首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Annexin 2, a member of the annexin family of Ca2+-dependent membrane binding proteins is found in monomeric and heterotetrameric forms and has been involved in different membrane related functions. The heterotetrameric annexin 2 is composed of a dimer of S100A10, a member of the S100 family of Ca2+ binding proteins and two annexin 2 molecules ((Anx2-S100A10)2). Different molecular models including tetramers and octamers in which S100A10 is localized in the centre of the complex with the annexin 2 molecules positioned around S100A10 had been proposed. Herein, the organization of the (Anx2-S100A10)2 complex in conditions in which membranes are able to bridge was studied. We performed Cryo-electron microscopy observations of the tetrameric annexin 2 on the membrane surface, and study the S100A10 accessibility to antibodies by flow “cytometry”. We also studied the kinetics and size evolution of vesicle aggregates by dynamic light scattering. The results show that the protein is able to organize in three different arrangements depending on the presence of Ca2+ and pH and that the aggregation is faster in the presence of Ca2+ compared with the aggregation in its absence. In one arrangement the S100A10 molecule is exposed to the solvent allowing its interaction with other proteins. The presented results will serve as a molecular basis to explain some of the functions of the tetrameric annexin 2.  相似文献   

2.
Mechanical activity of cells and the stress imposed on them by extracellular environment is a constant source of injury to the plasma membrane (PM). In invasive tumor cells, increased motility together with the harsh environment of the tumor stroma further increases the risk of PM injury. The impact of these stresses on tumor cell plasma membrane and mechanism by which tumor cells repair the PM damage are poorly understood. Ca2+ entry through the injured PM initiates repair of the PM. Depending on the cell type, different organelles and proteins respond to this Ca2+ entry and facilitate repair of the damaged plasma membrane. We recently identified that proteins expressed in various metastatic cancers including Ca2+-binding EF hand protein S100A11 and its binding partner annexin A2 are used by tumor cells for plasma membrane repair (PMR). Here we will discuss the involvement of S100, annexin proteins and their regulation of actin cytoskeleton, leading to PMR. Additionally, we will show that another S100 member – S100A4 accumulates at the injured PM. These findings reveal a new role for the S100 and annexin protein up regulation in metastatic cancers and identify these proteins and PMR as targets for treating metastatic cancers.  相似文献   

3.
Rapid stomatal closure is driven by the activation of S‐type anion channels in the plasma membrane of guard cells. This response has been linked to Ca2+ signalling, but the impact of transient Ca2+ signals on S‐type anion channel activity remains unknown. In this study, transient elevation of the cytosolic Ca2+ level was provoked by voltage steps in guard cells of intact Nicotiana tabacum plants. Changes in the activity of S‐type anion channels were monitored using intracellular triple‐barrelled micro‐electrodes. In cells kept at a holding potential of ?100 mV, voltage steps to ?180 mV triggered elevation of the cytosolic free Ca2+ concentration. The increase in the cytosolic Ca2+ level was accompanied by activation of S‐type anion channels. Guard cell anion channels were activated by Ca2+ with a half maximum concentration of 515 nm (SE = 235) and a mean saturation value of ?349 pA (SE = 107) at ?100 mV. Ca2+ signals could also be evoked by prolonged (100 sec) depolarization of the plasma membrane to 0 mV. Upon returning to ?100 mV, a transient increase in the cytosolic Ca2+ level was observed, activating S‐type channels without measurable delay. These data show that cytosolic Ca2+ elevation can activate S‐type anion channels in intact guard cells through a fast signalling pathway. Furthermore, prolonged depolarization to 0 mV alters the activity of Ca2+ transport proteins, resulting in an overshoot of the cytosolic Ca2+ level after returning the membrane potential to ?100 mV.  相似文献   

