首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X Wang  Y Lu 《Biochemistry》1999,38(28):9146-9157
The heme active site structure of an engineered cytochrome c peroxidase [MnCcP; see Yeung, B. K., et al. (1997) Chem. Biol. 4, 215-221] that closely mimics manganese peroxidase (MnP) has been characterized by both one- and two-dimensional NMR spectroscopy. All hyperfine-shifted resonances from the heme pocket as well as resonances from catalytically relevant amino acid residues in the congested diamagnetic envelope have been assigned. From the NMR spectral assignment and the line broadening pattern of specific protons in NOESY spectra of MnCcP, the location of the engineered Mn(II) center is firmly identified. Furthermore, we found that the creation of the Mn(II)-binding site in CcP resulted in no detectable structural changes on the distal heme pocket of the protein. However, notable structural changes are observed at the proximal side of the heme cavity. Both CepsilonH shift of the proximal histidine and (15)N shift of the bound C(15)N(-) suggest a weaker heme Fe(III)-N(His) bond in MnCcP compared to WtCcP. Our results indicate that the engineered Mn(II)-binding site in CcP resulted in not only a similar Mn(II)-binding affinity and improved MnP activity, but also weakened the Fe(III)-N(His) bond strength of the template protein CcP so that its bond strength is similar to that of the target protein MnP. The results presented here help elucidate the impact of designing a metal-binding site on both the local and global structure of the enzyme, and provide a structural basis for engineering the next generation of MnCcP that mimics MnP more closely.  相似文献   

2.
The manganese (Mn)-oxidizing protein (MopA) from Erythrobacter sp. strain SD21 is part of a unique enzymatic family that is capable of oxidizing soluble Mn(II). This enzyme contains two domains, an animal heme peroxidase domain, which contains the catalytic site, followed by a C-terminal calcium binding domain. Different from the bacterial Mn-oxidizing multicopper oxidase enzymes, little is known about MopA. To gain a better understanding of MopA and its role in Mn(II) oxidation, the 238-kDa full-length protein and a 105-kDa truncated protein containing only the animal heme peroxidase domain were cloned and heterologously expressed in Escherichia coli. Despite having sequence similarity to a peroxidase, hydrogen peroxide did not stimulate activity, nor was activity significantly decreased in the presence of catalase. Both pyrroloquinoline quinone (PQQ) and hemin increased Mn-oxidizing activity, and calcium was required. The Km for Mn(II) of the full-length protein in cell extract was similar to that of the natively expressed protein, but the Km value for the truncated protein in cell extract was approximately 6-fold higher than that of the full-length protein, suggesting that the calcium binding domain may aid in binding Mn(II). Characterization of the heterologously expressed MopA has provided additional insight into the mechanism of bacterial Mn(II) oxidation, which will aid in understanding the role of MopA and Mn oxidation in bioremediation and biogeochemical cycling.  相似文献   

3.
The binding of a series of alkyl aryl sulfides to chloroperoxidase (CPO) and horseradish peroxidase (HRP) has been investigated by optical difference spectroscopy, circular dichroism, paramagnetic NMR spectroscopy, and NMR relaxation measurements. The data are consistent with binding of the sulfides in the distal side of the heme pocket with CPO and near the heme edge with HRP. A linear correlation between the binding constants of para-substituted sulfides to CPO and the Taft sigma I parameter suggests that these substrates act as donors in donor-acceptor complexes involving some residue of the protein chain. Spectral studies during turnover show that high enantioselectivity in the CPO-catalyzed oxidation of sulfides results from a reaction pathway that does not involve the accumulation of compound II enzyme intermediate.  相似文献   

