首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Fibroblasts play a pivotal role in wound healing process participating in both tissue fibrosis and remodeling. However, it remains unclear which factors activate such diversity of fibroblast responses and how this decision-making process is made. Previous reports have demonstrated that wound milieu stimulates the transformation of circulating precursor cells into fibrocytes. These pro-fibrogenic cells promote the collagen production by resident fibroblasts. Conversely, recruited cells with anti-fibrogenic profile that can compete with fibrocytes have not been identified. This report describes a novel transdifferentiation process of fibrocytes induced by changing culture conditions. The reprogrammed fibrocytes markedly increased cell proliferation and MMP-1 expression in dermal fibroblasts. The MMP-1 up-regulation was directly related to the number of fibrocytes that followed this cell transformation. In vitro and in vivo results have confirmed that TGF-β deprivation plays an important role in this novel fibrocyte differentiation pathway. Our findings demonstrate that, changing the fibrocyte commitment, it is possible to exponentially stimulate the tissue remodeling capacity of dermal fibroblasts. These results will open new research approaches to understand the role of cell transdifferentiation and local environment not only in the wound healing process of skin, but also in several other fibrocyte-associated diseases such as lung fibrosis, asthma, liver cirrhosis, chronic pancreatitis, and atherosclerosis.  相似文献   

2.
3.
Vascular repair in response to injury or stress (often referred to as remodeling) is a common complication of many cardiovascular abnormalities including pulmonary hypertension, systemic hypertension, atherosclerosis, vein graft remodeling and restenosis following balloon dilatation of the coronary artery. It is not surprising that repair and remodeling occurs frequently in the vasculature in that exposure of blood, vessels to either excessive hemodynamic stress (e.g. hypertension), noxious blood borne agents (e.g. atherogenic lipids), locally released cytokines, or unusual environmental conditions (e.g. hypoxia), requires readily available mechanisms to counteract these adverse stimuli and to preserve structure and function of the vessel wall. The responses, which were presumably evolutionarily developed to repair an injured tissue, often escape self-limiting control and can result, in the case of blood vessels, in lumen narrowing and obstruction to blood flow. Each cell type (i. e. endothelial cells, smooth muscle cells, and fibroblasts) in the vascular wall plays a specific role in the response to injury. However, while the roles of the endothelial cells and smooth muscle cells (SMC) in vascular remodeling have been extensively studied, relatively little attention has been given to the adventitial fibroblasts. Perhaps this is because the fibroblast is a relatively ill-defined cell which, at least compared to the SMC, exhibits few specific cellular markers. Importantly though, it has been well demonstrated that fibroblasts possess the capacity to express several functions such as migration, rapid proliferation, synthesis of connective tissue components, contraction and cytokine production in response to activation or stimulation. The myriad of responses exhibited by the fibroblasts, especially in response to stimulation, suggest that these cells could play a pivotal role in the repair of injury. This fact has been well documented in the setting of wound healing where a hypoxic environment has been demonstrated to be critical in the cellular responses. As such it is not surprising that fibroblasts may play an important role in the vascular response to hypoxia and/or injury. This paper is intended to provide a brief review of the changes that occur in the adventitial fibroblasts in response to vascular stress (especially hypoxia) and the role the activated fibroblasts might play in hypoxia-mediated pulmonary vascular disease.  相似文献   

4.
Studies in cultured cells have shown that nuclear shape is an important factor influencing nuclear function, and that mechanical forces applied to the cell can directly affect nuclear shape. In a previous study, we demonstrated that stretching of whole mouse subcutaneous tissue causes dynamic cytoskeletal remodeling with perinuclear redistribution of α-actin in fibroblasts within the tissue. We have further shown that the nuclei of these fibroblasts have deep invaginations containing α-actin. In the current study, we hypothesized that tissue stretch would cause nuclear remodeling with a reduced amount of nuclear invagination, measurable as a change in nuclear concavity. Subcutaneous areolar connective tissue samples were excised from 28 mice and randomized to either tissue stretch or no stretch for 30 min, then examined with histochemistry and confocal microscopy. In stretched tissue (vs. non-stretched), fibroblast nuclei had a larger cross-sectional area (P < 0.001), smaller thickness (P < 0.03) in the plane of the tissue, and smaller relative concavity (P < 0.005) indicating an increase in nuclear convexity. The stretch-induced loss of invaginations may have important influences on gene expression, RNA trafficking and/or cell differentiation.  相似文献   

