首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using tissue culture selection techniques, variants resistant to S-(2-aminoethyl)-L-cysteine (AEC) and 5-methyltryptophan(5MT) were, respectively, isolated from Opaque-2 maize inbred line “Zhongxi 037/02” and “Zhongxi 091/02”. After growing 5 months on AEC free medium, the AEC-resistant cell line (Raec) still showed high level AEC resistance which was 4 times. higher than that of its wild type, “Zhongxi 037/02”. The resistance was expressed at the plant level. New cultures initiated from shoot tissue of plants regenerated from Raec was also resistant to AEC inhibition. The free pool of lysine, threonine, isoleucine, methionine and arginine increased 0.5–3.4 fold in Raec culture. The aspartokinase from both AEC-resistant and -sen- sitive lines exhibited similar sensitivity to lysine and AEC inhibition. But the aspartokinase activity in the resistant line was 2.3 times of that in sensitive line. Seed were obtained from the plants resistant to AEC when crossed with pollen of sensitive plants. The resistance of 5MT-resistant cell line, tested after growth for 11 months on nonselection medium, was 3.5 times higher than that of its wild type, “Zhongxi 091/02”. The 5MT-resistance was possibly due to the accumulation of free tryptophan (from 0 to 61.6 nmol/g fr. wt) in the resistant cells. There was also an increase in free phenylalanine (14.5 fold) and tyrosine (28.8 fold).  相似文献   

2.
Resistance to certain amino acids or amino acid analogs can lead to overproduce specific 'free amino acids. By selection-Mutagenic treatment-Selection, lysine plus threonine-resistant mutant (RLT) was obtained from tissue culture of maize, W77-R3019V The resistance of RLT was 20 times higher than that of wild type. The levels of all free aspartate family amino acids in RLT were higher than those in wild type. Especially, threonine was 20 times higher. The resistance was inheritable and segregation in progenies, RLT1 and F1, was approximate to 3:1 and 1:1 resistant/sensitive ratio, respectively. The resistance was inherited as a single dominant or semidominant nuclear gene. In RLT2 embryo cultures, the resistance and free threonine levels in resistant callus were 20 and 23 times higher than those in sensitive one, respectively. In the homozygous seeds of RLT2, the levels of free threonine, arginine, lysine, methionine and isoleucine were 11, 8, 5, 5 and 3 times higher than those of wild type.  相似文献   

3.
Summary Two S-(2-aminoethyl)L-cysteine (AEC) resistant lines were isolated by screening mutagenized protoplasts from diploid N. sylvestris plants. Both lines accumulated free lysine at levels 10 to 20-fold higher than in controls. Lysine overproduction and AEC-resistance were also expressed in plants regenerated from the variant cultures. A feedback insensitive form of dihydrodipicolinate synthase (DHPS), the pathway specific control enzyme for lysine synthesis, was detected in callus cultures and leaf extracts from the resistant lines. Aspartate kinase (AK), the other key enzyme in the regulation of lysine biosynthesis, was unaltered in the mutants. Crosses with wild type plants indicated that the mutation conferring insensitivity to feedback in DHPS, with as result overproduction of lysine and resistance to AEC, was inherited as a single dominant nuclear gene.Abbreviations AK aspartate kinase (EC 2.7.2.4) - DHPS dihydrodipicolinate synthase (EC 4.2.1.52) - AEC S-(2-aminoethyl)L-cysteine  相似文献   

4.
S-(2-氨乙基)-L-半胱氨酸(AEC)可抑制芦笋愈伤组织的生长,此抑制作用可被赖氨酸或甲硫氨酸部分解除。用0.5mmol/L的AEC进行筛选,得到抗性愈伤组织AR10并再生植株。AR10愈伤组织经一年多的继代培养,在离开选择剂组培继代两代后仍保持对AEC的抗性。抗性系愈伤组织还表现出对2mmol/L的半胱氨酸具交叉抗性,对1mmol/L的赖氨酸加苏氨酸表现部分交叉抗性。AR10再生植株一部分保持对AEC的抗性,而一部分则无抗性。对抗性愈伤组织及其再生植株的氨基酸分析表明,愈伤组织内游离赖氨酸、苏氨酸、甲硫氨酸都有增加,而在再生植株内却发现半胱氨酸和赖氨酸的特异性增加,分别是对照植株的5.4和4.6倍。  相似文献   

