首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Makino A  Nakano H  Mae T 《Plant physiology》1994,105(1):173-179
The photosynthetic gas-exchange rates and various biochemical components of photosynthesis, including ribulose-1,5-bisphosphate carboxylase (Rubisco) content, cytochrome (Cyt) f content, and the activities of two sucrose synthesis enzymes, were examined in young, fully expanded leaves of rice (Oryza sativa L.) grown hydroponically in different nitrogen concentrations. The light-saturated rate of photosynthesis at an intercellular CO2 pressure of 20 Pa (CO2-limited photosynthesis) was linearly dependent on leaf nitrogen content, but curvilinearly correlated with Rubisco content. This difference was due to a greater than proportional increase in Rubisco content relative to leaf nitrogen content and the presence of a CO2 transfer resistance between the intercellular air spaces and the carboxylation sites. CO2-limited photosynthesis was proportional to Cyt f content, one of the key components of electron transport, but was not proportional to the activities of cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase, the two regulatory enzymes of sucrose synthesis. Light-saturated photosynthesis above an intercellular CO2 pressure of 60 Pa (CO2-saturated photosynthesis) was curvilinearly dependent on leaf nitrogen content. This CO2-saturated photosynthesis was proportional to Cyt f content in the low- and normal-nitrogen leaves, and correlated better with the activities of cytosolic fructose-1,6-bisphosphatase and sucrose phosphate synthase in the high-nitrogen leaves. The increase in the activities of these two enzymes with increasing leaf nitrogen was not as great as the increase in Cyt f content. Thus, as leaf nitrogen increased, the limitation caused by the activities of sucrose synthesis enzymes came into play, which resulted in the curvilinear relationship. However, this limitation by sucrose synthesis enzymes did not affect photosynthesis under normal ambient air.  相似文献   

2.
We investigated the role of metabolite transporters in cold acclimation by comparing the responses of wild-type (WT) Arabidopsis thaliana (Heynh.) with that of transgenic plants over-expressing sucrose-phosphate synthase (SPSox) or with that of antisense repression of cytosolic fructose-1,6-bisphosphatase (FBPas). Plants were grown at 23 degrees C and then shifted to 5 degrees C. We compared the leaves shifted to 5 degrees C for 3 and 10 d with new leaves that developed at 5 degrees C with control leaves on plants at 23 degrees C. At 23 degrees C, ectopic expression of SPS resulted in 30% more carbon being fixed per day and an increase in sucrose export from source leaves. This increase in fixation and export was supported by increased expression of the plastidic triose-phosphate transporter AtTPT and, to a lesser extent, the high-affinity Suc transporter AtSUC1. The improved photosynthetic performance of the SPSox plants was maintained after they were shifted to 5 degrees C and this was associated with further increases in AtSUC1 expression but with a strong repression of AtTPT mRNA abundance. Similar responses were shown by WT plants during acclimation to low temperature and this response was attenuated in the low sucrose producing FBPas plants. These data suggest that a key element in recovering flux through carbohydrate metabolism in the cold is to control the partitioning of metabolites between the chloroplast and the cytosol, and Arabidopsis modulates the expression of AtTPT to maintain balanced carbon flow. Arabidopsis also up-regulates the expression of AtSUC1, and to lesser extent AtSUC2, as down-stream components facilitate sucrose transport in leaves that develop at low temperatures.  相似文献   

