首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ataxias are a complex group of diseases with both environmental and genetic causes. Among the autosomal dominant forms of ataxia the genes for two, spinocerebellar ataxia type 1 (SCA1) and Machado-Joseph disease (MJD), have been isolated. In both of these disorders the molecular basis of disease is the expansion of an unstable CAG trinucleotide repeat. To assess the frequency of the SCA1 and MJD trinucleotide repeat expansions among individuals diagnosed with ataxia we have collected DNA from individuals representing 311 families with adult-onset ataxia of unknown etiology and screened these samples for trinucleotide repeat expansions within the SCA1 and MJD genes. Within this group there are 149 families with dominantly inherited ataxia. Of these, 3% had SCA1 trinucleotide repeat expansions, whereas 21% were positive for the MJD trinucleotide expansion. Thus, together SCA1 and MJD represent 24% of the autosomal dominant ataxias in our group, and the frequency of MJD is substantially greater than that of SCA1. For the 57 patients with MJD trinucleotide repeat expansions, a strong inverse correlation between CAG repeat size and age at onset was observed (r = -.838). Among the MJD patients, the normal and affected ranges of CAG repeat size are 14-40 and 68-82 repeats, respectively. For SCA1 the normal and affected ranges are much closer, containing 19-38 and 40-81 CAG repeats, respectively.  相似文献   

2.
We report here a simple method for generating large CAG/CTG repeat sequences. We have applied this method to clone the genomic sequence containing the CAG/CTG repeat and its upstream intronic sequence present in spinocerebellar ataxia type 3 or Machado-Joseph disease (SCA3/MJD) by a modified DIRECT method. With these modifications we have considerably simplified the generation of the repeat probe used to screen for anomalous bands. This method will facilitate the molecular approach to other genetic disorders where expansions of repeat sequences could be involved.  相似文献   

3.
The autosomal dominant late onset spinocerebellar ataxias (SCAs) are genetically heterogeneous. Three genes, SCA1 on 6p, SCA2 on 12q and MJD1 on 14q, have been isolated for SCA1, SCA2 and Machado-Joseph disease (MJD), respectively. In these three autosomal dominant disorders the mutation is an expanded CAG repeat. Evidence for heterogeneity in families not linked to the SCA1, SCA2 and MJD loci is provided by the mapping of SCA loci to chromosomes 16q, 11cen and 3p. A total of 14 South African kindreds and 22 sporadic individuals with SCA were investigated for the expanded SCA1 and MJD repeats. None of the families nor the sporadic individuals showed expansion of the MJD repeat. Expanded SCA1 and CAG repeats were found to cosegregate with the disorder in six of the families tested and were also observed in one sporadic individual with a negative family history of SCA. The use of the microsatellite markers D6S260, D6S89 and D6S274 provided evidence that the expanded SCA1 repeats segregated with three distinct haplotypes in the six families. Use of the highly polymorphic tightly linked microsatellite markers is still important as this stage, particularly where this coincides with the possibility of a homozygous genotype with the trinucleotide repeat marker. Importantly, our molecular findings indicate: (1) an absence of MJD expanded repeats underlying SCA; (2) the major disease in this group is due to mutations in the SCA1 gene; and (3) the familial disorder in the majority population group (i.e. mixed ancestry) in the Western Cape region of South Africa is most likely to be the result of two distinct founder events. Received: 4 November 1996 / Accepted: 6 February 1997  相似文献   

4.
Genetic anticipation – increasing severity and a decrease in the age of onset with successive generations of a pedigree – is clearly present in autosomal dominant cerebellar ataxia (ADCA). Anticipation is correlated with expansion of the CAG/CTG repeat sequence to sizes above those in the normal range through the generations of a pedigree. Genetic heterogeneity has been demonstrated for ADCA, with four cloned genes (SCA1, SCA2, SCA3/MJD, and SCA6) and three mapped loci (SCA4, SCA5 and SCA7). Another related dominant ataxia, dentatorubral-pallidoluysian atrophy (DRPLA), presents anticipation with CAG/CTG repeat expansions. We had previously analysed ADCA patients who had not shown repeat expansions in cloned genes for CAG/CTG repeat expansions by the repeat expansion detection method (RED) and had detected expansions of between 48 and 88 units in 17 unrelated familial cases. We present here an analysis of 13 genes and expressed sequence tags (ESTs) containing 10 or more CAG/ CTG repeat sequences selected from public databases in the 17 unrelated ADCA patients. Of the 13 selected genes and ESTs, 9 were found to be polymorphic with heterozygosities ranging between 0.09 and 0.80 and 2 to 17 alleles. In ADCA patients none of the loci showed expansions above the normal range of the CAG/CTG repeat sequences, excluding them as the mutation causing ADCA. Received: 28 May 1997 / Accepted: 30 June 1997  相似文献   