4.
Examination of the peroxidase isolated from the inkcap Basidiomycete Coprinus cinereus shows that the 42,000-dalton enzyme contains a protoheme IX prosthetic group. Reactivity assays and the electronic absorption spectra of native Coprinus peroxidase and several of its ligand complexes indicate that this enzyme has characteristics similar to those reported for horseradish peroxidase. In this paper, we characterize the H2O2-oxidized forms of Coprinus peroxidase compounds I, II, and III by electronic absorption and magnetic resonance spectroscopies. Electron paramagnetic resonance (EPR) and nuclear magnetic resonance (NMR) studies of this Coprinus peroxidase indicate the presence of high-spin Fe(III) in the native protein and a number of differences between the heme site of Coprinus peroxidase and horseradish peroxidase. Carbon-13 (of the ferrous CO adduct) and nitrogen-15 (of the cyanide complex) NMR studies together with proton NMR studies of the native and cyanide-complexed Coprinus peroxidase are consistent with coordination of a proximal histidine ligand. The EPR spectrum of the ferrous NO complex is also reported. Protein reconstitution with deuterated hemin has facilitated the assignment of the heme methyl resonances in the proton NMR spectrum.  相似文献   

5.
The three-dimensional structures of two isozymes of manganese peroxidase (MnP) have been predicted from homology modeling using lignin peroxidase as a template. Although highly homologous, MnP differs from LiP by the requirement of Mn(II) as an intermediate in its oxidation of substrates. The Mn(II) site is absent in LiP and unique to the MnP family of peroxidases. The model structures were used to identify the unique Mn(II) binding sites, to determine to what extent they were conserved in the two isozymes, and to provide insight into why this site is absent in LiP. For each isozyme of MnP, three candidate Mn(II) binding sites were identified. Energy optimizations of the three possible Mn(II) enzyme complexes allowed the selection of the most favorable Mn(II) binding site as one with the most anionic oxygen moieties best configured to act as ligands for the Mn(II). At the preferred site, the Mn(II) is coordinated to the carboxyl oxygens of Glu-35, Glu-39, and Asp-179, and a propionate group of the heme. The predicted Mn(II) binding site is conserved in both isozymes. Comparison between the residues at this site in MnP and the corresponding residues in LiP shows that two of the three anionic residues in MnP are replaced by neutral residues in LiP, explaining why LiP does not bind Mn(II). © 1994 Wiley-Liss, Inc.  相似文献   

6.
Oxidation of cytochrome c peroxidase with hydrogen peroxide to form the initial oxidized intermediate, cytochrome c peroxidase compound I, drastically alters the proton hyperfine nmr spectrum. In contrast to studies of horseradish peroxidase, where the spectrum of horseradish peroxidase compound I is similar to that of the native protein, cytochrome c peroxidase compound I exhibits only broad resonances near 17 and 30 ppm from 2,2-dimethyl-2-silapentane-5-sulfonate. No unique resonances attributable to cytochrome c peroxidase compound II could be identified. These results define the molecular conditions for which resolved hyperfine resonances of the iron(IV) states of heme proteins may be observed when the data presented here are compared with the data from horseradish peroxidase. Oxidation of cytochrome c peroxidase while it is complexed to ferricytochrome c reveals that the heme resonances of cytochrome c are not influenced by the oxidation state of cytochrome c peroxidase.  相似文献   

7.
Manganese peroxidase (MnP) is an extracellular heme enzyme that catalyzes the peroxide-dependent oxidation of Mn(II) to Mn(III). The Mn(III) is released from the enzyme in complex with oxalate. One heme propionate and the side chains of Glu35, Glu39, and Asp179 were identified as Mn(II) ligands in the 2.0 A resolution crystal structure. The new 1.45 A crystal structure of MnP complexed with Mn(II) provides a more accurate view of the Mn-binding site. New features include possible partial protonation of Glu39 in the Mn-binding site and glycosylation at Ser336. This is also the first report of MnP-inhibitor complex structures. At the Mn-binding site, divalent Cd(II) exhibits octahedral, hexacoordinate ligation geometry similar to that of Mn(II). Cd(II) also binds to a putative second weak metal-binding site with tetrahedral geometry at the C-terminus of the protein. Unlike that for Mn(II) and Cd(II), coordination of trivalent Sm(III) at the Mn-binding site is octacoordinate. Sm(III) was removed from a MnP-Sm(III) crystal by soaking the crystal in oxalate and then reintroduced into the binding site. Thus, direct comparisons of Sm(III)-bound and metal-free structures were made using the same crystal. No ternary complex was observed upon incubation with oxalate. The reversible binding of Sm(III) may be a useful model for the reversible binding of Mn(III) to the enzyme, which is too unstable to allow similar examination.  相似文献   