3.
John Kobza  Gerald E. Edwards 《Planta》1987,171(4):549-559
The photosynthetic induction response was studied in whole leaves of wheat (Triticum aestivum L.) following 5-min, 30-min and 10-h dark periods. After the 5-min dark treatment there was a rapid burst in the rate of photosynthesis upon illumination (half of maximum after 30s), followed by a slight decrease after 1.5 more min and then a gradual rise to the maximum rate. During this initial burst in photosynthesis, there was a rapid rise in the level of 3-phosphoglycerate (PGA) and a high PGA/triose-phosphate (triose-P) ratio was obtained. In addition, after the 5-min dark treatment, ribulose-1,5-bisphosphate carboxylase (Rubisco, EC 4.1.1.39), ribulose-5-phosphate kinase (EC 2.7.1.19) and chloroplastic fructose-1,6-bisphosphatase (EC 3.1.3.11) maintained a relatively high state of activation, and maximum activation occurred within 1 min of illumination. The results indicate there is a high capacity for CO2 fixation in the cycle upon illumination but attaining maximum rates requires an increase in the ribulose-1,5-bisphosphate (RuBP) pool (adjustment in triose-P utilization for carbohydrate synthesis versus RuBP synthesis). With both the 30-min and 10-h dark pretreatments there was only a slight rise in photosynthesis upon illumination, followed by a lag, then a gradual increase to steady-state (half-maximum rate after 6 min). In contrast to the 5-min dark treatment, the level of PGA was low and actually decreased initially, whereas the level of RuBP increased and was high during induction, indicating that Rubisco is limiting. This regulation via the carboxylase was not reflected in the initial extractable activity, which reached a maximum by 1 min after illumination. The light activation of chloroplastic fructose-1,6-bisphosphatase in leaves darkened for 30 min and 10 h prior to illumination was relatively slow (reaching a maximum after 8 min). However, this was not considered to limit carbon flux through the carbon-fixation cycle during induction since RuBP was not limiting. When photosynthesis approached the maximum steady-state rate, a high PGA/triose-P ratio and a high PGA/RuBP ratio were obtained. This may allow a high rate of photosynthesis by producing a favorable mass-action ratio for the reductive phase (the conversion of PGA to triose phosphate) while stimulating starch and sucrose synthesis.Abbreviations Chl chlorophyll - FBP fructose-1,6-bisphosphate - FBPase fructose-1,6-bisphosphatase - Fru6P fructose-6-phosphate - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - Pi inoganic phosphate - Rubisco RuBP carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - Ru5P ribulose-5-phosphate - triose-P triose phosphates (dihydroxyacetone phosphate+glyceraldehyde-3-phosphate)  相似文献   

4.
Mark Stitt  Hans W. Heldt 《Planta》1985,164(2):179-188
The metabolite levels in the mesophyll of leaves of Zea mays L. have been compared with the regulatory properties of the cytosolic fructose-1,6-bisphosphatase from the mesophyll to show how withdrawal of triose phosphate for sucrose synthesis is reconciled with generation of the high concentrations of triose phosphate which are needed to allow intercellular diffusion of carbon during photosynthesis. i) A new technique is presented for measuring the intercellular distribution of metabolites in maize. The bundle-sheath and mesophyll tissues are partially separated by differential homogenization and filtration through nylon nets under liquid nitrogen. ii) considerable gradients of 3-phosphoglycerate, triose phosphate, malate and phosphoenolpyruvate exist between the mesophyll and bundle sheath which would allow intercellular shuttles to be driven by diffusion. These gradients could result from the distribution of electron transport and the Calvin cycle in maize leaves. iii) consequently, the mesophyll contains high concentrations of triose phosphate and fructose-1,6-bisphosphate. iv) Most of the regulator metabolite fructose-2,6-bisphosphate, is present in the mesophyll. v) The cytosolic fructose-1,6-bisphosphatase has a lower substrate affinity than that found for the enzyme from C3 species, especially in the presence of inhibitors like fructose-2,6-bisphosphate. vi) This lowered affinity for substrate makes it possible to reconcile use of triose phosphate for sucrose synthesis with the maintenance of the high concentration of triose phosphate in the mesophyll needed for operation of photosynthesis in this species.Abbreviations DHAP Dihydroxyacetonephosphate - Fru1,6-bisP fructose-1,6-bisphosphate - Fru2,6bisP fructose-2,6-bisphosphate - PEP(Case) phosphoenolpyruvate (carboxylase) - PGA 3-phosphoglycerate - Rubisco ribulose-1,5-bisphosphate carboxylase  相似文献   

