首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca(2+)-induced inactivation of L-type Ca(2+) is differentially mediated by two C-terminal motifs of the alpha(1C) subunit, L (1572-1587) and K (1599-1651) implicated for calmodulin binding. We found that motif L is composed of a highly selective Ca(2+) sensor and an adjacent Ca(2+)-independent tethering site for calmodulin. The Ca(2+) sensor contributes to higher Ca(2+) sensitivity of the motif L complex with calmodulin. Since only combined mutation of both sites removes Ca(2+)-dependent current decay, the two-site modulation by Ca(2+) and calmodulin may underlie Ca(2+)-induced inactivation of the channel.  相似文献   

2.
We have previously demonstrated that formation of a complex between L-type calcium (Ca(2+)) channel alpha(1C) (Ca(V)1.2) and beta subunits was necessary to target the channels to the plasma membrane when expressed in tsA201 cells. In the present study, we identified a region in the C terminus of the alpha(1C) subunit that was required for membrane targeting. Using a series of C-terminal deletion mutants of the alpha(1C) subunit, a domain consisting of amino acid residues 1623-1666 ("targeting domain") in the C terminus of the alpha(1C) subunit has been identified to be important for correct targeting of L-type Ca(2+) channel complexes to the plasma membrane. Although cells expressing the wild-type alpha(1C) and beta(2a) subunits exhibited punctate clusters of channel complexes along the plasma membrane with little intracellular staining, co-expression of deletion mutants of the alpha(1C) subunit that lack the targeting domain with the beta(2a) subunit resulted in an intracellular localization of the channels. In addition, three other regions in the C terminus of the alpha(1C) subunit that were downstream of residues 1623-1666 were found to contribute to membrane targeting of the L-type channels. Deletion of these domains in the alpha(1C) subunit resulted in a reduction of plasma membrane-localized channels, and a concomitant increase in channels localized intracellularly. Taken together, these results have demonstrated that a targeting domain in the C terminus of the alpha(1C) subunit was required for proper plasma membrane localization of the L-type Ca(2+) channels.  相似文献   

3.
High-affinity, intrapore binding of Ca(2+) over competing ions is the essential feature in the ion selectivity mechanism of voltage-gated Ca(2+) channels. At the same time, several million Ca(2+) ions can travel each second through the pore of a single open Ca(2+) channel. How such high Ca(2+) flux is achieved in the face of tight Ca(2+) binding is a current area of inquiry, particularly from a structural point of view. The ion selectivity locus comprises four glutamate residues within the channel's pore. These glutamates make unequal contributions to Ca(2+) binding, underscoring a role for neighboring residues in pore function. By comparing two Ca(2+) channels (the L-type alpha(1C), and the non-L-type alpha(1A)) that differ in their pore properties but only differ at a single amino acid position near the selectivity locus, we have identified the amino-terminal neighbor of the glutamate residue in motif III as a determinant of pore function. This position is more important in the function of alpha(1C) channels than in alpha(1A) channels. For a systematic series of mutations at this pore position in alpha(1C), both unitary Ba(2+) conductance and Cd(2+) block of Ba(2+) current varied with residue volume. Pore mutations designed to make alpha(1C) more like alpha(1A) and vice versa revealed that relative selectivity for Ba(2+) over K(+) depended almost solely on pore sequence and not channel type. Analysis of thermodynamic mutant cycles indicates that the motif III neighbor normally interacts in a cooperative fashion with the locus, molding the functional behavior of the pore.  相似文献   