4.
The protein S100 markedly increases the net intake of GABA across the plasma membranes of Deiters' neurons which have GABA receptors on their surfaces. This membrane function of S100 was found by using a new microtechnique. Plasma membranes of such cells have been freshly prepared by freehand microsurgery and are tightly fixed over a 30-µm ø hole between two compartments of a microchamber containing 2.0 mM GABA in 7.5 µl and 0.2 mM GABA in 75 µl, respectively. The transport of GABA has been determined after incubation of the membrane for from 30 sec to 10 min at 29°C. GABA is transported at a rate of 145 ng in 3 min over a 700-µm2 membrane area. S100 in its calcium form reacts with the membrane and increases GABA transport by 20% which is ATP dependent and inhibited by ouabain and ruthenium red. The kinetics of the transport furthermore prove that GABA transport across the plasma membrane is an active process.  相似文献   

5.
Membrane-bound guanylate cyclase activity was detected by ultracytochemistry at the electron microscope level in several mammalian tissues. The technique used in these studies allows the detection of active enzyme at the membrane site where it is located. In a few cases, such as normal and regenerating peripheral nerves and placenta, membrane-bound guanylate cyclase could be detected in the absence of stimulators of enzyme activity. However, in the majority of these studies membrane-bound guanylate cyclase was investigated following stimulation with natriuretic peptides, guanylin, or the Ca2+ sensor proteins, S100B and S100A1. In general, membrane-bound guanylate cyclase was localized to plasma membranes, in accordance with the functional role of this enzyme. Yet, in secretory cells the enzyme activity was localized on intracellular membranes, suggesting a role of membrane-bound guanylate cyclase in secretory processes. Finally, S100B and S100A1 were found to colocalize with membrane-bound guanylate cyclase on photoreceptor disc membranes and to stimulate enzyme activity at these sites in dark-adapted retinas in a Ca2+-dependent manner. The results of these analyses are discussed in relation to the proposed functional role(s) of this enzyme.  相似文献   

6.
S100B and S100A10 are dimeric, EF‐hand proteins. S100B undergoes a calcium‐dependant conformational change allowing it to interact with a short contiguous sequence from the actin‐capping protein CapZ (TRTK12). S100A10 does not bind calcium but is able to recruit the N‐terminus of annexin A2 important for membrane fusion events, and to form larger multiprotein complexes such as that with the cation channel proteins TRPV5/6. In this work, we have designed, expressed, purified, and characterized two S100‐target peptide hybrid proteins comprised of S100A10 and S100B linked in tandem to annexin A2 (residues 1–15) and CapZ (TRTK12), respectively. Different protease cleavage sites (tobacco etch virus, PreScission) were incorporated into the linkers of the hybrid proteins. In situ proteolytic cleavage monitored by 1H‐15N HSQC spectra showed the linker did not perturb the structures of the S100A10‐annexin A2 or S100B‐TRTK12 complexes. Furthermore, the analysis of the chemical shift assignments (1H, 15N, and 13C) showed that residues T102‐S108 of annexin A2 formed a well‐defined α‐helix in the S100A10 hybrid while the TRTK12 region was unstructured at the N‐terminus with a single turn of α‐helix from D108‐K111 in the S100B hybrid protein. The two S100 hybrid proteins provide a simple yet extremely efficient method for obtaining high yields of intact S100 target peptides. Since cleavage of the S100 hybrid protein is not necessary for structural characterization, this approach may be useful as a scaffold for larger S100 complexes.  相似文献   

7.
8.
The gonadotropin receptors associated with plasma membrane fractions were solubilized by detergents, including Triton X-100, Lubrol WX, Lubrol PX and sodium deoxycholate before and after equilibration with 125I-labelled human chorionic gonadotropin. The binding activity remained in solution even after centrifugation at 300 000 × g for 3 h. The solubilized gonadotropin receptor or gonadotropin receptor complex was characterized by gel filtration and sucrose density gradient centrifugation. Sucrose density gradient centrifugation of solubilized gonadotropin-receptor complex in the presence of Triton X-100 had a sedimentation coefficient of 6.5 S whereas the solubilized uncomplexed receptor had a sedimentation coefficient of 5.1 S. In the absence of the detergent, solubilized hormone receptor complex from plasma membrane fractions I and II sedimented with a apparent sedimentation coefficient of 6.6 S and 7.4 S, respectively. Similary, the free receptor also showed higher sedimentation profile with a apparent sedimentation coefficient of 6.7 S for fraction I and 7.2 S for fraction II. Treatment of plasma membranes with phospholipase A and C inhibited the binding of 125I-labelled human chorionic gonadotropin in a dose dependent manner, whereas phospholipase D was without any effect. Doses of 1.4 mI.U. of phospholipase A or 0.6 mI.U. of phospholipase C were required to produce 50% inhibition of the binding activity. These phospholipases had no effect on the performed 125I-labelled human chorionic gonadotropin-receptor complex nor on the sedimentation profile of solubilized gonadotropin receptor complex.  相似文献   