5.
Light- and CO2-saturated photosynthesis of nonhardened rye (Secale cereale L. cv. Musketeer) was reduced from 18.10 to 7.17 mol O2·m–2·s–1 when leaves were transferred from 20 to 5°C for 30 min. Following cold-hardening at 5°C for ten weeks, photosynthesis recovered to 15.05 mol O2·m–2·s–1,comparable to the nonhardened rate at 20°C. Recovery of photosynthesis was associated with increases in the total activity and activation of enzymes of the photosynthetic carbon-reduction cycle and of sucrose synthesis. The total hexose-phosphate pool increase by 30% and 120% for nonhardened and cold-hardened leaves respectively when measured at 5°C. The large increase in esterified phosphate in coldhardened leaves occurred without a limitation in inorganic phosphate supply. In contrast, the much smaller increase in esterified phosphate in nonhardened leaves was associated with an inhibition of ribulose-1,5-bisphosphate carboxylase/oxygenase and sucrose-phosphate synthase activation. It is suggested that the large increases in hexose phosphates in cold-hardened leaves compensates for the higher substrate threshold concentrations needed for enzyme activation at low temperatures. High substrate concentrations could also compensate for the kinetic limitations imposed by product inhibition from the accumulation of sucrose at 5°C. Nonhardened leaves appear to be unable to compensate in this fashion due to an inadequate supply of inorganic phosphate.Abbreviations DHAP dihydroxyacetone phosphate - Fru6P fructose-6-phosphate - Fru 1,6BP fructose-1,6-bisphosphate - Fru1,6BPase fructose-1,6-bisphosphatase - Glc6P glucose-6-phosphate - PGA 3-phosphoglycerate - PPFD photosynthetic photon flux density - CH cold-hardened rye grown at 5°C - NH nonhardened rye grown at 24°C - Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose-1,5-bisphosphate - SPS sucrose-phosphate synthase - UDPGlc uridine 5-diphosphoglucose This work was supported by operating grants from the Swedish Natural Sciences Research Council to G.Ö. and P.G.  相似文献   

6.
7.
No evidence to date suggests the possibility of subunit exchange between tetramers of mammalian fructose-1,6-bisphosphatase. An engineered fructose-1,6-bisphosphatase, with subunits of altered electrostatic charge, exhibits spontaneous subunit exchange with wild-type enzyme in the absence of ligands. The exchange process reaches equilibrium in approximately 5 h at 4 degrees C, as monitored by non-denaturing gel electrophoresis and anion exchange chromatography. Active site ligands, such as fructose 6-phosphate, abolish subunit exchange at the level of the monomer, but permit dimer-dimer exchanges. AMP, alone or in the presence of active site ligands, abolishes all exchange processes. Exchange phenomena may play a role in the kinetic mechanism of allosteric regulation of fructose-1,6-bisphosphatase.  相似文献   

8.
Makino A  Nakano H  Mae T 《Plant physiology》1994,105(4):1231-1238
Effects of growth temperature on the photosynthetic gas-exchange rates and their underlying biochemical properties were examined in young, fully expanded leaves of rice (Oryza sativa L.). The plants were grown hydroponically under day/night temperature regimes of 18/15[deg]C, 23/18[deg]C, and 30/23[deg]C and all photosynthetic measurements were made at a leaf temperature of 25[deg]C and an irradiance of 1800 [mu]mol quanta m-2 s-1. Growth temperature affected the photosynthetic CO2 response curve. The relative ratio of the initial slope to the CO2-saturated photosynthesis increased with rising growth temperature. This was caused mainly by an increase in CO2-limited photosynthesis for a given leaf nitrogen content with rising growth temperature. However, there was no difference in ribulose-1,5-bisphosphate carboxylase (Rubisco) content at any given leaf nitrogen content among temperature treatments. In addition, the activation state and catalytic turnover rate of Rubisco were not affected by growth temperature. The increase in CO2-limited photosynthesis with rising growth temperature was the result of an increase in the CO2 transfer conductance between the intercellular airspaces and the carboxylation sites. The amounts of total chlorophyll and light-harvesting chlorophyll a/b protein II increased for the same leaf nitrogen content with rising growth temperature, but the amounts of cytochrome f and coupling factor 1 and the activities of cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase were the same between plants grown at 23/18[deg]C and those grown at 30/23[deg]C. Similarly, CO2-saturated photosynthesis was not different for the same leaf nitrogen content between these treatments. For the 18/15[deg]C-grown plants, a slight decrease in the amounts of cytochrome f and coupling factor 1 and an increase in the activities of cytosolic fructose-1,6-bisphosphatase and sucrose-phosphate synthase were found, but these were not reflected in CO2-saturated photosynthesis.  相似文献   