5.
Machado-Joseph disease (MJD) is an autosomal dominant spinocerebellar degeneration characterized by cerebellar ataxia and pyramidal signs associated in varying degrees with a dystonic-rigid extrapyramidal syndrome or peripheral amyotrophy. Unstable CAG trinucleotide repeat expansion in the MJD gene on the long arm of chromosome 14 has been identified as the pathological mutation for MJD. While investigating the distribution of CAG repeat lengths of the MJD gene in Taiwan’s population, we have identified 18 MJD-affected patients and 12 at-risk individuals in seven families. In addition, we have analyzed the range of CAG repeat lengths in 96 control individuals. The CAG repeat number ranged from 13 to 44 in the controls and 72–85 in the affected and at- risk individuals. Our results indicated that the CAG repeat number was inversely correlated with the age of onset. The differences in CAG repeat length between parent and child and between siblings are greater with paternal transmission than maternal transmission. Our data show a tendency towards the phenomenon of anticipation in the MJD families but do not support unidirectional expansion of CAG repeats during transmission. We also demonstrated that PCR amplification of the CAG repeats in the MJD gene from villous DNA was possible and might prove useful as a diagnostic tool for affected families in the future. Received: 4 December 1996 / Accepted: 5 March 1997  相似文献   

6.
谭建强  汪萍  胡启平  李松峰  舒伟  马军  方玲  华荣  丁晔  袁志刚 《遗传》2009,31(6):605-610
为探讨广西地区脊髓小脑性共济失调(Spinocerebellar ataxia, SCA)患者各种亚型类型特点及分布状况, 应用聚合酶链反应(Polymerase chain reaction, PCR)、毛细管电泳(Capillary electrophoresis, CE)片段分析等技术检测分析遗传性共济失调患者的SCA1、SCA2、SCA3/MJD、SCA6、SCA7和SCA12 (CAG)n突变。在6个SCA家系共检出21例患者和19例症状前患者均为SCA3/MJD突变, CAG重复数分别为59~70次和60~73次。未检测到SCA1、SCA2、SCA6、SCA7和SCA12(CAG)n突变。研究表明, 广西地区的SCA病人主要为SCA3/MJD型, 患者的CAG重复数低于过去的报道。  相似文献   

7.
C K Cemal  C Huxley  S Chamberlain 《Gene》1999,236(1):53-61
Machado-Joseph disease or spinocerebellar ataxia 3 (SCA3) is a progressive neurodegenerative disorder caused by pathological expansion of a trinucleotide repeat motif present within exon 4 of the MJD1 gene. Previous attempts to create a transgenic animal model have failed to produce a neurological deficit truly representative of the disease phenotype. This appears to be the result of inappropriate expression of the mutant protein in neuronal populations generally spared in the disease state. Introduction of a human disease gene in the context of a yeast artificial chromosome clone containing endogenous regulatory elements would enhance the potential for correct tissue/cell-specific expression at physiological levels. We report the introduction of expanded CAG repeat motifs into a 250kb yeast artificial chromosome clone spanning the MJD1 locus using two rounds of homologous recombination. Transformants exhibited both expansions and contractions of the motif with alleles ranging in size from 48 to 84 repeat units. The availability of these clones for modelling of the disease in transgenic animals should allow elucidation of the role of repeat length in the phenotypic spectrum of the disease.  相似文献   