5.
6.
7.
Due to an increasing life expectancy in western countries, chronic wound treatment will be an emerging challenge in the next decades. Because therapies are improving slowly appropriate diagnostic tools enabling the early prediction of the healing success remain to be developed. We used a well-established in vitro assay in combination with the analysis of 27 cytokines to discriminate between fibroblasts from chronic (n = 6) and well healing (n = 8) human wounds. Proliferation and migration of the cells as well as their response to hypoxia and their behaviour in co-culture with microvascular endothelial cells were analyzed. Myofibroblast differentiation, a time-limited essential process of regular wound healing, was also quantified. Besides weaker proliferation and migration significantly higher rates of myofibroblasts were detected in chronic wounds. With respect to the cytokine release, there was a clear trend within the group of chronic wound fibroblasts, which were releasing interferon-γ, monocyte chemotactic protein-1, granulocyte–macrophage colony stimulating factor and basic fibroblast growth factor in higher amounts than fibroblasts from healing wounds. Although the overall response of both groups of fibroblasts to hypoxia and to the contact with endothelial cells was similar, especially chronic wound fibroblasts seemed to benefit from the endothelial interaction during hypoxia and displayed better migration characteristics. The study shows (1) that the assay can identify specific features of fibroblasts derived from different human wounds and (2) that wound fibroblasts are varying in their response to the chosen parameters. Thus, current therapeutic approaches and individual healing prediction might benefit from this assay.  相似文献   

8.
9.
The telomerase activity and the senescence profile of cultured breast fibroblasts from normal human interstitial and malignant stromal tissue were studied in comparison with their proliferation and differentiation pattern. Fibroblasts were grown either in the presence or absence of a conditioned medium (CM) obtained from cultures of the oestrogen receptor-positive breast cancer MCF-7 cell line. At different passages (from the 2nd up to the 48th), fibroblasts were examined for the telomerase activity by the Telomerase Repeats Amplification Protocol (TRAP) assay, for proliferation profile by Ki-67 antigen expression, and the myofibroblast or smooth muscle cell-like differentiation pattern by immunofluorescence with monoclonal antibodies specific for smooth muscle markers. Serial passages of fibroblasts from normal or tumour breast reveal that the relationship between the levels of telomerase activity and phenotypic/proliferation profile changes with cell subcultivation in a different manner in the two cell populations. The fibroblasts from normal tissue completed 12 passages in a CM-independent way prior to senescence whereas fibroblasts from tumour stroma senescence were attained after 48 passages. These cells showed a marked decrease of telomerase activity, growth rate and smooth muscle -actin expressing myofibroblasts after the 32nd passage. CM treatment of this fibroblast population induces a decline in the myofibroblast content, which precedes the changes in telomerase activity. Passaged fibroblasts from normal breast tissue can be converted to myofibroblasts upon CM treatment whereas those from tumour stroma were CM-insensitive. Taken together our data suggest that a heterogeneous fibroblast population with different life span is activated/recruited in the breast interstitium and poses the problem of a unique activation/recruitment of fibroblasts in neoplastic conditions.  相似文献   