5.
A 5-methyltryptophan resistant rice mutant,MTR1, selected in tissue culture   总被引:5,自引:0,他引:5  
Summary Cell lines resistant to tryptophan analogue 5-methyltryptophan (5MT) were selected in seed-derived calli of Oryza sativa L. var. Norin 8. Plants were regenerated (R1 from one selected callus line (MTR1). In three out of the six R1 plants, 5MT resistance was inherited in the R2 and R3 generations as a dominant nuclear mutation. Segregation ratios in the progeny of heterozygous plants were 11. Morphological and fertility variation seen in some of the R2 plants were not correlated with 5-methyltryptophan resistance. Resistance in the MTR1 callus was due to the accumulation of high levels of free tryptophan (87-fold) that was associated with an increase in free phenylalanine content (9-fold). The leaves of resistant plants also contained elevated levels of free tryptophan and phenylalanine.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - MS Murashige and Skoog (1962) basal medium - 5MT D,L-5-methyltryptophan - phe phenylalanine - trp tryptophan - tyr tyrosine  相似文献   

6.
Sixth generation of mutant maize seed homozygous for lysine plus threonine resistancewhich was derived from the resistant callus cultures has been harvested. The resistance could be inherited stably. The fertility, however, was very poor. The resistant homozygotes have been obtained by backcross of the wild type with the resistant plants (W77-R3019 ×R0), and their fertility could be parlty recovered after selection for the resistant plants from backcross progenies. Genetic analysis showed that the resistance inherited as a single dominant nuclear allele. All of the free amino acids except phenylalan inc in the homozygote are increased by 4 folds. and free essential amino acids by 5 folds which are higher than those in the wild types. Total amino acids increased by 5.53%. The dramatic increase (11 times) in free threonine adds up the total threonine by 17.73%. Difference of the protein content between the homozygote and wild type was not obvious. These results show that selection for the resistance to lysine plus threonine in maize and other cereals is probably very useful for improving their value of protein nutrition.  相似文献   

7.
Summary A rice plant resistant to 5-methyltryptophan (5MT) was selected from mutagenized M3 seeds (Oryza sativa L. var. Sasanishiki) originating from panicles treated with ethylene imine (0.2%) 2 h after flowering. When germinated on 5MT-containing medium, the seeds (M4) from selfed plants segregated with a 3 resistant:1 sensitive ratio, indicating that the plant was heterozygous for a resistance gene and that the resistance was dominant. The resistance was also expressed in callus derived from seeds. Analysis of the free amino acids in seeds, seedlings, and calli showed that homozygous resistant plants (TR1) contained higher levels of total free amino acids than sensitive plants. In particular the levels of tryptophan, phenylalanine, and histidine were, respectively, 8.5, 5.4, and 4.9 times higher than those in the sensitive plants.  相似文献   

8.
Tissue culture selection techniques were used to isolate a maize (Zea mays L.) variant D33, in which the aspartate family pathway was less sensitive to feedback inhibition by lysine. D33 was recovered by successively subculturing cultures originally derived from immature embryos on MS medium containing growth-inhibitory levels of lysine+threonine. The ability of D33 to grow vigorously on lysine+ threonine medium was retained after growth for 12 months on nonselection medium. New cultures initiated from shoot tissues of plants regenerated from D33 also were resistant to lysine+threonine inhibition. The Ki of aspartokinase for its feedback inhibitor, lysine, was about 9-fold higher in D33 than for the enzyme from unselected cultures. The free pools of lysine, threonine, isoleucine and methionine were increased 2–9-fold in D33 cultures. This was consistent with the observed change in feedback regulation of aspartokinase, the first enzyme common to the biosynthesis of these amino acids in the aspartate pathway. The accumulated evidence including the stability of resistance in the cultures, the resistance of cultures initiated from regenerated plants, the altered feedback regulation, and the increased free amino acids, indicates a mutational origin for these traits in line D33.Abbreviation LT lysine+threonine in equimolar concentration Paper No. 10880, Scientific Journal Series, Minnesota Agricultural Expertment Station  相似文献   