4.
L-type (alpha(1C)) calcium channels inactivate rapidly in response to localized elevation of intracellular Ca(2+), providing negative Ca(2+) feedback in a diverse array of biological contexts. The dominant Ca(2+) sensor for such Ca(2+)-dependent inactivation has recently been identified as calmodulin, which appears to be constitutively tethered to the channel complex. This Ca(2+) sensor induces channel inactivation by Ca(2+)-dependent CaM binding to an IQ-like motif situated on the carboxyl tail of alpha(1C). Apart from the IQ region, another crucial site for Ca(2+) inactivation appears to be a consensus Ca(2+)-binding, EF-hand motif, located approximately 100 amino acids upstream on the carboxyl terminus. However, the importance of this EF-hand motif for channel inactivation has become controversial since the original report from our lab implicating a critical role for this domain. Here, we demonstrate not only that the consensus EF hand is essential for Ca(2+) inactivation, but that a four-amino acid cluster (VVTL) within the F helix of the EF-hand motif is itself essential for Ca(2+) inactivation. Mutating these amino acids to their counterparts in non-inactivating alpha(1E) calcium channels (MYEM) almost completely ablates Ca(2+) inactivation. In fact, only a single amino acid change of the second valine within this cluster to tyrosine (V1548Y) supports much of the functional knockout. However, mutations of presumed Ca(2+)-coordinating residues in the consensus EF hand reduce Ca(2+) inactivation by only approximately 2-fold, fitting poorly with the EF hand serving as a contributory inactivation Ca(2+) sensor, in which Ca(2+) binds according to a classic mechanism. We therefore suggest that while CaM serves as Ca(2+) sensor for inactivation, the EF-hand motif of alpha(1C) may support the transduction of Ca(2+)-CaM binding into channel inactivation. The proposed transduction role for the consensus EF hand is compatible with the detailed Ca(2+)-inactivation properties of wild-type and mutant V1548Y channels, as gauged by a novel inactivation model incorporating multivalent Ca(2+) binding of CaM.  相似文献   

5.
G-protein-mediated inhibition of presynaptic voltage-dependent Ca(2+) channels is comprised of voltage-dependent and -resistant components. The former is caused by a direct interaction of Ca(2+) channel alpha(1) subunits with G beta gamma, whereas the latter has not been characterized well. Here, we show that the N terminus of G alpha(o) is critical for the interaction with the C terminus of the alpha(1A) channel subunit, and that the binding induces the voltage-resistant inhibition. An alpha(1A) C-terminal peptide, an antiserum raised against G alpha(o) N terminus, and a G alpha(o) N-terminal peptide all attenuated the voltage-resistant inhibition of alpha(1A) currents. Furthermore, the N terminus of G alpha(o) bound to the C terminus of alpha(1A) in vitro, which was prevented either by the alpha(1A) channel C-terminal or G alpha(o) N-terminal peptide. Although the C-terminal domain of the alpha(1B) channel showed similar ability in the binding with G alpha(o) N terminus, the above mentioned treatments were ineffective in the alpha(1B) channel current. These findings demonstrate that the voltage-resistant inhibition of the P/Q-type, alpha(1A) channel is caused by the interaction between the C-terminal domain of Ca(2+) channel alpha(1A) subunit and the N-terminal region of G alpha(o).  相似文献   

6.
L-type Ca(2+) channels are unusual in displaying two opposing forms of autoregulatory feedback, Ca(2+)-dependent inactivation and facilitation. Previous studies suggest that both involve direct interactions between calmodulin (CaM) and a consensus CaM-binding sequence (IQ motif) in the C terminus of the channel's alpha(1C) subunit. Here we report the functional effects of an extensive series of modifications of the IQ motif aimed at dissecting the structural determinants of the different forms of modulation. Although the combined substitution by alanine at five key positions (Ile(1624), Gln(1625), Phe(1628), Arg(1629), and Lys(1630)) abolished all Ca(2+) dependence, corresponding single alanine replacements behaved similarly to the wild-type channel (77wt) in four of five cases. The mutant I1624A stood out in displaying little or no Ca(2+)-dependent inactivation, but clear Ca(2+)- and frequency-dependent facilitation. An even more pronounced tilt in favor of facilitation was seen with the double mutant I1624A/Q1625A: overt facilitation was observed even during a single depolarizing pulse, as confirmed by two-pulse experiments. Replacement of Ile(1624) by 13 other amino acids produced graded and distinct patterns of change in the two forms of modulation. The extent of Ca(2+)-dependent facilitation was monotonically correlated with the affinity of CaM for the mutant IQ motif, determined in peptide binding experiments in vitro. Ca(2+)-dependent inactivation also depended on strong CaM binding to the IQ motif, but showed an additional requirement for a bulky, hydrophobic side chain at position 1624. Abolition of Ca(2+)-dependent modulation by IQ motif modifications mimicked and occluded the effects of overexpressing a dominant-negative CaM mutant.  相似文献   