9.
R T Proffitt  L Sankaran 《Biochemistry》1976,15(13):2918-2925
Optimal conditions necessary for the reversible inactivation of crystalline rabbit muscle phosphofructokinase by homogeneous rabbit liver fructose-1,6-bisphosphatase have been studied. At higher enzyme levels (to 530 mug/ml of phosphofructokinase) the two proteins were mixed and incubated in a pH 7.5 buffer composed of 50 mM Tris-HC1, 2 mM potassium phosphate, and 0.2 mM dithiothreitol. Aliquots were removed at various times and assayed for enzyme activity. A time dependent inactivation of phosphofructokinase caused by 1-2.3 times its weight of fructose-1,6-bisphosphatase was observed at 30, 23, and 0 degree C. This inactivation did not require the presence of adenosine 5'-triphosphate or Mg2+ in the incubation mixture, but an adenosine 5'-triphosphate concentration of 2.7 mM or greater was required in the assay to keep phosphofructokinase in an inactive form. A mixture of activators (inorganic phosphate, (NH4)2SO4, and adenosine 5'-monophosphate), when added to the assay cuvette, restored nearly all of the expected enzyme activity. Incubations with other proteins, including aldolase, at concentrations equal to or greater than the effective quantity of fructose-1,6-bisphosphatase had no inhibitory effect on phosphofructokinase activity. Removal of tightly bound fructose 1,6-bisphosphate from phosphofructokinase could not explain this inactivation, since several analyses of crystalline phosphofructokinase averaged less than 0.1 mol of fructose 1,6-bisphosphate/320 000 g of enzyme. Furthermore, the inactivation occurred in the absence of Mg2+ where the complete lack of fructose-1-6-bisphosphatase activity was confirmed directly. At lower phosphofructokinase concentrations (0.2-2 mug/ml) the inactivation was studied directly in the assay cuvette. Higher ratios of fructose-1,6-bisphosphatase to phosphofructokinase were necessary in these cases, but oleate and 3-phosphoglycerate acted synergistically with lower amounts of fructose-1,6-bisphosphatase to cause inactivation. The inactivation did not occur when high concentrations of fructose 6-phosphate were present in the assay, or when the level of adenosine 5'-triphosphate was decreased. However, the inactivation was found at pH 8, where the effects of allosteric regulators on phosphofructokinase are greatly reduced. Experiments with rat liver phosphofructokinase showed that this enzyme was also subject to inhibition by rabbit liver fructose 1,6-bisphosphatase under conditions similar to those used in the muscle enzyme studies. Attempts to demonstrate direct interaction between phosphofructokinase and fructose-1,6-bisphosphate by physical methods were unsuccessful. Nevertheless, our results suggest that, under conditions which approximate the physiological state, the presence of fructose-1,6bisphosphatase can cause phosphofructokinase to assume an inactive conformation. This interaction may have a significant role in vivo in controlling the interrelationship between glycolysis and gluconeogenesis.  相似文献   

10.
Purified fructose-1,6-bisphosphatase from Saccharomyces cerevisiae was phosphorylated in vitro by purified yeast cAMP-dependent protein kinase. Maximal phosphorylation was accompanied by an inactivation of the enzyme by about 60%. In vitro phosphorylation caused changes in the kinetic properties of fructose-1,6-bisphosphatase: 1) the ratio R(Mg2+/Mn2+) of the enzyme activities measured at 10 mM Mg2+ and 2 mM Mn2+, respectively, decreased from 2.6 to 1.2; 2) the ratio R(pH 7/9) of the activities measured at pH 7.0 and pH 9.0, respectively, decreased from 0.62 to 0.38, indicating a shift of the pH optimum to the alkaline range. However, the affinity of the enzyme for its inhibitors fructose-2,6-bisphosphate (Fru-2,6-P2) and AMP, expressed as the concentration required for 50% inhibition, was not changed. The maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase was 0.6-0.75 mol/mol of the 40-kDa subunit. Serine was identified as the phosphate-labeled amino acid. The initial rate of in vitro phosphorylation of fructose-1,6-bisphosphatase, obtained with a maximally cAMP-activated protein kinase, increased when Fru-2,6-P2 and AMP, both potent inhibitors of the enzyme, were added. As Fru-2,6-P2 and AMP did not affect the phosphorylation of histone by cAMP-dependent protein kinase, the inhibitors must bind to fructose-1,6-bisphosphatase in such a way that the enzyme becomes a better substrate for phosphorylation. Nevertheless, Fru-2,6-P2 and AMP did not increase the maximum amount of phosphate incorporated into fructose-1,6-bisphosphatase beyond that observed in the presence of cAMP alone.  相似文献   

