首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
在气流通过叶室的情况下,采用红外气体分析仪器(IRGA)检测气路空气中CO_2浓度的变化,是当前定量测定光合作用最常用的方法。近年阅读这方面的文献资料遇到一些问题,现提出讨论。 1.在开放式气路的实测装置中,常用转子流量计计量空气的流量,转子流量计的计量值受气体密度(gm~(-3))影响,当实测流量时气体的温、压条件与标定流量计时气体的温、压条件不同时,需要对流量测定值作修正。一些出版物,特别是教学资料,常忽略这一点。  相似文献   

2.
上海医用分析仪器厂最近与美国康令医疗科学仪器公司合作,引进组装康令168型血液气体分析仪。该仪的特点是:体积小、使用简便、重复性准确、用微量血标本就可测定(200 ul注射器或80 ul毛细管)。仪器上有PH、PO_2、PCO_2三组电极,一次测定后,能数字显示氢离子(PH)、二氧化碳分压(PCO_2)、氧分压(PO_2)、碳酸氢根离子(HCO_3)、二氧化碳总量(TCO_2)、剩余碱(BE)以及输入的其他临床数据;如附带打印机,即可打印输出结果。该机还可直接测  相似文献   

3.
比较研究了在不同形式氮源下生长柚树叶片光合对高浓度 CO2 驯化过程中有关参数变化。植株生长在人工混成土壤中 ,分别浇灌含有 2 mmol L- 1N的 NO- 3 - N,NH+ 4 - N和 NH4 NO3- N溶液。空气 CO2 增高处理时向生长植株的开顶透明罩中通入 74.4Pa CO2 ,以空气 CO2 生长的植株为对照。利用 CI- 30 1 ( CID,Inc) CO2 气体交换系统测定叶片光合速率和通过光合作用相关响应曲线计算光合参数。结果表明 ,在 CO2分压倍增下 ,NO- 3 - N生长植株光饱和光合速率较大气 CO2 分压下的高。而生长在 NH+ 4 - N和 NH4 NO3- N的植株光合速率与大气 CO2 分压下的相近 ,表现对高 CO2 的驯化。在空气 CO2 倍增下无论供给何种形式氮源并不影响Γ* ,但可增高 Rd( P<0 .0 5 )。 CO2 分压倍增下供给 NO- 3 - N植株的 Vcmax和 Jmax较大气分压相应的植株高 ,而 NH+ 4 - N和 NH4 NO3- N植株则与大气 CO2分压的相应植株相似 ( P>0 .0 5 )。无论供给何种形式氮源 ,生长在空气 CO2 分压倍增下不改变叶片单位面积干重 ,叶绿素含量和叶片中氮在 Rubisco、生物能学组分和捕光色素复合体组分的分配系数 ;但能改变叶片中氮含量。植物对高 CO2 的驯化可能受到不同形式氮利用性的影响 ,在对高 CO2 驯化过程亦反映叶片中氮在不同光合功能组分  相似文献   

4.
目的:利用校准周期图科学确立奥林帕斯Au640全自动生化分析仪校准周期。方法:生化分析仪定标校准后,每隔2小时分别测定三种浓度水平的质控血清一次,24小时后每天测定一次,总计测定30天。所有检测项目均重复测定四次取平均值。以积变异系数(CV)大于1/6 CLIA’88为评价标准,绘制校准周期图。结果:碱性磷酸酶(ALP)L1校准周期最短每12 h一次。酶类项目较稳定,校准周期可达30天以上,低水平质控血清必不可少,这样有利于测得更为准确的校准周期。结论:科学、合理地确立各检测项目的校准周期,对生化分析仪检测系统进行定期校准,既能够避免不必要的校准、又能够节省检验工作的时间和成本,保证生化检验项目检测结果可靠性。  相似文献   

5.
小篮子法测定植物种子呼吸速率的方法改进   总被引:3,自引:0,他引:3  
利用CO2红外气体分析仪对测定植物种子CO2呼吸速率的小篮子法进行了改进。结果表明:改良小篮子法操作简便,可实时监测数据变化,测定的实验数据准确度较高,变异系数较小,在一定程度上克服了传统小篮子法的缺陷,使实验测定更具科学性和严谨性,可用于本科生植物生理学实验教学。  相似文献   