10.
11.
Zhao N  Zhu B  Li M  Wang L  Xu L  Zhang H  Zheng S  Qi B  Han F  Liu B 《Genetics》2011,188(3):499-510
Allopolyploidy has played a prominent role in organismal evolution, particularly in angiosperms. Allohexaploidization is a critical step leading to the formation of common wheat as a new species, Triticum aestivum, as well as for bestowing its remarkable adaptability. A recent study documented that the initial stages of wheat allohexaploidization was associated with rampant genetic and epigenetic instabilities at genomic regions flanking a retrotransposon family named Veju. Although this finding is in line with the prevailing opinion of rapid genomic instability associated with nascent plant allopolyploidy, its relevance to speciation of T. aestivum remains unclear. Here, we show that genetic instability at genomic regions flanking the Veju, flanking a more abundant retroelement BARE-1, as well as at a large number of randomly sampled genomic loci, is all extremely rare or nonexistent in preselected individuals representing three sets of independently formed nascent allohexaploid wheat lines, which had a transgenerationally stable genomic constitution analogous to that of T. aestivum. In contrast, extensive and transgenerationally heritable repatterning of DNA methylation at all three kinds of genomic loci were reproducibly detected. Thus, our results suggest that rampant genetic instability associated with nascent allohexaploidization in wheat likely represents incidental and anomalous phenomena that are confined to by-product individuals inconsequential to the establishment of the newly formed plants toward speciation of T. aestivum; instead, extensive and heritable epigenetic remodeling coupled with preponderant genetic stability is generally associated with nascent wheat allohexaploidy, and therefore, more likely a contributory factor to the speciation event(s).  相似文献   

12.
Intrauterine nutrition can program metabolism, creating stable changes in physiology that may have significant health consequences. The mechanism underlying these changes is widely assumed to involve epigenetic changes to the expression of metabolic genes, but evidence supporting this idea is limited. Here we have performed the first study of the epigenomic consequences of exposure to maternal obesity and diabetes. We used a mouse model of natural-onset obesity that allows comparison of genetically identical mice whose mothers were either obese and diabetic or lean with a normal metabolism. We find that the offspring of obese mothers have a latent metabolic phenotype that is unmasked by exposure to a Western-style diet, resulting in glucose intolerance, insulin resistance and hepatic steatosis. The offspring show changes in hepatic gene expression and widespread but subtle alterations in cytosine methylation. Contrary to expectation, these molecular changes do not point to metabolic pathways but instead reside in broadly developmental ontologies. We propose that, rather than being adaptive, these changes may simply produce an inappropriate response to suboptimal environments; maladaptive phenotypes may be avoidable if postnatal nutrition is carefully controlled.  相似文献   

13.
Cell-mediated transgenesis, based on somatic cell nuclear transfer (SCNT), provides the opportunity to shape the genetic make-up of cattle. Bovine primary fetal fibroblasts, commonly used cells for SCNT, have a limited lifespan, and complex genetic modifications that require sequential transfections can be challenging time and cost-wise. To overcome these limitations, SCNT is frequently used to rejuvenate the cell lines and restore exhausted growth potential. We have designed a construct to be used in a 2-step cassette exchange experiment. Our transgene contains a puromycin resistance marker gene and an enhanced green fluorescence protein (EGFP) expression cassette, both driven by a strong mammalian promoter, and flanked by loxP sites and sequences from the bovine β-casein locus. Several transgenic cell lines were generated by random insertion into primary bovine cell lines. Two of these original cell lines were rederived by SCNT and new primary cells, with the same genetic makeup as the original donors, were established. While the original cell lines were puromycin-resistant and had a characteristic EGFP expression profile, all rejuvenated cell lines were sensitive to puromycin, and displayed varied EGFP expression, indicative of various degrees of silencing. When the methylation states of individual CpG sites within the transgene were analyzed, a striking increase in transgene-specific methylation was observed in all rederived cell lines. The results indicate that original transgenic donor cells and their rejuvenated derivatives may not be equivalent and differ in the functionality of their transgene sequences.  相似文献   