9.
以赖氨酸类似物S-(2-氨乙基)L-半胱氨酸(AEC)为选择剂,从水稻花药培养中筛选出一个抗性突变体(R_(AEC))。突变体愈伤组织经过6个月继代培养后仍保持抗性稳定。R_(AEC)再生植株根尖诱导的愈伤组织经过3个月继代培养也保持稳定的抗性。R_(AEC)细胞内赖氨酸含量提高了近2倍,苏氨酸提高5倍多。其他氨基酸,如蛋氨酸、酪氨酸、丝氨酸等都有较大量的提高。 R_(AEC)愈伤组织对赖氨酸加苏氨酸混合物也具有抗性。突变体植株较原始类型稍矮小,巳正常结实。  相似文献   

10.
Carrot suspension cultures resistant to growth inhibition byp-fluorophenylalanine, ethionine. aminoethylcysteine, and 5-methyltryptophanwere obtained by sequential selection for resistance to eachamino acid analogue. Resistance was increased at least 100-foldfor each analogue and the resistance was retained after growthaway from the inhibitors for 40 cell doublings. After each selection,the corresponding free natural amino acid was increased andthe line resistant to all four analogues showed levels of phenylalanine,methionine, lysine, and tryptophan which were 7, 6, 5, and 32times that of the parental wild type line, respectively. Thetotal free amino acid level was doubled in this line. Only afterselection for 5-methyltryptophan resistance did the anthranilatesynthetase show altered feedback sensitivity to tryptophan.  相似文献   

11.
Somatic hybrids were selected previously by their ability to grow in medium containing normally inhibitory levels of the two amino acid analogs aminoethylcysteine (AEC) and 5-methyltryptophan (5MT) following fusion of protoplasts from a cell strain resistant to AEC with protoplasts resistant to 5MT. The hybrid nature of the selected clones was shown by several criteria including the presence of another resistance, azetidine-2-carboxylate (A2C), carried by one of the parental strains which was not selected for in the initial hybrid selection scheme. The characterization presented here shows that the AEC resistance in the parental strain, as well as the two somatic hybrids, was due to decreased AEC uptake. Also the 5MT resistance in the hybrids, as in the parent was caused by a feedback altered form of the tryptophan biosynthetic control enzyme, anthranilate synthase which leads to increases in free tryptophan. The A2C resistance was caused by the accumulation of free proline by a mechanism which has not been studied. These studies confirm that AEC resistance caused by decreased uptake can be expressed dominantly in protoplast fusion hybrids.Abbreviations A2C Azetidine-2-carboxylate - AEC Aminoethylcysteine - 5MT 5-methyltryptophan  相似文献   

12.
Summary Diploid alfalfa (HG2), capable of plant regeneration from tissue culture, was used to select variant cell lines resistant to growth inhibition due to ethionine (an analog of methionine). Approximately 107 suspension-cultured cells were mutagenized with methane sulfonic acid ethylester and then plated in solid media containing ethionine. Callus colonies formed on media with 0.02 mM ethionine. Of the 124 cell lines recovered, 91 regenerated plants. After six months growth on media without ethionine, 15 of 110 cell lines of callus grew significantly better than HG2 on 1 mM ethionine. Several ethionine-resistant callus cultures were also resistant to growth inhibition due to the addition of lysine + threonine to the media. High concentrations, relative to unselected HG2 callus, of methionine, cysteine, cystathionine, and glutathione were found in some, but not all, ethionine-resistant callus cultures. Cell line R32, which had a ca. tenfold increase in soluble methionine, had a 43% increase in total free amino acids and a 40% increase in amino acids in protein as compared to unselected HG2 callus. Relative amounts of each amino acid in protein were the same in both.Abbreviation LT lysine + threonine in equimolar concentration  相似文献   