8.
The spinocerebellar ataxia 3 locus (SCA3) for type I autosomal dominant cerebellar ataxia (ADCA type I), a clinically and genetically heterogeneous group of neuro-degenerative disorders, has been mapped to chromosome 14q32.1. ADCA type I patients from families segregating SCA3 share clinical features in common with those with Machado-Joseph disease (MJD), the gene of which maps to the same region. We show here that the disease gene segregating in each of three French ADCA type I kindreds and in a French family with neuropatho-logical findings suggesting the ataxochoreic form of dentatorubropallidoluysian atrophy carries an expanded CAG repeat sequence located at the same locus as that for MJD. Analysis of the mutation in these families shows a strong negative correlation between size of the expanded CAG repeat and age at onset of clinical disease. Instability of the expanded triplet repeat was not found to be affected by sex of the parent transmitting the mutation. Evidence was found for somatic and gonadal mosaicism for alleles carrying expanded trinucleotide repeats.  相似文献   

9.
Hereditary cerebellar ataxias, including spinocerebellar ataxia type I (SCA1), dentato-rubro-pallidoluysian atrophy (DRPLA), and Machado-Joseph disease (MJD), have been associated with unstable CAG repeats. The length of the CAG repeat is a major factor in determining the age of onset of these diseases. In electrophoresis through acrylamide gels with formamide, the CAG repeat length following the polymerase chain reaction (PCR) coincides with the sequence-determined repeat length after subcloning. However, without formamide, PCR products with long CAG repeats appear 1–4 repeats shorter than when electrophoresed with formamide, and the repeat lengths are variable. In addition, the larger the CAG repeats are, the more difficult are the PCR reactions. A mixture containing thermostable Taq and Pwo DNA polymerases (so-called “long PCR”) is much more sensitive than that with Taq polymerase alone in detecting expanded CAG repeats. Therefore, highly denaturing conditions, especially formamide gel electrophoresis, and the “long PCR” protocol should be used to evaluate the exact CAG repeat length. We have used these principles to detect unstable CAG repeats. The normal ranges are 14–34 repeats for MJD, 6–31 repeats for DRPLA, and 21–32 repeats for SCA1. Received: 29 August 1995 / Revised: 12 October 1995  相似文献   

10.
Machado-Joseph disease (MJD) is an autosomal dominant neurodegenerative spinocerebellar ataxia that has been described primarily in families of Azorean or Portuguese descent. MJD and chromosome 6p-linked spinocerebellar ataxia (SCA1) are difficult to differentiate clinically, and it has been suggested that they may be allelic variants of the same disorder. We have tested MJD families for linkage to six DNA sequence polymorphisms located on chromosome 6p, including the highly informative dinucleotide repeat, D6S89. Seventeen centimorgans telomeric to and 41 cM centromeric to D6S89, a region that includes the SCA1 locus reported to be within 3 cM of D6S89, have been excluded. These data provide conclusive evidence that MJD and SCA1 are nonallelic.  相似文献   

11.
常染色体显性脊髓小脑型共济失调(Autosomal dominant spinocerebellar ataxias, ADCAs)是一种神经系统退行性疾病, 具有高度的遗传异质性, 其中脊髓小脑型共济失调3型(Spinocerebellar ataxias type 3, SCA3)是一种常见的类型。文章通过PCR扩增广西一个脊髓小脑共济失调家系SCA3/MJD基因片段, 用毛细管电泳和测序方法检测了SCA3/MJD基因的CAG重复序列大小、传递特点以及SCA3/MJD基因的变异。结果显示:家系的所有4名患者和3名无症状携带者(Asymptomatic carrier)的SCA3/MJD基因第10外显子中存在异常扩增的CAG重复序列, 重复次数为64~71次; CAG重复次数在具有cgg等位基因的正常个体间传递时保持不变, 提示cgg等位基因不是正常个体两代间CAG重复序列稳定性的影响因素。SCA3/MJD基因中另有两个单碱基点突变, 一个是内含子区的杂合性突变(IVS9-113 T>C), 另一个是外显子区域的错义突变(220 G>A, 220 Glu>Gly)。这两个点突变为首次报道, 但尚不能明确这两个新的点突变对SCA3表型的影响。  相似文献   

