-cell mitochondria exhibit surprisingly rapid millimolar Ca2+ transients upon stimulation of cells with acetylcholine, caffeine or high concentrations of potassium ions. Our results show a tight functional coupling of voltage-dependent Ca2+ channels on the plasma membrane, ryanodine receptors on the endoplasmic reticulum, and mitochondria. Cell stimulation generates localized Ca2+ transients, with Ca2+ concentrations above 20-40 microM, at these functional units. Protonophores abolish mitochondrial Ca2+ uptake and increase stimulated secretion of catecholamines by three- to fivefold. These results indicate that mitochondria modulate secretion by controlling the availability of Ca2+ for exocytosis.  相似文献   

20.
In the present study, we used real-time confocal microscopy to examine the effects of two nitric oxide (NO) donors on acetylcholine (ACh; 10 microM)- and caffeine (10 mM)-induced intracellular calcium concentration ([Ca2+]i) responses in C2C12 mouse skeletal myotubes. We hypothesized that NO reduces [Ca2+]i in activated skeletal myotubes through oxidation of thiols associated with the sarcoplasmic reticulum Ca2+-release channel. Exposure to diethylamine NONOate (DEA-NO) reversibly increased resting [Ca2+]i level and resulted in a dose-dependent reduction in the amplitude of ACh-induced [Ca2+]i responses (25 +/- 7% reduction with 10 microM DEA-NO and 78 +/- 14% reduction with 100 microM DEA-NO). These effects of DEA-NO were partly reversible after subsequent exposure to dithiothreitol (10 mM). Preexposure to DEA-NO (1, 10, and 50 microM) also reduced the amplitude of the caffeine-induced [Ca2+]i response. Similar data were obtained by using the chemically distinct NO donor S-nitroso-N-acetyl-penicillamine (100 microM). These results indicate that NO reduces sarcoplasmic reticulum Ca2+ release in skeletal myotubes, probably by a modification of hyperreactive thiols present on the ryanodine receptor channel.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号