7.
Large conductance, Ca(2+)- and voltage-activated K(+) (BK) channels are exquisitely regulated to suit their diverse roles in a large variety of physiological processes. BK channels are composed of pore-forming alpha subunits and a family of tissue-specific accessory beta subunits. The smooth muscle-specific beta1 subunit has an essential role in regulating smooth muscle contraction and modulates BK channel steady-state open probability and gating kinetics. Effects of beta1 on channel's gating energetics are not completely understood. One of the difficulties is that it has not yet been possible to measure the effects of beta1 on channel's intrinsic closed-to-open transition (in the absence of voltage sensor activation and Ca(2+) binding) due to the very low open probability in the presence of beta1. In this study, we used a mutation of the alpha subunit (F315Y) that increases channel openings by greater than four orders of magnitude to directly compare channels' intrinsic open probabilities in the presence and absence of the beta1 subunit. Effects of beta1 on steady-state open probabilities of both wild-type alpha and the F315Y mutation were analyzed using the dual allosteric HA model. We found that mouse beta1 has two major effects on channel's gating energetics. beta1 reduces the intrinsic closed-to-open equilibrium that underlies the inhibition of BK channel opening seen in submicromolar Ca(2+). Further, P(O) measurements at limiting slope allow us to infer that beta1 shifts open channel voltage sensor activation to negative membrane potentials, which contributes to enhanced channel opening seen at micromolar Ca(2+) concentrations. Using the F315Y alpha subunit with deletion mutants of beta1, we also demonstrate that the small N- and C-terminal intracellular domains of beta1 play important roles in altering channel's intrinsic opening and voltage sensor activation. In summary, these results demonstrate that beta1 has distinct effects on BK channel intrinsic gating and voltage sensor activation that can be functionally uncoupled by mutations in the intracellular domains.  相似文献   

8.
Presynaptic voltage-gated calcium (Ca(2+)) channels mediate Ca(2+) influx into the presynaptic terminal that triggers synaptic vesicle fusion and neurotransmitter release. The immediate proximity of Ca(2+) channels to the synaptic vesicle release apparatus is critical for rapid and efficient synaptic transmission. In a series of biochemical experiments, we demonstrate a specific association of the cytosolic carboxyl terminus of the N-type Ca(2+) channel pore-forming alpha(1B) subunit with the modular adaptor proteins Mint1 and CASK. The carboxyl termini of alpha(1B) bind to the first PDZ domain of Mint1 (Mint1-1). The proline-rich region present in the carboxyl termini of alpha(1B) binds to the SH3 domain of CASK. Mint1-1 is specific for the E/D-X-W-C/S-COOH consensus, which defines a novel class of PDZ domains (class III). The Mint1-1 PDZ domain-binding motif is present only in the "long" carboxyl-terminal splice variants of N-type (alpha(1B)) and P/Q-type (alpha(1A)) Ca(2+) channels, but not in R-type (alpha(1E)) or L-type (alpha(1C)) Ca(2+) channels. Our results directly link presynaptic Ca(2+) channels to a macromolecular complex formed by modular adaptor proteins at synaptic junction and advance our understanding of coupling between cell adhesion and synaptic vesicle exocytosis.  相似文献   

9.
Inositol 1,4,5-trisphosphate (InsP(3)) mobilizes intracellular Ca(2+) by binding to its receptor (InsP(3)R), an endoplasmic reticulum-localized Ca(2+) release channel. Patch clamp electrophysiology of Xenopus oocyte nuclei was used to study the effects of cytoplasmic ATP concentration on the cytoplasmic Ca(2+) ([Ca(2+)](i)) dependence of single type 1 InsP(3)R channels in native endoplasmic reticulum membrane. Cytoplasmic ATP free-acid ([ATP](i)), but not the MgATP complex, activated gating of the InsP(3)-liganded InsP(3)R, by stabilizing open channel state(s) and destabilizing the closed state(s). Activation was associated with a reduction of the half-maximal activating [Ca(2+)](i) from 500 +/- 50 nM in 0 [ATP](i) to 29 +/- 4 nM in 9.5 mM [ATP](i), with apparent ATP affinity = 0.27 +/- 0.04 mM, similar to in vivo concentrations. In contrast, ATP was without effect on maximum open probability or the Hill coefficient for Ca(2+) activation. Thus, ATP enhances gating of the InsP(3)R by allosteric regulation of the Ca(2+) sensitivity of the Ca(2+) activation sites of the channel. By regulating the Ca(2+)-induced Ca(2+) release properties of the InsP(3)R, ATP may play an important role in shaping cytoplasmic Ca(2+) signals, possibly linking cell metabolic state to important Ca(2+)-dependent processes.  相似文献   