8.
Non-heme manganese catalases are widely distributed over microbial life and represent an environmentally important alternative to heme-containing catalases in antioxidant defense. Manganese catalases contain a binuclear manganese complex as their catalytic active site rather than a heme, and cycle between Mn(2)(II,II) and Mn(2)(III,III) states during turnover. X-ray crystallography has revealed the key structural elements of the binuclear manganese active site complex that can serve as the starting point for computational studies on the protein. Four manganese catalase enzymes have been isolated and characterized, and the enzyme appears to have a broad phylogenetic distribution including both bacteria and archae. More than 100 manganese catalase genes have been annotated in genomic databases, although the assignment of many of these putative manganese catalases needs to be experimentally verified. Iron limitation, exposure to low levels of peroxide stress, thermostability and cyanide resistance may provide the biological and environmental context for the occurrence of manganese catalases.  相似文献   

9.
J D Satterlee  J E Erman 《Biochemistry》1991,30(18):4398-4405
Proton NMR assignments of the heme pocket and catalytically relevant amino acid protons have been accomplished for cyanide-ligated yeast cytochrome c peroxidase. This form of the protein, while not enzymatically active itself, is the best model available (that displays a resolvable proton NMR spectrum) for the six-coordinate low-spin active intermediates, compounds I and II. The assignments were made with a combination of one- and two-dimensional nuclear Overhauser effect methods and demonstrate the utility of NOESY experiments for paramagnetic proteins of relatively large size (Mr 34,000). Assignments of both isotope exchangeable and nonexchangeable proton resonances were obtained by using enzyme preparations in both 90% H2O/10% D2O and, separately, in 99.9% D2O solvent systems. Complete resonance assignments have been achieved for the proximal histidine, His-175, and His-52, which is a member of the catalytic triad on the distal side of the heme. In addition, partial assignments are reported for Trp-51 and Arg-48, catalytically important residues, both on the distal side. Aside from His-175, partial assignments for amino acids on the proximal side of the heme are proposed for the alanines at primary sequence positions 174 and 176 and for Thr-180 and Leu-232.  相似文献   

10.
Pseudoazurin binds at a single site on cytochrome c peroxidase from Paracoccus pantotrophus with a K(d) of 16.4 microM at 25 degrees C, pH 6.0, in an endothermic reaction that is driven by a large entropy change. Sedimentation velocity experiments confirmed the presence of a single site, although results at higher pseudoazurin concentrations are complicated by the dimerization of the protein. Microcalorimetry, ultracentrifugation, and (1)H NMR spectroscopy studies in which cytochrome c550, pseudoazurin, and cytochrome c peroxidase were all present could be modeled using a competitive binding algorithm. Molecular docking simulation of the binding of pseudoazurin to the peroxidase in combination with the chemical shift perturbation pattern for pseudoazurin in the presence of the peroxidase revealed a group of solutions that were situated close to the electron-transferring heme with Cu-Fe distances of about 14 A. This is consistent with the results of (1)H NMR spectroscopy, which showed that pseudoazurin binds closely enough to the electron-transferring heme of the peroxidase to perturb its set of heme methyl resonances. We conclude that cytochrome c550 and pseudoazurin bind at the same site on the cytochrome c peroxidase and that the pair of electrons required to restore the enzyme to its active state after turnover are delivered one-by-one to the electron-transferring heme.  相似文献   