13.
Sodium azide is a potent mutagen of maize (Zea mays L.) kernels that may have potential as a point mutagen for inducing biochemical mutations in maize tissue cultures. Azide mutagenicity was evaluated in friable, embryogenic maize callus and a nonregenerable maize suspension culture by determining the number of resistant variant cell lines able to grow on media containing inhibitory concentrations of lysine plus threonine (LT). The number of LT-resistant variants selected from either culture type did not increase in response to azide treatment. In addition, there was no increase in somatic mutations in more than 100 plants regenerated from azide treated LT-resistant lines. The levels of mutagenic metabolite of azide (presumably azidoalanine), were determined by bioassay in the two azide-treated maize callus types and compared to levels of mutagenic metabolite in embryos isolated from azide-treated kernels. The two types of maize tissue cultures and isolated embryos contained similar levels of mutagenic metabolite 4 h after azide treatment indicating similar uptake and conversion of azide to mutagenic metabolite in the three tissues. Mutagenic metabolite in azide-treated embryos did not significantly decrease after 40 h. However, mutagenic metabolite levels in both azide-treated tissue cultures decreased to near background levels within 20 h providing evidence for rapid metabolism of the azide mutagenic metabolite. The lack of evidence for azide mutagenicity in maize callus and its known potent mutagenicity in kernels appears to be associated with specific differences in azide metabolism between callus tissues and kernel embryos.  相似文献   

14.
5-Methyltryptophan (5MT), a tryptophan analog, resistant M4 rice mutants with high free amino acid contents were obtained through in vitro mutagenesis. To evaluate the 5MT resistance mechanism, a cDNA library was constructed by using the leaves and roots of the 5MT resistant mutant plants. Expressed sequenced tags (ESTs) of 1 019 randomly selected clones were analyzed and then assembled 588 unigens. A total of 389 unigenes had significant homologies with known protein sequences at the NCBI database and the remaining 199 unigenes were designated unidentified genes. These unigens were grouped into 13 categories according to their putative functions. Of the 233 randomly selected clones, 25 were identified as differentially expressed genes between 5MT resistant and 5MT sensitive wild type plants. For further study of the differential expression of the genes, expression patterns of 12 genes related to various biological functions were evaluated in response to 5MT treatment in both the resistant plants and sensitive plants. All of the tested 12 genes exhibited higher expression levels in mutant plants than wild type plants under the 5MT inhibition. These expression patterns of the 12 genes suggested that the genes related to 5MT resistance in the rice mutants have a variety of functions, and yield remarkably diverse expression patterns upon 5MT treatment. Many genes that were identified tend to be related to defense and stress responses, suggesting “cross-talking“ between biotic/abiotic stresses including the 5MT treatment. Therefore, 5MT resistant mutants might be of value for identifying genes related to plant defenses and stresses.  相似文献   

15.
Asparagus officinalis calli were induced from shoot of seedlings. After mutagenization, two lysine plus threonine resistant mutant lines (LTR2, LTR3) were obtained by selectionnonselection-reselection procedures with 2 mmol/1 lysine plus threonine. LTR2 and LTR3 caIli remained resistance to lysine plus threonine after being subcultured for 1 year, and both of them showed cross resistance to 1 mmol/l aminoethylcysteine. In resistant calli, the free lysine, methionine and an unknown amino acid were l-l0 times more than those in controls.  相似文献   

16.
苜蓿抗甲硫氨酸变异体的筛选   总被引:6,自引:0,他引:6  
紫花苜蓿(Medicago sativa L.)下胚轴愈伤组织用NaN_3溶液诱变处理后,在含有全致死浓度甲硫氨酸的MS培养基上进行了6个月的连续筛选培养,获得了能抗100mmol/L甲硫氨酸的变异细胞系,并分化成再生植株。所获变异细胞系在脱离选择压力6个月后,对甲硫氨酸的抗性仍比对照高7.2倍,并表现出对乙硫氨酸的交叉抗性(为对照抗性的3.3倍)。抗性细胞系及其再生植株的甲硫氨酸、赖氨酸、苏氨酸和异亮氨酸含量均比对照有大幅度增加。抗性系的SDS-PAGE电泳图谱及过氧化物酶同工酶谱带均与对照有显著不同,并出现了新带,表明变异系已经产生变化了的基因产物。  相似文献   

17.
The effect that resistance to 5-methyltryptophan (MT) has on the symbiotic properties of B. japonicum was examined in a survey of fourteen clones. Resistance to MT often involves a mutational alteration in the regulation of tryptophan biosynthesis.Resistant clones (MTR) were isolated from agar plates containing MT. In the selection process care was taken to avoid pigmented clones that are likely to accumulate large amounts of indole compounds or show increased tryptophan catabolism. Wild-type control clones (WTc) were isolated from plates containing no selective agent. In greenhouse studies. Tracy-M soybean plants were inoculated with the two types of clones. After six weeks, plants which were inoculated with the MT resistant clones showed a much greater range of symbiotic effectiveness than did plants that received the control clones.While most MT-resistant clones were poor symbionts or unchanged in their symbiotic performance, one clone was obtained that had significantly improved symbiotic properties. The procedure may offer a way of selecting for clones with improved symbiotic performance. These results also indicate a link between tryptophan biosynthesis and symbiotic effectiveness.  相似文献   