10.
The L-type Ca(2+) channels Ca(V)1.1 (alpha(1S)) and Ca(V)1.2 (alpha(1C)) share properties of targeting but differ by their mode of coupling to ryanodine receptors in muscle cells. The brain isoform Ca(V)2.1 (alpha(1A)) lacks ryanodine receptor targeting. We studied these three isoforms in myotubes of the alpha(1S)-deficient skeletal muscle cell line GLT under voltage-clamp conditions and estimated the flux of Ca(2+) (Ca(2+) input flux) resulting from Ca(2+) entry and release. Surprisingly, amplitude and kinetics of the input flux were similar for alpha(1C) and alpha(1A) despite a previously reported strong difference in responsiveness to extracellular stimulation. The kinetic flux characteristics of alpha(1C) and alpha(1A) resembled those in alpha(1S)-expressing cells but the contribution of Ca(2+) entry was much larger. alpha(1C) but not alpha(1A)-expressing cells revealed a distinct transient flux component sensitive to sarcoplasmic reticulum depletion by 30 microM cyclopiazonic acid and 10 mM caffeine. This component likely results from synchronized Ca(2+)-induced Ca(2+) release that is absent in alpha(1A)-expressing myotubes. In cells expressing an alpha(1A)-derivative (alpha(1)Aas(1592-clip)) containing the putative targeting sequence of alpha(1S), a similar transient component was noticeable. Yet, it was considerably smaller than in alpha(1C), indicating that the local Ca(2+) entry produced by the chimera is less effective in triggering Ca(2+) release despite similar global Ca(2+) inward current density.  相似文献   

11.
MCA1 is a plasma membrane protein that correlates Ca(2+) influx and mechanosensing in Arabidopsis. MCA2 is a paralog of MCA1, and both share 72.7% amino acid sequence identity and several common structural features, including putative transmembrane (TM) segments, an EF hand-like region in the N-terminal half, a coiled-coil motif in the middle and a PLAC8 motif in the C-terminal half. To determine structural regions important for Ca(2+) uptake activity, the activity of truncated forms of MCA1 and MCA2 was assessed using yeast expression assays. The N-terminal half of MCA1 with a coiled-coil motif (MCA1(1-237)) did not have Ca(2+) uptake activity, while MCA2(1-237) did. The N-terminal half of MCA1 without the coiled-coil motif (MCA1 (1-185)) showed Ca(2+) uptake activity, as did MCA2(1-186). Both MCA1(1-173) and MCA2(1-173) having the EF hand-like region had Ca(2+) uptake activity. Deletion of a putative TM segment (Ile11-Ala33) and the Asp21 to asparagine mutation in MCA1 and MCA2 abolished Ca(2+) uptake activity. Finally, MCA1(173-421) and MCA2(173-416) lacking the N-terminal half had no Ca(2+) uptake activity. These results suggest that the N-terminal half of both proteins with the EF hand-like region is necessary and sufficient for Ca(2+) uptake and that the coiled-coil motif regulates MCA1 negatively and MCA2 positively.  相似文献   