9.
S100A12 (Calgranulin C) is a small acidic calcium-binding peripheral membrane protein with two EF-hand structural motifs. It is expressed in macrophages and lymphocytes and highly up-regulated in several human inflammatory diseases. In pigs, S100A12 is abundant in the cytosol of granulocytes, where it is believed to be involved in signal modulation of inflammatory process. In this study, we investigated the interaction of the porcine S100A12 with phospholipid bilayers and the effect that ions (Ca2+, Zn2+ or both together) have in modifying protein-lipid interactions. More specifically, we intended to address issues such as: (1) is the protein-membrane interaction modulated by the presence of ions? (2) is the protein overall structure affected by the presence of the ions and membrane models simultaneously? (3) what are the specific conformational changes taking place when ions and membranes are both present? (4) does the protein have any kind of molecular preferences for a specific lipid component? To provide insight into membrane interactions and answer those questions, synchrotron radiation circular dichroism spectroscopy, fluorescence spectroscopy, and surface plasmon resonance were used. The use of these combined techniques demonstrated that this protein was capable of interacting both with lipids and with ions in solution, and enabled examination of changes that occur at different levels of structure organization. The presence of both Ca2+ and Zn2+ ions modify the binding, conformation and thermal stability of the protein in the presence of lipids. Hence, these studies examining molecular interactions of porcine S100A12 in solution complement the previously determined crystal structure information on this family of proteins, enhancing our understanding of its dynamics of interaction with membranes.  相似文献   

10.
Our previous findings demonstrate that some oviductal secretion proteins bind to gametes and affect sperm physiology and gamete interaction. One of these proteins possesses an estimated molecular weight of 14 kDa. The objective of this study was to isolate and identify this 14 kDa protein, to localize it in the human oviduct, to detect gamete binding sites for the protein, and to evaluate its effects on sperm capacitation parameters and gamete interaction. Explants from the human oviductal tissues of premenopausal women were cultured in the presence of [35S]-Methionine-proteins ([35S]-Met-proteins). De novo synthesized secreted [35S]-Met-proteins were isolated from the culture media by affinity chromatography using their sperm membrane binding ability and analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Using liquid chromatography-tandem mass spectrometry peptide sequencing, human S100 A9 was identified as one of the isolated proteins from the 14 kDa protein band. S100 A9 was detected in oviduct epithelium and oviduct secretion using immunohistochemistry and a Western blot. S100 A9 binding to human oocytes and spermatozoa was assessed by indirect immunofluorescence. The acrosome reaction (AR) affected S100 A9 ability to bind sperm cells. The presence of S100 A9 significantly increased both the induced AR and the sperm protein tyrosine phosphorylation, with respect to controls. However, the protein did not affect sperm-zona pellucida interaction. Results indicate that S100 A9 is present in the human oviduct and that it modulates parameters of sperm capacitation in vitro. Hence, the protein might contribute to the regulation of the reproductive process in the oviductal microenvironment.  相似文献   