12.
The autosomal dominant cerebellar ataxias (ADCA) type I are a group of neurological disorders that are clinically and genetically heterogeneous. Two genes implicated in the disease, SCA1 (spinal cerebellar ataxia 1) and SCA2, are already localized. We have mapped a third locus to chromosome 14q24.3-qter, by linkage analysis in a non-SCA1/non-SCA2 family and have confirmed its existence in a second such family. We suggest designating this new locus “SCA3.” Combined analysis of the two families restricted the SCA3 locus to a 15-cM interval between markers D14S67 and D14S81. The gene for Machado-Joseph disease (MJD), a clinically different form of ADCA type I, has been recently assigned to chromosome 14q24.3-q32. Although the SCA3 locus is within the MJD region, linkage analyses cannot yet demonstrate whether they result from mutations of the same gene. Linkage to all three loci (SCA1, SCA2, and SCA3) was excluded in another family, which indicates the existence of a fourth ADCA type I locus.  相似文献   

13.
Many diseases caused by trinucleotide expansion exhibit increased severity and decreased age of onset (genetic anticipation) in successive generations. Apparent evidence of genetic anticipation in schizophrenia has led to a search for trinucleotide repeat expansions. We have used several techniques, including Southern blot hybridization, repeat expansion detection (RED) and locus-specific PCR to search for expanded CAG/CTG repeats in 12 families from the United Kingdom and 11 from Iceland that are multiplex for schizophrenia and demonstrate anticipation. The unstable DNA theory could also explain discordance of phenotype for schizophrenia in pairs of monozygotic twins, where the affected twin has a greater number of repeats than the unaffected twin. We used these techniques to look for evidence of different CAG/CTG repeat size in 27 pairs of monozygotic twins who are either concordant or discordant for schizophrenia. We have found no evidence of an increase in CAG/CTG repeat size for affected members in the families, or for the affected twins in the MZ twin sample. Southern hybridization and RED analysis were also performed for the twin and family samples to look for evidence of expansion of GAA/TTC repeats. However, no evidence of expansion was found in either sample. Whilst these results suggest that these repeats are not involved in the etiology of schizophrenia, the techniques used for detecting repeat expansions have limits to their sensitivity. The involvement of other trinucleotide repeats or other expandable repeat sequences cannot be ruled out. Received: 8 September 1997 / Accepted: 13 March 1998  相似文献   

14.

Background  

Machado-Joseph disease (MJD), or spinocerebellar ataxia type 3 (SCA3), is an autosomal dominant neurodegenerative disorder of late onset, which is caused by a CAG repeat expansion in the coding region of the ATXN3 gene. This disease presents clinical heterogeneity, which cannot be completely explained by the size of the repeat tract. MJD presents extrapyramidal motor signs, namely Parkinsonism, more frequently than the other subtypes of autosomal dominant cerebellar ataxias. Although Parkinsonism seems to segregate within MJD families, only a few MJD patients develop parkinsonian features and, therefore, the clinical and genetic aspects of these rare presentations remain poorly investigated. The main goal of this work was to describe two MJD patients displaying the parkinsonian triad (tremor, bradykinesia and rigidity), namely on what concerns genetic variation in Parkinson's disease (PD) associated loci (PARK2, LRRK2, PINK1, DJ-1, SNCA, MAPT, APOE, and mtDNA tRNA Gln T4336C).  相似文献   