11.
Leaves on transgenic tobacco plants expressing yeast-derived invertase in the apoplast develop clearly demarcated green and bleached sectors when they mature. The green areas contain low levels of soluble sugars and starch which are turned over on a daily basis, and have high rates of photosynthesis and low rates of respiration. The pale areas accumulate carbohydrate, photosynthesis is inhibited, and respiration increases. This provides a model system to investigate the sink regulation of photosynthetic metabolism by accumulating carbohydrate. The inhibition of photosynthesis is accompanied by a decrease of ribulose-1,5-bisphosphate and glycerate-3-phosphate, and an increase of triosephosphate and fructose-1,6-bisphosphate. The extracted activities of ribulose-1,5-bisphosphate carboxylase, fructose-1, 6-bisphosphatase and NADP-glyeraldehyde-3-phosphate dehydrogenase decreased. The activity of sucrose-phosphate synthase remained high or increased, an increased portion of the photosynthate was partitioned into soluble sugars rather than starch, and the pale areas showed few or no oscillations during transitions between darkness and saturating light in saturating CO2. The increased rate of respiration was accompanied by an increased level of hexose-phosphates, triose-phosphates and fructose-1,6-bisphosphate while glycerate-3-phosphate and phosphoenolpyruvate decreased and pyruvate increased. The activities of pyruvate kinase, phosphofructokinase and pyrophosphate: fructose-6-phosphate phosphotransferase increased two- to four-fold. We conclude that an increased level of carbohydrate leads to a decreased level of Calvin-cycle enzymes and, thence, to an inhibition of photosynthesis. It also leads to an increased level of glycolytic enzymes and, thence, to a stimulation of respiration. These changes of enzymes are more important in middle- or long-term adjustments to high carbohydrate levels in the leaf than fine regulation due to depletion of inorganic phosphate or high levels of phosphorylated metabolites.Abbreviations Fru 1,6bisP fructose-1,6-bisphosphate - Fru 1,6bisPase fructose-1,6-bisphosphatase - Fru6P fructose-6-phosphate - Glc 1P glucose-1-phosphate - Glc6P glucose-6-phosphate - NADP-GAPDH NADP-dependent glyceraldehyde-3-phosphate dehydrogenase - PFK phosphofructokinase - PEP phosphoenolpyruvate - PFP pyrophosphate:fructose-6-phosphate phosphotransferase - PGA glycerate-3-phosphate - PK pyruvate kinase - Pi inorganic phosphate - Ru1,5bisP ribulose-1,5-bisphosphate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - SPS sucrose-phosphate synthase - triose-P triose-phosphates  相似文献   

12.
We generated transgenic tobacco plants with high levels of fructose-1,6-bisphosphatase expressing cyanobacterialfructose-1,6-/sedoheptulose-1,7-bisphosphatase in the cytosol. At ambient CO2 levels (360 ppm), growth, photosynthetic activity, and fresh weight were unchanged but the sucrose/hexose/starch ratio was slightly altered in the transgenic plants compared with wild-type plants. At elevated CO2 levels (1200 ppm), lateral shoot, leaf number, and fresh weight were significantly increased in the transgenic plants. Photosynthetic activity was also increased. Hexose accumulated in the upper leaves in the wild-type plants, while sucrose and starch accumulated in the lower leaves and lateral shoots in the transgenic plants. These findings suggest that cytosolic fructose-1,6-bisphosphatase contributes to the efficient conversion of hexose into sucrose, and that the change in carbon partitioning affects photosynthetic capacity and morphogenesis at elevated CO2 levels.  相似文献   