11.
Arthromyces ramosus, a novel hyphomycete, extracellularly produces a single species of a heme-containing peroxidase. The A. ramosus peroxidase, ARP, shows a broad specificity for hydrogen donors and high catalytic efficiency as does the well-known peroxidase from horseradish roots (HRP). However, it also exhibits unique catalytic properties. These features permit a wide range of applications for ARP, including high-sensitivity chemiluminescent determination of biological materials, protein cross-linking, and dye-transfer inhibition during laundering. The primary and tertiary structures of ARP are very similar to those of the class (II) lignin and manganese peroxidases of the plant peroxidase superfamily. Mechanistic studies of the ARP-catalyzed reaction revealed that it also proceeds with the classical peroxidase cycle; the native ferric ARP undergoes two-electron oxidation by hydrogen peroxide to yield compound (I), followed by two successive one-electron reductions by the hydrogen donor. X-ray crystallography, site-directed mutagenesis, and spectral analyses of ARP have afforded detailed information on the molecular mechanism of the ARP catalysis, and revealed the roles of active site amino acid residues and dynamic features of coordination as well as spin states of heme iron during catalysis.  相似文献   

12.
The catalytic cycle intermediates of heme peroxidases, known as compounds I and II, have been of long standing interest as models for intermediates of heme proteins, such as the terminal oxidases and cytochrome P450 enzymes, and for non-heme iron enzymes as well. Reports of resonance Raman signals for compound I intermediates of the oxo-iron(IV) porphyrin pi-cation radical type have been sometimes contradictory due to complications arising from photolability, causing compound I signals to appear similar to those of compound II or other forms. However, studies of synthetic systems indicated that protein based compound I intermediates of the oxoiron(IV) porphyrin pi-cation radical type should exhibit vibrational signatures that are different from the non-radical forms. The compound I intermediates of horseradish peroxidase (HRP), and chloroperoxidase (CPO) from Caldariomyces fumago do in fact exhibit unique and characteristic vibrational spectra. The nature of the putative oxoiron(IV) bond in peroxidase intermediates has been under discussion in the recent literature, with suggestions that the Fe(IV)O unit might be better described as Fe(IV)-OH. The generally low Fe(IV)O stretching frequencies observed for proteins have been difficult to mimic in synthetic ferryl porphyrins via electron donation from trans axial ligands alone. Resonance Raman studies of iron-oxygen vibrations within protein species that are sensitive to pH, deuteration, and solvent oxygen exchange, indicate that hydrogen bonding to the oxoiron(IV) group within the protein environment contributes to substantial lowering of Fe(IV)O frequencies relative to those of synthetic model compounds.  相似文献   

13.
Nuclear magnetic resonance spectroscopy has been used to characterize the versatile peroxidase from Pleurotus eryngii, both in the resting state and in the cyanide-inhibited form. The assignment of most of the hyperfine-shifted resonances has been achieved by two-dimensional NMR, allowing the comparison of the present system with other ligninolytic peroxidases. This information has enabled a detailed analysis of the interaction of the enzyme with one of its reducing substrates, Mn(II). Furthermore, comparison with the data collected on a mutant in the putative Mn(II) binding site, and an analysis of the enzyme kinetic properties, shed light on the factors affecting the function of this novel peroxidase.Electronic Supplementary Material Supplementary material is available for this article if you access the article at .Abbreviations ABTS 2,2-azinobis(3-ethylbenzothiazoline-6-sulfonate) - CcP cytochrome c peroxidase - CIP Coprinus cinereus peroxidase - HRP horseradish peroxidase - IPTG isopropyl--D-thiogalactopyranoside - LiP lignin peroxidase - MnP manganese peroxidase - RB5 Reactive Black 5 - VA veratryl alcohol (3,4-dimethoxybenzyl alcohol) - VP versatile peroxidase  相似文献   