11.
ATP-sensitive K+ channels play an important role in regulating membrane potential during metabolic stress. In this work we report the effect of ATP and ADP-Mg on a K+ channel present in the membrane of rough endoplasmic reticulum (RER) from rat hepatocytes incorporated into lipid bilayers. Channel activity was found to decrease in presence of ATP 100 μM on the cytoplasmic side and was totaly inhibited at ATP concentrations greater than 0.25 mM. The effect appeared voltage dependent, suggesting that the ATP binding site was becoming available upon channel opening. Channel activity was suppressed by the nonhydrolyzable ATP analog (ATPγS), ruling out a phosphorylation-based mechanism. Notably addition of 2.5 mM ADP-Mg to the cytosolic side increased the channel open probability at negative potentials. We conclude that the large conductance voltage-gated cation channel in RER of rat hepatocytes is an ATP and ADP sensitive channel likely to be involved in cellular processes such as Ca2+ signaling or control of membrane potential across the endoplasmic reticulum membrane.  相似文献   

12.
S100a is a heterodimeric, acidic calcium-binding protein that interacts with calmodulin antagonists in a Ca2+-dependent manner. In order to study the behavior of the hydrophobic domain on S100a when bound to Ca2+, its interaction with trifluoperazine (TFP) was investigated using16F nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. The dissociation constant (K d) values of TFP, as estimated from the chemical shifts of19F NMR, were 191 and 29 μm in the absence and presence of Ca2+, respectively, and were similar to those previously reported for S100b. However, the TFP linewidth in the presence of Ca2+-bound S100a was 65 Hz greater than in the presence of Ca2+-bound S100b. This suggests a slower TFP exchange rate for S100a than for S100b. Thus, the TFP linewidths observed for each isoform may reflect differences in structural and modulatory properties of the Ca2+-dependent hydrophobic domains on S100a and S100b. Additionally, the presence of magnesium had no effect on the observed Ca2+-induced TFP spectral changes in S100a solutions. Circular dichroism studies indicate that Ca2+ induces a small transition from α-helix to random coil in S100a; in contrast, the opposite transition is reported for calmodulin (Hennesseyet al., 1987). However, TFP did not significantly alter the secondary structure of Ca2+-bound S100a; this observation is similar to the effect of TFP on Ca2+-bound calmodulin and troponin C (Shimizu and Hatano, 1984; Gariépy and Hodges, 1983). It is, therefore, proposed that TFP binds to a hydrophobic domain on S100a in a fashion similar to other calcium-modulated proteins.  相似文献   

13.
Detergent binding studies indicated that the neural enzyme, acetylcholinesterase, did not exhibit the properties of an integral membrane protein. The 11S form was isolated by affinity chromatography from a tryptic digest and the 14S and 18S forms in like manner from an undigested preparation. Studies were performed with [3H]TX-100 to determine the extent of binding by these forms and with catalase and human low density lipoprotein as reference proteins. All forms of the enzyme bound less than 0.04 mg TX-100/mg protein which is only slightly higher than binding by catalase and about 25 fold lower than the binding exhibited by low density lipoprotein.  相似文献   

14.
S100b is a calcium-binding protein that will bind to many calmodulin target molecules in a Ca2+-dependent manner. In order to study the Ca2+-dependent binding properties of S100b, its interaction with a calmodulin antagonist, trifluoperazine (TFP), was investigated using [19F]- and [1H]-NMR and UV-difference spectroscopy. It was estimated from [19F]-NMR that in the absence of Ca2+, thek 1/2 value of TFP was 130 µM, while itsk 1/2 value decreased to 28 µM in the presence of Ca2+. The addition of KCl was not antagonistic to the Ca2+-dependent interaction of TFP to S100b. The chemical exchange rate of TFP with Ca2+-bound S100b was estimated to be 9×102 sec?1. By comparison with TFP-calmodulin exchange rates, it is suggested that the TFP-binding site on S100b is structurally different from its binding sites on calmodulin. Proton NMR resonance broadening in the range 6.8–7.2 ppm, corresponding to phenylalanine nuclei of S100b, indicates that these residues may be involved in TFP binding. Addition of Ca2+ to a 1:1 mixture of S100b and TFP resulted in a red-shifted UV-difference spectrum, while no significant difference spectrum was detected when Mg2+ was added to a S100b-TFP solution. Thus, we suggest that Ca2+ induces the exposure of a hydrophobic domain on S100b containing one or more phenylalanine residues that will bind TFP but that this domain is different from the hydrophobic domain on calmodulin.  相似文献   