13.
Chloroplast fructose-1,6-bisphosphatase (D-fructose 1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) isolated from spinach leaves, was activated by preincubation with fructose 1,6-bisphosphate. The rate of activation was slower than the rate of catalysis, and dependent upon the temperature and the concentration of fructose 1,6-bisphosphate. The addition of other sugar diphosphates, sugar monophosphates or intermediates of the reductive pentose phosphate cycle neither replaced fructose 1,6-bisphosphate nor modified the activation process. Upon activation with the effector the enzyme was less sensitive to trypsin digestion and insensitive to mercurials. The activity of chloroplast fructose-1,6-bisphosphatase, preincubated with fructose 1,6-bisphosphate, returned to its basal activity after the concentration of the effector was lowered in the preincubation mixture. The results provide evidence that fructose-1,6-bisphosphatase resembles other regulatory enzymes involved in photosynthetic CO2 assimilation in its activation by chloroplast metabolites.  相似文献   

14.
We have characterized a novel mutation of Arabidopsis thaliana at a locus designated pho2. pho2 mutants accumulated up to 3-fold more total P in leaves, mostly as inorganic phosphate (Pi), than wild-type seedlings. In addition, we isolated a mutant (locus designated pho1-2, an allelle of pho1-1 described by Y. Poirier, S. Thoma, C. Somerville, J. Schiefelbein [1991] Plant Physiol 97: 1087-1093) with low Pi concentrations in leaves. When grown under high transpiration conditions, leaves of pho2 seedlings became severely P intoxicated, whereas shoots of pho1-2 mutants were P deficient and wild-type seedlings were normal. A pho1/pho2 double mutant resulting from a cross between the single mutants was identified in the F2 generation and shown to have a pho1 phenotype. Prior to the development of P toxicity symptoms, P was the only mineral nutrient whose concentration was greater in pho2 mutants than wild-type seedlings. Compared to wild-type, pho2 mutants had greater Pi concentrations in stems, siliques, and seeds, but roots of pho2 mutants had similar or lower Pi concentrations than either pho1 mutants or wild-type seedlings. We suggest that the pho2 mutation affects a function normally involved in regulating the concentration of Pi in shoots of Arabidopsis.  相似文献   

15.
Net photosynthetic assimilation rate (A), extractable activities of three photosynthetic enzymes, and the concentrations of six metabolites were determined for wheat (Tricum aestivum L.) leaves as leaf temperature was varied under photorespiring (350 microliters per liter CO2 and 21% O2) and under nonphotorespiring conditions (800 microliters per liter CO2 and 2% O2). The extractable activity of ribulose-1,5-bisphosphate carboxylase (Rubisco) and fructose-1,6-bisphosphatase declined with increasing leaf temperature from 15 to 45°C. Leaf concentrations of ribulose-1,5-bisphosphate (RuBP) declined slightly between 15 and 25°C but increased to a level which is 4 to 5 times the binding site concentration of Rubisco at leaf temperatures of 35 and 45°C. Leaf concentrations of 3-phosphoglycerate, fructose-6-phosphate, and glucose-6-phosphate all declined with increasing leaf temperature. Outside of the limitations imposed by photorespiration, it is proposed that under high light and at suboptimal temperatures, A is limited by rate of utilization of triose phosphate; at optimal temperatures, by the availability of substrate (CO2 and RuBP) under photorespiring conditions or utilization of triose phosphate under nonphotorespiring conditions; and at supraoptimal temperatures, by the activation state of Rubisco.  相似文献   