12.
The ubiquitous inositol 1,4,5-trisphosphate (InsP(3)) receptor (InsP(3)R) channel, localized primarily in the endoplasmic reticulum (ER) membrane, releases Ca(2+) into the cytoplasm upon binding InsP(3), generating and modulating intracellular Ca(2+) signals that regulate numerous physiological processes. Together with the number of channels activated and the open probability of the active channels, the size of the unitary Ca(2+) current (i(Ca)) passing through an open InsP(3)R channel determines the amount of Ca(2+) released from the ER store, and thus the amplitude and the spatial and temporal nature of Ca(2+) signals generated in response to extracellular stimuli. Despite its significance, i(Ca) for InsP(3)R channels in physiological ionic conditions has not been directly measured. Here, we report the first measurement of i(Ca) through an InsP(3)R channel in its native membrane environment under physiological ionic conditions. Nuclear patch clamp electrophysiology with rapid perfusion solution exchanges was used to study the conductance properties of recombinant homotetrameric rat type 3 InsP(3)R channels. Within physiological ranges of free Ca(2+) concentrations in the ER lumen ([Ca(2+)](ER)), free cytoplasmic [Ca(2+)] ([Ca(2+)](i)), and symmetric free [Mg(2+)] ([Mg(2+)](f)), the i(Ca)-[Ca(2+)](ER) relation was linear, with no detectable dependence on [Mg(2+)](f). i(Ca) was 0.15 +/- 0.01 pA for a filled ER store with 500 microM [Ca(2+)](ER). The i(Ca)-[Ca(2+)](ER) relation suggests that Ca(2+) released by an InsP(3)R channel raises [Ca(2+)](i) near the open channel to approximately 13-70 microM, depending on [Ca(2+)](ER). These measurements have implications for the activities of nearby InsP(3)-liganded InsP(3)R channels, and they confirm that Ca(2+) released by an open InsP(3)R channel is sufficient to activate neighboring channels at appropriate distances away, promoting Ca(2+)-induced Ca(2+) release.  相似文献   

13.
A defining property of L-type Ca(2+) channels is their potentiation by both 1,4-dihydropyridine agonists and strong depolarization. In contrast, non-L-type channels are potentiated by neither agonist nor depolarization, suggesting that these two processes may by linked. In this study, we have tested whether the mechanisms of agonist- and depolarization-induced potentiation in the cardiac L-type channel (alpha(1C)) are linked. We found that the mutant L-type channel GFP-alpha(1C)(TQ-->YM), bearing the mutations T1066Y and Q1070M, was able to undergo depolarization-induced potentiation but not potentiation by agonist. Conversely, the chimeric channel GFP-CACC was potentiated by agonist but not by strong depolarization. These data indicate that the mechanisms of agonist- and depolarization-induced potentiation of alpha(1C) are distinct. Since neither GFP-CACC nor GFP-CCAA was potentiated significantly by depolarization, no single repeat of alpha(1C) appears to be responsible for depolarization-induced potentiation. Surprisingly, GFP-CACC displayed a low estimated open probability similar to that of the alpha(1C), but could not support depolarization-induced potentiation, demonstrating that a relatively low open probability alone is not sufficient for depolarization-induced potentiation to occur. Thus, depolarization-induced potentiation may be a global channel property requiring participation from all four homologous repeats.  相似文献   

14.
Ca(v)beta subunits support voltage gating of Ca(v)1.2 calcium channels and play important role in excitation-contraction coupling. The common central membrane-associated guanylate kinase (MAGUK) region of Ca(v)beta binds to the alpha-interaction domain (AID) and the IQ motif of the pore-forming alpha(1C) subunit, but these two interactions do not explain why the cardiac Ca(v)beta(2) subunit splice variants differentially modulate inactivation of Ca(2+) currents (I(Ca)). Previously we described beta(2Deltag), a functionally active splice variant of human Ca(v)beta(2) lacking MAGUK. By deletion analysis of beta(2Deltag), we have now identified a 41-amino acid C-terminal essential determinant (beta(2)CED) that stimulates I(Ca) in the absence of Ca(v)beta subunits and conveys a +20-mV shift in the peak of the I(Ca)-voltage relationship. The beta(2)CED is targeted by alpha(1C) to the plasma membrane, forms a complex with alpha(1C) but does not bind to AID. Electrophysiology and binding studies point to the calmodulin-interacting LA/IQ region in the alpha(1C) subunit C terminus as a functionally relevant beta(2)CED binding site. The beta(2)CED interacts with LA/IQ in a Ca(2+)- and calmodulin-independent manner and need LA, but not IQ, to activate the channel. Deletion/mutation analyses indicated that each of the three Ca(v)beta(2)/alpha(1C) interactions is sufficient to support I(Ca). However, beta(2)CED does not support Ca(2+)-dependent inactivation, suggesting that interactions of MAGUK with AID and IQ are crucial for Ca(2+)-induced inactivation. The beta(2)CED is conserved only in Ca(v)beta(2) subunits. Thus, beta(2)CED constitutes a previously unknown integrative part of the multifactorial mechanism of Ca(v)beta(2)-subunit differential modulation of the Ca(v)1.2 calcium channel that in beta(2Deltag) occurs without MAGUK.  相似文献   