14.
Summary Two-dimensional (2D) proton NMR correlation spectroscopy, COSY, and nuclear Overhauser spectroscopy, NOESY, have been used to explore the applicability of these methods for the moderately large (42 KDa), paramagnetic cyanide-inhibited derivative of horseradish peroxidase, HRP-CN. The target resonances are those in the active site of HRP-CN which experience substantial hyperfine shifts and paramagnetic relaxation. The magnitude COSY experiment was found to yield cross peaks for all known spin-coupled heme substituents, as well as for the majority of non-heme hyperfine shifted protons, in spite of line widths of the order of 100 Hz. Moreover, the rapid relaxation of the hyperfine-shifted resonances allows the extremely rapid collection of useful 2D NMR data sets without the loss of information. For the heme, the combination of COSY cross peaks for the vinyl and propionate substituents, and NOESY cross peaks among these substituent protons and heme methyls, allows assignment of heme resonances without recourse to deuterium labeling of the heme. A seven-proton coupled spin system was identified in the upfield region that is consistent with originating from the proposed catalytic Arg38 residue in the distal heme pocket, with orientation relative to the heme similar to that found in cytochromec peroxidase. The upfield hyperfine-shifted methyl group in the substrate binding pocket previously proposed to arise from Leu237 is shown to arise instead from an as yet unidentified Ile. NOESY spectra collected at very short (3 ms) and intermediate (20 ms) mixing times indicate that build-up curves can be obtained that should yield estimates of distances in the heme cavity. It is concluded that 2D NMR studies should be able to provide the heme assignments, aid in identifying the catalytic residues, and provide information on the spatial disposition of such residues in the active site for cyanide complexes of a number of intermediate to large paramagnetic heme peroxidases, as well as for other paramagnetic metalloenzymes with line widths of 100 Hz. Moreover, paramagnetic-induced hyperfine shifts and linewidths to 100 Hz need not interfere with the complete solution structure determination of a small paramagnetic protein solely on the basis of 2D NMR data.  相似文献   

15.
A purple acid phosphatase from sweet potato is the first reported example of a protein containing an enzymatically active binuclear Fe-Mn center. Multifield saturation magnetization data over a temperature range of 2 to 200 K indicates that this center is strongly antiferromagnetically coupled. Metal ion analysis shows an excess of iron over manganese. Low temperature EPR spectra reveal only resonances characteristic of high spin Fe(III) centers (Fe(III)-apo and Fe(III)-Zn(II)) and adventitious Cu(II) centers. There were no resonances from either Mn(II) or binuclear Fe-Mn centers. Together with a comparison of spectral properties and sequence homologies between known purple acid phosphatases, the enzymatic and spectroscopic data strongly indicate the presence of catalytic Fe(III)-Mn(II) centers in the active site of the sweet potato enzyme. Because of the strong antiferromagnetism it is likely that the metal ions in the sweet potato enzyme are linked via a mu-oxo bridge, in contrast to other known purple acid phosphatases in which a mu-hydroxo bridge is present. Differences in metal ion composition and bridging may affect substrate specificities leading to the biological function of different purple acid phosphatases.  相似文献   

16.
The purpose of this study was to determine the effect of heme pocket hydrophobicity on the reactivity of manganese peroxidase. Residues within 5 A of the heme active site were identified. From this group, Leu169 and Ser172 were selected and mutated to Phe and Ala, respectively. The mutant proteins were then characterized by steady-state kinetics. Whereas the Leu169Phe mutation had little, if any, effect on activity, the Ser172Ala mutation decreased kcat and also the specificity constant (kcat/Km) for Mn2+, but not H2O2. Transient-state studies indicated that the mutation affected only the reactions of compound II. These results indicate that compound II is the most sensitive to changes in the heme environment.  相似文献   