16.
Fructose-1,6-bisphosphatase (FBPase), which is mainly used to supply NADPH, has an important role in increasing L-lysine production by Corynebacterium glutamicum. However, C. glutamicum FBPase is negatively regulated at the metabolic level. Strains that overexpressed Escherichia coli fructose-1,6-bisphosphatase in C. glutamicum were constructed, and the effects of heterologous FBPase on cell growth and L-lysine production during growth on glucose, fructose, and sucrose were evaluated. The heterologous fructose-1,6-bisphosphatase is insensitive to fructose 1-phosphate and fructose 2,6-bisphosphate, whereas the homologous fructose-1,6-bisphosphatase is inhibited by fructose 1-phosphate and fructose 2,6-bisphosphate. The relative enzyme activity of heterologous fructose-1,6-bisphosphatase is 90.8% and 89.1% during supplement with 3 mM fructose 1-phosphate and fructose 2,6-bisphosphate, respectively. Phosphoenolpyruvate is an activator of heterologous fructose-1,6-bisphosphatase, whereas the homologous fructose-1,6-bisphosphatase is very sensitive to phosphoenolpyruvate. Overexpression of the heterologous fbp in wild-type C. glutamicum has no effect on L-lysine production, but fructose-1,6-bisphosphatase activities are increased 9- to 13-fold. Overexpression of the heterologous fructose-1,6-bisphosphatase increases L-lysine production in C. glutamicum lysC T311I by 57.3% on fructose, 48.7% on sucrose, and 43% on glucose. The dry cell weight (DCW) and maximal specific growth rate (μ) are increased by overexpression of heterologous fbp. A “funnel-cask” diagram is first proposed to explain the synergy between precursors supply and NADPH supply. These results lay a definite theoretical foundation for breeding high L-lysine producers via molecular target.  相似文献   

17.
The inhibition of photosynthesis after supplying glucose to detached leaves of spinach (Spinacia oleracea L.) was used as a model system to search for mechanisms which potentially contribute to the sink regulation of photosynthesis. Detached leaves were supplied with 50 mM glucose or water for 7 d through the transpiration stream, holding the leaves in low irradiance (16 mol photons · m–2 · s–1) and a cycle of 9 h light/15 h darkness to prevent any endogenous accumulation of carbohydrate. Leaves supplied with water only showed marginal changes of photosynthesis, respiration, enzyme levels or metabolites. When leaves were supplied with 50 mM glucose, photosynthesis was gradually inhibited over several days. The inhibition was most marked when photosynthesis was measured in saturating irradiance and ambient CO2, less marked in saturating irradiance and saturating CO2, and least marked in limiting irradiance. There was a gradual loss of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) protein, fructose-1,6-bisphosphatase, NADP-glyceraldehyde-3-phosphate dehydrogenase and chlorophyll. The inhibition of photosynthesis was accompanied by a large decrease of glycerate-3-phosphate, an increase of triose-phosphates and fructose-1,6-bisphospate, and a small decrease of ribulose-1,5-bisphosphate. The stromal NADPH/NADP ratio increased (as indicated by increased activation of NADP-malate dehydrogenase), and the ATP/ADP ratio increased. Chlorophyll-fluorescence analysis indicated that thylakoid energisation was increased, and that the acceptor side of photosystem II was more reduced. Similar results were obtained when glucose was supplied by floating leaf discs in low irradiance on glucose solution, and when detached spinach leaves were held in high light to produce an endogenous accumulation of carbohydrate. Feeding glucose also led to an increased rate of respiration. This was not accompanied by any changes of pyruvate kinase, phosphofructokinase, or pyrophosphate: fructose-6-phosphate phosphotransferase activity. There was a decrease of phosphoenolpyruvate, glycerate-3-phosphate and glycerate-2-phosphate, an increase of pyruvate and triose-phosphates, and an increased ATP/ADP ratio. These results show (i) that accumulation of carbohydrate can inhibit photosynthesis via a long-term mechanism involving a decrease of Rubisco and other Calvin-cycle enzymes and (ii) that respiration is stimulated due to an unknown mechanism, which increases the utilisation of phosphoenolpyruvate.Abbreviations and Symbols Ci CO2 concentration in the air space within the leaf - Fm fluorescence yield with a saturating pulse in dark-adapted material - Fo ground level of fluorescence using a weak non-actinic modulated beam in the dark - Fru1,6bisP fructose-1,6-bisphosphate - Fru1,6Pase fructose-1,6-bisphosphatase - Fru2,6bisP fructose-2,6-bisphosphate - IRGA infrared gas analyser - NAD-MDH NAD-dependent malate dehydrogenase - NADP-MDH NADP-dependent malate dehydrogenase - NADP-GAPDH NADP-dependent glyceraldehyde-3-phosphate dehydrogenase - PEP phosphoenolpyruvate - PFK phospho-fructokinase - PFP pyrophospate: fructose-6-phosphate-phosphotransferase - 3-PGA glycerate-3-phospate - Pi inorganic phosphate - Ru1,5bisP ribulose 1,5-bisphosphate - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase - triose-phosphates sum of glyceraldehyde-3-phosphate and dihydroxyacetone phosphate This research was supported by the Deutsche Forschungsgemeinschaft (SFB 137).  相似文献   