15.
The dominant cerebellar ataxias (ADCAs) represent a clinically and genetically heterogeneous group of disorders linked by progressive deterioration in balance and coordination. The utility of genetic classification of the ADCAs has been highlighted by the striking variability in clinical phenotype observed within families and the overlap in clinical phenotype observed between those with different genotypes. The recent demonstration that spinocerebellar ataxia type 2 (SCA2) is caused by a CAG repeat expansion within the ataxin-2 gene has allowed us to determine the frequency of SCA2 compared with SCA1, SCA3/Machado-Joseph disease (MJD), and dentatorubropallidoluysian atrophy (DRPLA) in patients with sporadic and inherited ataxia. SCA2 accounts for 13% of patients with ADCA (without retinal degeneration), intermediate between SCA1 and SCA3/MJD, which account for 6% and 23%, respectively. Together, SCA1, SCA2, and SCA3/MJD constitute >40% of the mutations leading to ADCA I in our population. No patient without a family history of ataxia, or with a pure cerebellar or spastic syndrome, tested positive for SCA1, SCA2, or SCA3. No overlap in ataxin-2 allele size between normal and disease chromosomes, or intermediate-sized alleles, were observed. Repeat length correlated inversely with age at onset, accounting for approximately 80% of the variability in onset age. Haplotype analysis provided no evidence for a single founder chromosome, and diverse ethnic origins were observed among SCA2 kindreds. In addition, a wide spectrum of clinical phenotypes was observed among SCA2 patients, including typical mild dominant ataxia, the MJD phenotype with facial fasciculations and lid retraction, and early-onset ataxia with a rapid course, chorea, and dementia.  相似文献   

16.
Pure autosomal dominant spastic paraplegia (SPG) is a genetically heterogeneous neurodegenerative disorder of the central nervous system clinically characterized by progressive spasticity mainly affecting the lower limbs. Three distinct loci have been mapped to chromosomes 14q (SPG3), 2p (SPG4) and 15q (SPG6). In particular, SPG4 families show striking intrafamilial variability suggestive of anticipation and evidence has been provided that CAG/CTG repeat expansions may be involved. To isolate CAG/CTG repeat containing sequences from within the SPG4 candidate region, a novel approach was developed. Fragmentation vectors were assembled allowing direct fragmentation of yeast artificial chromosomes (YACs) with a short (> or = 21 bp) CAG/CTG sequence as the target site for homologous recombination. We used the CAG/CTG YAC fragmentation vectors to isolate CAG/CTG containing sequences from four YACs spanning the SPG4 candidate region between D2S400 and D2S367. A total of four CAG/CTG containing sequences were isolated of which three were novel. However, none of the four CAG/CTG repeats showed expanded alleles in two Belgian SPG4 families. In addition, we showed that the CAG/CTG alleles detected by the repeat expansion detection (RED) method could be fully explained by two polymorphic nonpathogenic CAG/CTG repeats on chromosomes 17 and 18, respectively. Also, the RED expansions in six SPG families could not be explained by amplification of the CAG/CTG repeats at the SPG4 locus. Together, our data do not support the hypothesis of a CAG/CTG repeat expansion as the molecular mechanism underlying SPG4 pathology.  相似文献   

17.
To identify various subtypes of spinocerebellar ataxias (SCAs) among 57 unrelated individuals clinically diagnosed as ataxia patients we analysed the SCA1, SCA2, SCA3, SCA6, SCA7 and DRPLA loci for expansion of CAG repeats. We detected CAG repeat expansion in 6 patients (10.5%) at the SCA1 locus. Ten of the 57 patients (17.5%) had CAG repeat expansion at the SCA2 locus, while four had CAG expansion at the SCA3/MJD locus (7%). At the SCA6 locus there was a single patient (1.8%) with 21 CAG repeats. We have not detected any patient with expansion in the SCA7 and DRPLA loci. To test whether the frequencies of the large normal alleles in SCA1, SCA2 and SCA6 loci can reflect some light on prevalence of the subtypes of SCAs we studied the CAG repeat variation in these loci in nine ethnic sub-populations of eastern India from which the patients originated. We report here that the frequency of large normal alleles (>31 CAG repeats) in SCA1 locus to be 0.211 of 394 chromosomes studied. We also report that the frequency of large normal alleles (>22 CAG repeats) at the SCA2 locus is 0.038 while at the SCA6 locus frequency of large normal alleles (>13 repeats) is 0.032. We discussed our data in light of the distribution of normal alleles and prevalence of SCAs in the Japanese and white populations.  相似文献   