14.
Retinoic acid (RA) acts by binding to nuclear RA receptors (RARs) to regulate a broad spectrum of downstream target genes in most cell types examined. In cytoplasm, RA binds specifically to cellular retinoic acid binding proteins I (CRABPI), and II. Although the function of CRABPI in animals remains the subject of debate, it is believed that CRABPI binding facilitates RA metabolism, thereby modulating the concentration of RA and the type of RA metabolites in cells. The basal promoter of the CrabpI gene is a housekeeping promoter that can be regulated by thyroid hormones (T3), DNA methylation, sphinganine, and ethanol acting on its upstream regulatory region. T3 regulation of CrabpI is mediated by the binding of thyroid hormone receptor (TR) to a TR response element (TRE) approximately 1 kb upstream of the basal promoter. Specifically, in the adipocyte differentiation process, T3 regulation is bimodal and closely associated with the cellular differentiation status: T3 activates CrabpI in predifferentiated cells (e.g., mesenchymal precursors or fibroblasts), but suppresses this gene once cells are committed to adipocyte differentiation. These disparate effects are functions of T3-triggered differential recruitment of coregulatory complexes in conjunction with chromatin looping/folding that alters the configuration of this genomic locus along adipocyte differentiation. Subsequent sliding, disassembly and reassembly of nucleosomes occur, resulting in specific changes in the conformation of the basal promoter chromatin at different stages of differentiation. This chapter summarizes studies illustrating the epigenetic regulation of CrabpI expression during adipocyte differentiation. Understanding the pathways regulating CrabpI in this specific context might help to illuminate the physiological role of CRABPI in vivo. This article is part of a special issue entitled: Retinoid and Lipid Metabolism.  相似文献   

15.
In areolar “loose” connective tissue, fibroblasts remodel their cytoskeleton within minutes in response to static stretch resulting in increased cell body cross‐sectional area that relaxes the tissue to a lower state of resting tension. It remains unknown whether the loosely arranged collagen matrix, characteristic of areolar connective tissue, is required for this cytoskeletal response to occur. The purpose of this study was to evaluate cytoskeletal remodeling of fibroblasts in, and dissociated from, areolar and dense connective tissue in response to 2 h of static stretch in both native tissue and collagen gels of varying crosslinking. Rheometric testing indicated that the areolar connective tissue had a lower dynamic modulus and was more viscous than the dense connective tissue. In response to stretch, cells within the more compliant areolar connective tissue adopted a large “sheet‐like” morphology that was in contrast to the smaller dendritic morphology in the dense connective tissue. By adjusting the in vitro collagen crosslinking, and the resulting dynamic modulus, it was demonstrated that cells dissociated from dense connective tissue are capable of responding when seeded into a compliant matrix, while cells dissociated from areolar connective tissue can lose their ability to respond when their matrix becomes stiffer. This set of experiments indicated stretch‐induced fibroblast expansion was dependent on the distinct matrix material properties of areolar connective tissues as opposed to the cells' tissue of origin. These results also suggest that disease and pathological processes with increased crosslinks, such as diabetes and fibrosis, could impair fibroblast responsiveness in connective tissues. J. Cell. Physiol. 228: 50–57, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

16.
Pulmonary hypertension is characterized by structural and morphological changes to the lung vasculature. To determine the potential role of nitric oxide in the vascular remodeling induced by hypoxia, we exposed wild-type [WT(+/+)] and endothelial nitric oxide synthase (eNOS)-deficient [(-/-)] mice to normoxia or hypoxia (10% O(2)) for 2, 4, and 6 days or for 3 wk. Smooth muscle alpha-actin and von Willebrand factor immunohistochemistry revealed significantly less muscularization of small vessels in hypoxic eNOS(-/-) mouse lungs than in WT(+/+) mouse lungs at early time points, a finding that correlated with decreases in proliferating vascular cells (5-bromo-2'-deoxyuridine positive) at 4 and 6 days of hypoxia in the eNOS(-/-) mice. After 3 wk of hypoxia, both mouse types exhibited similar percentages of muscularized small vessels; however, only the WT(+/+) mice exhibited an increase in the percentage of fully muscularized vessels and increased vessel wall thickness. eNOS protein expression was increased in hypoxic WT(+/+) mouse lung homogenates at all time points examined, with significantly increased percentages of small vessels expressing eNOS protein after 3 wk. These results indicate that eNOS deficiency causes decreased muscularization of small pulmonary vessels in hypoxia, likely attributable to the decrease in vascular cell proliferation observed in these mice.  相似文献   