17.
Cytochrome-c peroxidase (ferrocytochrome-c:hydrogen-peroxide oxidoreductase, EC 1.11.1.5) forms a noncovalent 1:1 complex with horse cytochrome c in low ionic strength solution that is detectable by proton NMR spectroscopy. When the entire proton hyperfine-shifted spectrum is considered only five hyperfine resonances exhibit unambiguously detectable shifts: the heme 8-CH3 and 3-CH3 resonances, single proton resonances near 19 ppm and -4 ppm and the methionine-80 methyl group. These shifts are very similar to those observed for the covalently crosslinked complex of cytochrome-c peroxidase and horse cytochrome c, but different from those reported for cytochrome c complexes with flavodoxin and cytochrome b5. By comparison with the shifts reported for lysine-13-modified cytochrome c we conclude that the results reported here support the Poulos-Kraut proposed structure for the molecular redox complex between cytochrome-c peroxidase and cytochrome c. These results indicate that the principal site of interaction with cytochrome-c peroxidase is the exposed heme edge of horse cytochrome c, in proximity to lysine-13 and the heme pyrrole II. The noncovalent cytochrome-c peroxidase-cytochrome c complex exists in the rapid-exchange time limit even at 500 mHz proton frequency. Our data provide an improved estimate of the minimum off-rate for exchanging cytochrome c as 1133 (+/- 120) s-1 at 23 degrees C.  相似文献   

18.
In this work, we investigated the oxidative modification of histidine residues induced by peroxidase and thiol oxidase activities of bovine copper-zinc superoxide dismutase (Cu-ZnSOD) using NMR and pulse EPR spectroscopy. 1D NMR and 2D-NOESY were used to determine the oxidative damage at the Zn(II) and Cu(II) active sites as well as at distant histidines. Results indicate that during treatment of SOD with hydrogen peroxide (H(2)O(2)) or cysteine in the absence of bicarbonate anion (HCO(3)(-)), both exchangeable and nonexchangeable protons were affected. Both His-44 and His-46 in the Cu(II) active site were oxidized based on the disappearance of NOESY cross-peaks between CH and NH resonances of the imidazole rings. In the Zn(II) site, only His-69, which is closer to His-44, was oxidatively modified. However, addition of HCO(3)(-) protected the active site His residues. Instead, resonances assigned to the His-41 residue, 11 ? away from the Cu(II) site, were completely abolished during both HCO(3)(-)-stimulated peroxidase activity and thiol oxidase activity in the presence of HCO(3)(-) . Additionally, ESEEM/HYSCORE and ENDOR studies of SOD treated with peroxide/Cys in the absence of HCO(3)(-) revealed that hyperfine couplings to the distal and directly coordinated nitrogens of the His-44 and His-46 ligands at the Cu(II) active site were modified. In the presence of HCO(3)(-), these modifications were absent. HCO(3)(-)-mediated, selective oxidative modification of histidines in SOD may be relevant to understanding the molecular mechanism of SOD peroxidase and thiol oxidase activities.  相似文献   

19.
We report cloning and sequencing of gene ps1 encoding a versatile peroxidase combining catalytic properties of lignin peroxidase (LiP) and manganese peroxidase (MnP) isolated from lignocellulose cultures of the white-rot fungus Pleurotus eryngii. The gene contains 15 putative introns, and the deduced amino acid sequence consists of a 339-residue mature protein with a 31-residue signal peptide. Several putative response elements were identified in the promoter region. Amino acid residues involved in oxidation of Mn(2+) and aromatic substrates by direct electron transfer to heme and long-range electron transfer from superficial residues as predicted by analogy with Phanerochaete chrysosporium MnP and LiP, respectively. A dendrogram is presented illustrating sequence relationships between 29 fungal peroxidases.  相似文献   

20.
Manganese supplementation of culture medium affected Phanerochaete flavido-alba FPL 106507 growth, glucose consumption and extracellular protein accumulation. Both the titre and time of detection of lignin peroxidase (LiP) were affected by manganese concentration in the medium, whereas with manganese peroxidase (MnP) only the titre was affected. In high Mn(II) containing cultures highest manganese peroxidase levels and a decrease in extracellular veratryl alcohol accumulation were observed. After FPLC a number of haemprotein peaks showing manganese peroxidase activity were detected in Mn(II) supplemented cultures. On the contrary, only haemprotein peaks of lignin peroxidase were detected in culture medium not supplemented with Mn(II).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号