15.
The small GTPase Rem is a potent negative regulator of high voltage-activated Ca(2+) channels and a known interacting partner for Ca(2+) channel accessory beta subunits. The mechanism for Rem-mediated channel inhibition remains controversial, although it has been proposed that Ca(V)beta association is required. Previous work has shown that a C-terminal truncation of Rem (Rem-(1-265)) displays reduced in vivo binding to membrane-localized beta 2a and lacks channel regulatory function. In this paper, we describe a role for the Rem C terminus in plasma membrane localization through association with phosphatidylinositol lipids. Moreover, Rem-(1-265) can associate with beta 2a in vitro and beta 1b in vivo, suggesting that the C terminus does not directly participate in Ca(V)beta association. Despite demonstrated beta 1b binding, Rem-(1-265) was not capable of regulating a Ca(V)1.2-beta 1b channel complex, indicating that beta subunit binding is not sufficient for channel regulation. However, fusion of the CAAX domain from K-Ras4B or H-Ras to the Rem-(1-265) C terminus restored membrane localization and Ca(2+) channel regulation, suggesting that beta binding and membrane localization are independent events required for channel inhibition.  相似文献   

16.
The regulation of Ca(V)2.1 (P/Q-type) channels by calmodulin (CaM) showcases the powerful Ca(2+) decoding capabilities of CaM in complex with the family of Ca(V)1-2 Ca(2+) channels. Throughout this family, CaM does not simply exert a binary on/off regulatory effect; rather, Ca(2+) binding to either the C- or N-terminal lobe of CaM alone can selectively trigger a distinct form of channel modulation. Additionally, Ca(2+) binding to the C-terminal lobe triggers regulation that appears preferentially responsive to local Ca(2+) influx through the channel to which CaM is attached (local Ca(2+) preference), whereas Ca(2+) binding to the N-terminal lobe triggers modulation that favors activation via Ca(2+) entry through channels at a distance (global Ca(2+) preference). Ca(V)2.1 channels fully exemplify these features; Ca(2+) binding to the C-terminal lobe induces Ca(2+)-dependent facilitation of opening (CDF), whereas the N-terminal lobe yields Ca(2+)-dependent inactivation of opening (CDI). In mitigation of these interesting indications, support for this local/global Ca(2+) selectivity has been based upon indirect inferences from macroscopic recordings of numerous channels. Nagging uncertainty has also remained as to whether CDF represents a relief of basal inhibition of channel open probability (P(o)) in the presence of external Ca(2+), or an actual enhancement of P(o) over a normal baseline seen with Ba(2+) as the charge carrier. To address these issues, we undertake the first extensive single-channel analysis of Ca(V)2.1 channels with Ca(2+) as charge carrier. A key outcome is that CDF persists at this level, while CDI is entirely lacking. This result directly upholds the local/global Ca(2+) preference of the lobes of CaM, because only a local (but not global) Ca(2+) signal is here present. Furthermore, direct single-channel determinations of P(o) and kinetic simulations demonstrate that CDF represents a genuine enhancement of open probability, without appreciable change of activation kinetics. This enhanced-opening mechanism suggests that the CDF evoked during action-potential trains would produce not only larger, but longer-lasting Ca(2+) responses, an outcome with potential ramifications for short-term synaptic plasticity.  相似文献   