17.
Bioluminescence has been reported to occur in 17 phyla and at least 700 genera. However, the luciferin chemistry of the majority of luminous organisms has yet to be determined. The most common chemistry which is known to occur in deep sea bioluminescence is imidazolopyrazine bioluminescence. The main aim of this study was to examine the phyletic and tissue distribution of imidazolopyrazine luciferins. This will facilitate analysis of imidazolopyrazine bioluminescence at the cellular and molecular levels and, in particular, how and when its chemistry is controlled and expressed in vivo. Assays for both known imidazolopyrazines were established and a range of fresh organisms and tissue were analysed, i.e. fish, cephalopods, copepods, ostracods, amphipods and euphausiids. The main findings were that the number of genera in which coelenterazine has been detected has been increased from 52 to about 90. Also, for the first time, the other known imidazolopyrazine luciferin,Vargula-type luciferin, was quantified in the ostracod Cypridina dentata, but was not detected in any of its potential predators. Neither imidazolopyrazine luciferin was found in several luminous stomiiform fish assayed. Coelenterazine was measured in the livers and photophores of a number of cephalopods and it is apparent that coelenterazine is responsible for both modes of luminescence. © 1997 John Wiley & Sons, Ltd.  相似文献   

18.
Evolutionary diversifications are commonly attributed to thecontinued modifications of a conserved genetic toolkit of developmentalpathways, such that complexity and convergence in organismalforms are assumed to be due to similarity in genetic mechanismsor environmental conditions. This approach, however, confoundsthe causes of organismal development with the causes of organismaldifferences and, as such, has only limited utility for addressingthe cause of evolutionary change. Molecular mechanisms thatare closely involved in both developmental response to environmentalsignals and major evolutionary innovations and diversificationsare uniquely suited to bridge this gap by connecting explicitlythe causes of within-generation variation with the causes ofdivergence of taxa. Developmental pathways of bone formationand a common role for bone morphogenetic proteins (BMPs) inboth epigenetic bone remodeling and the evolution of major adaptivediversifications provide such opportunity. We show that variationin timing of ossification can result in similar phenotypic patternsthrough epigenetically induced changes in gene expression andpropose that both genetic accommodation of environmentally induceddevelopmental pathways and flexibility in development acrossenvironments evolve through heterochronic shifts in bone maturationrelative to exposure to unpredictable environments. We suggestthat such heterochronic shifts in ossification can not onlybuffer development under fluctuating environments while maintainingepigenetic sensitivity critical for normal skeletal formation,but also enable epigenetically induced gene expression to generatespecialized morphological adaptations. We review studies ofenvironmental sensitivity of BMP pathways and their regulationof formation, remodeling, and repair of cartilage and bone toexamine the hypothesis that BMP-mediated skeletal adaptationsare facilitated by evolved reactivity of BMPs to external signals.Surprisingly, no empirical study to date has identified themolecular mechanism behind developmental plasticity in skeletaltraits. We outline a conceptual framework for future studiesthat focus on mediation of phenotypic plasticity in skeletaldevelopment by the patterns of BMP expression.  相似文献   

19.
20.

Background

It is known that "second-hand" cigarette smoke leads to abnormal tissue repair and remodelling but the cellular mechanisms involved in these adverse effects are not well understood. Fibroblasts play a major role in repair and remodelling. They orchestrate these processes by proliferating, migrating, and secreting proteins such as, cytokines, growth factors and extracellular matrix molecules. Therefore, we focus our studies on the effects of "second-hand" cigarette smoke on the structure and function of these cells.

Results

We used sidestream whole (SSW) smoke, a major component of "second-hand" smoke, primary embryonic fibroblasts, cells that behave very much like wound fibroblasts, and a variety of cellular and molecular approaches. We show that doses of smoke similar to those found in tissues cause cytoskeletal changes in the fibroblasts that may lead to a decrease in cell migration. In addition, we also show that these levels of cigarette smoke stimulate an increase in cell survival that is reflected in an increase and/or activation of stress/survival proteins such as cIL-8, grp78, PKB/Akt, p53, and p21. We further show that SSW affects the endomembrane system and that this effect is also accomplished by nicotine alone.

Conclusions

Taken together, our results suggest that: (i) SSW may delay wound repair because of the inability of the fibroblasts to migrate into the wounded area, leading to an accumulation of these cells at the edge of the wound, thus preventing the formation of the healing tissue; (ii) the increase in cell survival coupled to the decrease in cell migration can lead to a build-up of connective tissue, thereby causing fibrosis and excess scarring.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号