18.
Lysine metabolism in a barley mutant resistant to S(2-aminoethyl)cysteine   总被引:1,自引:0,他引:1  
Lysine and S(2-aminoethyl)cysteine (AEC) metabolism were investigated in normal barley (Hordeum vulgare L. cv. Bomi) and a hemozygous recessive AEC-resistant mutant (R906). Feedback regulation of lysine and threonine synthesis from [14C] acetate was unimpaired in plants of the mutant 3 d after germination. Seeds of Bomi and R906 contained similar total amounts of lysine, threonine, methionine and isoleucine. Concentrations of these amino acids in the soluble fraction of plants grown 6 d without AEC were also similar. The concentration of AEC in R906 plants was less than in the parent variety when both were grown in the presence of 0.25 mM AEC for 6 d. The uptake of [3H]AEC and [3H]lysine by roots of R906 was, respectively, 33% and 32% of that by Bomi roots whereas the uptake of these compounds into the scutellum was the same in both the mutant and its parent. The uptake of [3H]leucine and its incorporation into proteins was also the same in Bomi and R906 plants. These results suggest that a transport system specific for lysine and AEC but not leucine is altered or lost in roots of the mutant R906. AEC is incorporated into protein and this could be the reason for inhibition of growth rather than action as a false-feedback inhibitor of lysine biosynthesis.Abbreviations AEC S(2-aminoethyl)cysteine - LYS lysine - THR threonine  相似文献   

19.
Experiments were designed to test whether variation in percent lysine in seed proteins could be recovered in plants regenerated from callus subjected to inhibitory levels of lysine plus threonine. Anther-derived callus was subjected to 1 millimolar lysine plus threonine for three successive passages and then once to the same concentration of S-(2-aminoethyl)cysteine. Plants were regenerated from the resistant callus. Plants recovered directly from tissue culture were normal in color, size and were 50% or less fertile. Second and third generation plants produced a wide range of variants including albinos, deep green plants both short and tall, and totally fertile as well as partially fertile plants. All regenerated plants produced chalky or opaque seed. One unique second generation line had 14% more lysine in seed storage proteins than the controls. This characteristic was transmitted to the next generation. The high lysine plants had reduced seed size with significantly higher levels of seed storage protein than the controls. The phenotypes recovered provide experimental materials for basic studies in protein synthesis and lysine metabolism and may become a source of material for rice breeding.  相似文献   

20.
Barley (Hordeum vulgare L.) mutants altered in the regulation of synthesis of aspartate-derived amino acids were sought by screening embryos for growth on a medium containing lysine plus threonine. One mutant, Rothamsted 2501, was selected with good growth. From the segregation of resistance in the following generations, it was concluded that the resistance was conferred by a dominant gene, Lt1. No homozygous Lt1/Lt1 fertile plants have been recovered. Partially purified aspartate kinase preparations from resistant and sensitive plants were separated on DEAE-cellulose chromatography into three peaks of activity (I, II, III) and the feedback regulatory properties of these peaks determined. These peaks are considered to be three isozymic forms of aspartate kinase, one predominantly sensitive to threonine and two sensitive to lysine or lysine plus S-adenosyl methionine. The feedback characteristics of one of the peaks of aspartate kinase activity from resistant plants were changed such that lysine was half-maximally inhibitory at 10 rather than 0.4mm. Increases in the concentrations of the free pools of threonine (4×) and methionine (2×) were measured in young plants grown on a basal medium. Threonine in the soluble fraction of mature seeds from resistant plants was increased from 0.8 to 9.6% of the total threonine content. The total content of both threonine and methionine of the seeds was increased by 6% compared with grain of similar nitrogen content.S.E.R. acknowledges the receipt of a Council of Europe Scholarship through The British Council. Part of this was also supported by EEC Grant 473.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号