17.
The alpha(1c) subunit of the cardiac L-type Ca(2+) channel, which contains the channel pore, voltage- and Ca(2+)-dependent gating structures, and drug binding sites, has been well studied in heterologous expression systems, but many aspects of L-type Ca(2+) channel behavior in intact cardiomyocytes remain poorly characterized. Here, we develop adenoviral constructs with E1, E3 and fiber gene deletions, to allow incorporation of full-length alpha(1c) gene cassettes into the adenovirus backbone. Wild-type (alpha(1c-wt)) and mutant (alpha(1c-D-)) Ca(2+) channel adenoviruses were constructed. The alpha(1c-D-) contained four point substitutions at amino acid residues known to be critical for dihydropyridine binding. Both alpha(1c-wt) and alpha(1c-D-) expressed robustly in A549 cells (peak L-type Ca(2+) current (I(CaL)) at 0 mV: alpha(1c-wt) -9.94+/-1.00pA/pF, n=9; alpha(1c-D-) -10.30pA/pF, n=12). I(CaL) carried by alpha(1c-D-) was markedly less sensitive to nitrendipine (IC(50) 17.1 microM) than alpha(1c-wt) (IC(50) 88 nM); a feature exploited to discriminate between engineered and native currents in transduced guinea-pig myocytes. 10 microM nitrendipine blocked only 51+/-5% (n=9) of I(CaL) in alpha(1c-D-)-expressing myocytes, in comparison to 86+/-8% (n=9) of I(CaL) in control myocytes. Moreover, in 20 microM nitrendipine, calcium transients could still be evoked in alpha(1c-D-)-transduced cells, but were largely blocked in control myocytes, indicating that the engineered channels were coupled to sarcoplasmic reticular Ca(2+) release. These alpha(1c) adenoviruses provide an unprecedented tool for structure-function studies of cardiac excitation-contraction coupling and L-type Ca(2+) channel regulation in the native myocyte background.  相似文献   

18.
TRPV5 and TRPV6 are members of the superfamily of transient receptor potential (TRP) channels and facilitate Ca(2+) influx in a variety of epithelial cells. The activity of these Ca(2+) channels is tightly controlled by the intracellular Ca(2+) concentration in close vicinity to the channel mouth. The molecular mechanism underlying the Ca(2+)-dependent activity of TRPV5/TRPV6 is, however, still unknown. Here, the putative role of calmodulin (CaM) as the Ca(2+) sensor mediating the regulation of channel activity was investigated. Overexpression of Ca(2+)-insensitive CaM mutants (CaM(1234) and CaM(34)) significantly reduced the Ca(2+) as well as the Na(+) current of TRPV6- but not that of TRPV5-expressing HEK293 cells. By combining pull-down assays and co-immunoprecipitations, we demonstrated that CaM binds to both TRPV5 and TRPV6 in a Ca(2+)-dependent fashion. The binding of CaM to TRPV6 was localized to the transmembrane domain (TRPV6(327-577)) and consensus CaM-binding motifs located in the N (1-5-10 motif, TRPV6(88-97)) and C termini (1-8-14 motif, TRPV6(643-656)), suggesting a mechanism of regulation involving multiple interaction sites. Subsequently, chimeric TRPV6/TRPV5 proteins, in which the N and/or C termini of TRPV6 were substituted by that of TRPV5, were co-expressed with CaM(34) in HEK293 cells. Exchanging, the N and/or the C termini of TRPV6 by that of TRPV5 did not affect the CaM(34)-induced reduction of the Ca(2+) and Na(+) currents. These results suggest that CaM positively affects TRPV6 activity upon Ca(2+) binding to EF-hands 3 and 4, located in the high Ca(2+) affinity CaM C terminus, which involves the N and C termini and the transmembrane domain of TRPV6.  相似文献   

19.
Expression and membrane localization of an epitope-tagged human Ca(2+) channel alpha(1C) subunit were monitored in Xenopus oocytes by confocal microscopy and electrophysiological recording. When alpha(2)/delta and beta(2a) were separately coexpressed with the alpha(1C) subunit, assessment by confocal microscopy showed an 86 and 225% increase of the channel density, respectively. Simultaneous coexpression of alpha(2)/delta and beta(2a) subunits resulted in a cooperative (470%) increase. Electrophysiological measurements performed in parallel revealed that the current augmentation by the alpha(2)/delta subunit is totally attributable to an increase in channel density, whereas the beta(2a) subunit, in addition to increasing channel density, also facilitates channel opening.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号