15.
S100b is a calcium-binding protein that will bind to many calmodulin target molecules in a Ca2+-dependent manner. In order to study the Ca2+-dependent binding properties of S100b, its interaction with a calmodulin antagonist, trifluoperazine (TFP), was investigated using [19F]- and [1H]-NMR and UV-difference spectroscopy. It was estimated from [19F]-NMR that in the absence of Ca2+, thek 1/2 value of TFP was 130 µM, while itsk 1/2 value decreased to 28 µM in the presence of Ca2+. The addition of KCl was not antagonistic to the Ca2+-dependent interaction of TFP to S100b. The chemical exchange rate of TFP with Ca2+-bound S100b was estimated to be 9×102 sec–1. By comparison with TFP-calmodulin exchange rates, it is suggested that the TFP-binding site on S100b is structurally different from its binding sites on calmodulin. Proton NMR resonance broadening in the range 6.8–7.2 ppm, corresponding to phenylalanine nuclei of S100b, indicates that these residues may be involved in TFP binding. Addition of Ca2+ to a 1:1 mixture of S100b and TFP resulted in a red-shifted UV-difference spectrum, while no significant difference spectrum was detected when Mg2+ was added to a S100b-TFP solution. Thus, we suggest that Ca2+ induces the exposure of a hydrophobic domain on S100b containing one or more phenylalanine residues that will bind TFP but that this domain is different from the hydrophobic domain on calmodulin.  相似文献   

16.
S100a is a heterodimeric, acidic calcium-binding protein that interacts with calmodulin antagonists in a Ca2+-dependent manner. In order to study the behavior of the hydrophobic domain on S100a when bound to Ca2+, its interaction with trifluoperazine (TFP) was investigated using16F nuclear magnetic resonance (NMR) and circular dichroism (CD) spectroscopy. The dissociation constant (K d) values of TFP, as estimated from the chemical shifts of19F NMR, were 191 and 29 m in the absence and presence of Ca2+, respectively, and were similar to those previously reported for S100b. However, the TFP linewidth in the presence of Ca2+-bound S100a was 65 Hz greater than in the presence of Ca2+-bound S100b. This suggests a slower TFP exchange rate for S100a than for S100b. Thus, the TFP linewidths observed for each isoform may reflect differences in structural and modulatory properties of the Ca2+-dependent hydrophobic domains on S100a and S100b. Additionally, the presence of magnesium had no effect on the observed Ca2+-induced TFP spectral changes in S100a solutions. Circular dichroism studies indicate that Ca2+ induces a small transition from -helix to random coil in S100a; in contrast, the opposite transition is reported for calmodulin (Hennesseyet al., 1987). However, TFP did not significantly alter the secondary structure of Ca2+-bound S100a; this observation is similar to the effect of TFP on Ca2+-bound calmodulin and troponin C (Shimizu and Hatano, 1984; Gariépy and Hodges, 1983). It is, therefore, proposed that TFP binds to a hydrophobic domain on S100a in a fashion similar to other calcium-modulated proteins.  相似文献   

17.
S100A13 is a 98-amino acid, calcium binding protein. It is known to participate in the non-classical secretion of signal peptide-less proteins, such as the acidic fibroblast growth factor. In this study, we investigate the lipid binding properties of S10013 using a number of biophysical techniques, including multidimensional NMR spectroscopy. Isothermal titration calorimetry and steady state fluorescence experiments show that apoS100A13 exhibits preferential binding to small unilamelar vesicles of l-phosphatidyl serine (pS). In comparison, Ca2+-bound S100A13 is observed to bind weakly to unilamelar vesicles (SUVs) of pS. Equilibrium thermal unfolding and limited trypsin digestion analysis reveal that apoS100A13 is significantly destabilized upon binding to SUVs of pS. Results of the far UV circular dichroism and ANS (8-anilino-1-napthalene sufonate) binding experiments indicate a subtle conformational change resulting in the increase in the solvent-accessible hydrophobic surface in the protein. Availability of the solvent-exposed hydrophobic surface(s) in apoS10013 facilitates its interaction with the lipid vesicles. Our data suggest that Ca2+ binding dictates the membrane binding affinity of S100A13. Based on the results of this study, a model describing the sequence of molecular events that possibly can occur during the non-classical secretion of FGF-1 is presented.  相似文献   