18.
亚适温弱光对黄瓜幼苗光合酶活性和基因表达的影响   总被引:1,自引:1,他引:1  
Bi HG  Wang ML  Jiang ZS  Dong XB  Ai XZ 《应用生态学报》2011,22(11):2894-2900
以‘津优3号’为试材,研究亚适温弱光(18℃/12℃,100 μmol·m-2·s-1)下黄瓜幼苗叶片核酮糖-1,5-二磷酸羧化/加氧酶(Rubisco)、果糖-1,6-二磷酸酶(FBPase)、甘油醛-3-磷酸脱氢酶(GAPDH)、果糖-1,6-二磷酸醛缩酶(FBA)、转酮醇酶(TK) mRNA表达量及活性的变化.结果表明:亚适温弱光处理的单株叶面积和干物质量均明显减小.处理初期,Rubisco大亚基(rbcL)、小亚基(rbcS)、FBPase、GAPDH、FBA及TK的基因表达量大幅度下降,多数酶活性明显减弱(TK变化不明显),光合速率(Pn)快速降低;处理3d后,亚适温弱光处理的rbcL、rbcS基因表达量和Rubisco初始活性持续下降,但下降幅度明显减小,Rubisco总活性及FBPase、GAPDH、FBA和TK基因表达与活性均呈上升趋势,Pn同步回升;处理时间超过6d时,Rubisco和FBPase基因表达与活性趋于平稳,其他酶和Pn呈下降趋势.可见,亚适温弱光下黄瓜光合酶基因表达量和活性的降低是Pn降低的重要原因,光合机构对亚适温弱光的适应与光合酶的活化机制有关.  相似文献   

19.
20.
To clarify the contributions of fructose-1,6-bisphosphatase (FBPase) and sedoheptulose-1,7-bisphosphatase (SBPase) separately to the carbon flux in the Calvin cycle, we generated transgenic tobacco plants expressing cyanobacterial FBPase-II in chloroplasts (TpF) or Chlamydomonas SBPase in chloroplasts (TpS). In TpF-11 plants with 2.3-fold higher FBPase activity and in TpS-11 and TpS-10 plants with 1.6- and 4.3-fold higher SBPase activity in chloroplasts compared with the wild-type plants, the amount of final dry matter was approximately 1.3-, 1.5- and 1.5-fold higher, respectively, than that of the wild-type plants. At 1,500 micromol m(-2) s(-1), the photosynthetic activities of TpF-11, TpS-11 and TpS-10 were 1.15-, 1.27- and 1.23-fold higher, respectively, than that of the wild-type plants. The in vivo activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and the level of ribulose-1,5-bisphosphate (RuBP) in TpF-11, TpS-10 and TpS-11 were significantly higher than those in the wild-type plants. However, the transgenic plant TpF-9 which had a 1.7-fold higher level of FBPase activity showed the same phenotype as the wild-type plant, except for the increase of starch content in the source leaves. TpS-11 and TpS-10 plants with 1.6- and 4.3-fold higher SBPase activity, respectively, showed an increase in the photosynthetic CO(2) fixation, growth rate, RuBP contents and Rubisco activation state, while TpS-2 plants with 1.3-fold higher SBPase showed the same phenotype as the wild-type plants. These data indicated that the enhancement of either a >1.7-fold increase of FBPase or a 1.3-fold increase of SBPase in the chloroplasts had a marked positive effect on photosynthesis, that SBPase is the most important factor for the RuBP regeneration in the Calvin cycle and that FBPase contributes to the partitioning of the fixed carbon for RuBP regeneration or starch synthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号