18.
The mutation responsible for Machado-Joseph disease (MJD) has been identified as an expansion of a CAG trinucleotide repeat in a novel gene on chromosome 14q32.1. The CAG repeat tract is followed by C or G, and alleles are thereby divided into two types on the basis of molecular configuration, (CAG)nC and (CAG)nG. We have studied the relationship between the repeat length and the configuration in 38 patients from 28 Japanese families with MJD, and 31 unrelated normal Japanese subjects. The CAG repeat length in 100 normal alleles ranged from 13 to 37 repeats, while 38 MJD patients had one expanded allele with 64 to 84 repeats. Surprisingly, the expanded alleles had exclusively the (CAG)nC configuration, while both (CAG)nC and (CAG)nG were seen in normal alleles from MJD and control subjects. Furthermore, in normal alleles, the CAG repeat tract was significantly longer in (CAG)nC than in (CAG)nG. These findings suggest that the (CAG)nC configuration is related to repeat instability of the MJD gene. Received: 23 April 1996 / Revised: 24 June 1996  相似文献   

19.
Larger CAG/CTG trinucleotide-repeat tracts in individuals affected with schizophrenia (SCZ) and bipolar affective disorder (BPAD) in comparison with control individuals have previously been reported, implying a possible etiological role for trinucleotide repeats in these diseases. Two unstable CAG/CTG repeats, SEF2-1B and ERDA1, have recently been cloned, and studies indicate that the majority of individuals with large repeats as detected by repeat-expansion detection (RED) have large repeat alleles at these loci. These repeats do not show association of large alleles with either BPAD or SCZ. Using RED, we have identified a BPAD individual with a very large CAG/CTG repeat that is not due to expansion at SEF2-1B or ERDA1. From this individual's DNA, we have cloned a highly polymorphic trinucleotide repeat consisting of (CTA)n (CTG)n, which is very long ( approximately 1,800 bp) in this patient. The repeat region localizes to chromosome 13q21, within 1.2 cM of fragile site FRA13C. Repeat alleles in our sample were unstable in 13 (5.6%) of 231 meioses. Large alleles (>100 repeats) were observed in 14 (1. 25%) of 1,120 patients with psychosis, borderline personality disorder, or juvenile-onset depression and in 5 (.7%) of 710 healthy controls. Very large alleles were also detected for Centre d'Etude Polymorphisme Humaine (CEPH) reference family 1334. This triplet expansion has recently been reported to be the cause of spinocerebellar ataxia type 8 (SCA8); however, none of our large alleles above the disease threshold occurred in individuals either affected by SCA or with known family history of SCA. The high frequency of large alleles at this locus is inconsistent with the much rarer occurrence of SCA8. Thus, it seems unlikely that expansion alone causes SCA8; other genetic mechanisms may be necessary to explain SCA8 etiology.  相似文献   

20.
DNA strand-breaks (SBs) with non-ligatable ends are generated by ionizing radiation, oxidative stress, various chemotherapeutic agents, and also as base excision repair (BER) intermediates. Several neurological diseases have already been identified as being due to a deficiency in DNA end-processing activities. Two common dirty ends, 3’-P and 5’-OH, are processed by mammalian polynucleotide kinase 3’-phosphatase (PNKP), a bifunctional enzyme with 3’-phosphatase and 5’-kinase activities. We have made the unexpected observation that PNKP stably associates with Ataxin-3 (ATXN3), a polyglutamine repeat-containing protein mutated in spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph Disease (MJD). This disease is one of the most common dominantly inherited ataxias worldwide; the defect in SCA3 is due to CAG repeat expansion (from the normal 14–41 to 55–82 repeats) in the ATXN3 coding region. However, how the expanded form gains its toxic function is still not clearly understood. Here we report that purified wild-type (WT) ATXN3 stimulates, and by contrast the mutant form specifically inhibits, PNKP’s 3’ phosphatase activity in vitro. ATXN3-deficient cells also show decreased PNKP activity. Furthermore, transgenic mice conditionally expressing the pathological form of human ATXN3 also showed decreased 3’-phosphatase activity of PNKP, mostly in the deep cerebellar nuclei, one of the most affected regions in MJD patients’ brain. Finally, long amplicon quantitative PCR analysis of human MJD patients’ brain samples showed a significant accumulation of DNA strand breaks. Our results thus indicate that the accumulation of DNA strand breaks due to functional deficiency of PNKP is etiologically linked to the pathogenesis of SCA3/MJD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号