18.
S100A4 is a Ca2+-binding protein that performs an important role in metastasis. It is also known for its antitumor functions. S100A4 is expressed by a specialized subset of CD4+CD25+ lymphocytes and is present on those cell's membranes along with peptidoglycan recognition proteins (PGRPs). There, by interacting with major heat shock protein Hsp70, S100A4 plays an important cytotoxic role. The resulting stably formed complex of PGRPs, S100A4 and Hsp70 is required for the identification and binding between a lymphocyte and a target cell. Here, we investigated the S100A4 functions in CD4+CD25+PGRPs+S100A4+ lymphocyte cytotoxicity against target cells. We demonstrated that those lymphocytes do not form a stable complex with the tumor target cells that themselves have S1004A on their surface. That observation can be explained by our finding that S100A4 precludes the formation of a stable complex between PGRPs, S100A4 (on the lymphocytes’ surface), and Hsp70 (on the target cells’ surface). The decrease in S100A4 level in CD4+CD25+PGRPs+S100A4+ lymphocytes inhibits their cytotoxic activity, while the addition of S100A4 in the medium restores it. Thus, the resistance of target cells to CD4+CD25+PGRPs+ S100A4+ lymphocyte cytotoxicity depends on their S100A4 expression level and can be countered by S100A4 antibodies.  相似文献   

19.
The S100B protein belongs to a family of small Ca2+-binding proteins involved in several functions including cytoskeletal reorganization. The effect of S100B on protein phosphorylation was investigated in a cytoskeletal fraction prepared from immature rat hippocampus. An inhibitory effect of 5 M S100B on total protein phosphorylation, ranging from 25% to 40%, was observed in the presence of Ca2+ alone, Ca2+ plus calmodulin or Ca2+ plus cAMP. Analysis by two dimensional electrophoresis revealed a Ca2+/calmodulin-dependent and a Ca2+/cAMP-dependent inhibitory effect of S100B, ranging from 62% to 67% of control, on the phosphorylation of the intermediate filament proteins glial fibrillary acidic protein (GFAP) and vimentin. The fact that S100B binds to the N-terminal domain of GFAP and that the two proteins are co-localized in astrocytes suggests a potential in vivo role for S100B in modulating the phosphorylation of intermediate filament proteins in glia.  相似文献   

20.
Cytoplasmic and outer membranes of Caulobacter crescentus were separated by isopycnic sucrose gradient centrifugation into two peaks with buoyant densities 1.22 and 1.14 g/cm3. These peaks were identified as outer and cytoplasmic membranes by the enrichment of malate dehydrogenase and NADH oxidase in the lower density peak and the presence of flagellin, a cell surface protein, in the heavier peak. The identity of the heavier peak as outer membrane was confirmed by labeling of cells with diazotized [35S]sulfanilic acid, a reagent that does not penetrate intact cells. Under these conditions only outer membrane proteins were substituted by the sulfanilic acid. The distribution of proteins between the cytoplasmic and outer membranes were examined by the analysis of [35S]methionine-labeled membranes by SDS-polyacrylamide and two-dimensional gel electrophoresis. These results showed that the inner and outer membranes contain approximately equal numbers of proteins, and that the distribution of these proteins between the two layers is highly asymmetric. Although many of the proteins could be assigned to one or the other membrane fraction, a number of the outer membrane proteins in the 32 000–100 000 molecular weight range frequently contaminate the inner membrane fractions. The implications of these results for membrane isolation and separation in C. crescentus are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号