6.
冬小麦旺盛生长期间CO2浓度升高对根际呼吸的影响   总被引:6,自引:0,他引:6  
寇太记  朱建国  谢祖彬  刘钢  曾青 《生态学报》2007,27(4):1420-1427
依托FACE(free air carbon dioxide enrichment)技术平台,利用阻断根法,采用H6400红外气体分析仪(IRGA)-田间原位测定的方法,研究了大气CO2浓度升高和不同氮肥水平对水稻/小麦轮作制中冬小麦旺盛生长期间根际呼吸的影响。结果表明,在整个测定期间,大气CO2浓度升高增强了根际呼吸速率,提高了根际呼吸排放量。在高N和低N处理中,高CO2浓度下的根际呼吸总排放量分别比Ambient极显著增加117.0%和90.8%。根际呼吸速率在孕穗初期达到最大值;使根际呼吸在土壤呼吸中的比重由24.5%(LN)~26.7(HN)提高到39.8%(LN)~47.1%(HN)。CO2浓度升高与氮肥用量对根际呼吸产生交互效应。表明大气CO2浓度升高将加快土壤向大气的CO2排放,结果将有助于评价未来高CO2浓度背景下农田生态系统土壤碳的固定潜力。  相似文献   

7.
Folin-ciocalteu比色法测桑叶中多酚含量   总被引:3,自引:0,他引:3  
采用以没食子酸为标准,研究了Folin-ciocalteu比色法测定桑叶中多酚含量的适宜条件。结果表明,桑叶提取液在Folin-ciocalteu试剂2.0 mL、20%Na2CO3溶液5.0 mL、反应温度30℃、反应时间2 h的条件下,测定其760 nm处的吸光值,多酚浓度在10.0~100.0 mg/L范围内与吸光值呈良好的线性关系;稳定性、精密度、重现性和回收率实验的相对标准偏差为0.2969%~2.502%。该法是一种简便、快速、准确测定桑叶多酚含量的可靠方法。  相似文献   

8.
红外线二氧化碳分析仪是测定植物光合作用和呼吸作用或其所处环境中二氧化碳浓度的常用仪器。测定过程中的气流通过分析仪时,需要一定的平衡时间才能得到一个稳定的读数,要想测出只有几十毫升的气体中的二氧化碳浓度变化非常困难。为此,我们参照Qop等人[‘]的方法,对测定  相似文献   

9.
空气CO2增高条件下荔枝叶片光合作用和超氧自由基产率   总被引:4,自引:4,他引:0  
研究结果表明,生长在77±5PaCO2分压下30d的荔枝幼树,其光合速率较大气CO2分压(39.3Pa)下的低23%,光下线粒体呼吸速率和不包含光下呼吸的CO2补偿点亦略有降低。空气CO2增高使叶片最大羧化速率(Vcmax)和最大电子传递速率(Jmax)降低,表明大气增高CO2分压下叶片的光I(PSI)能量水平较低,呈片超氧自由基产率亦降低39%,叶片感染荔枝霜疫霉病率则从生长在大气CO2分压下的1.8%增至9.5%,可能较低光合和呼吸代谢诱致较低的超氧自由基产率,而使叶片易受病害侵染。叶片受病害侵染后表现为超氧自由基的激增。在全球大气CO2分压增高趋势下须加强对荔枝霜疫霉病的控制。  相似文献   

10.
利用便携式光合气体分析系统 (LI 6 4 0 0 ) ,比较测定了高CO2 浓度 (FACE ,free airCO2 enrich ment)和普通空气CO2 浓度下生长的水稻叶片的净光合速率、水分利用率、表观量子效率和RuBP羧化效率等光合参数 .在各自生长CO2 浓度 (380vs 5 80 μmol·mol-1)下测定时 ,高CO2 浓度 (5 80 μmol·mol-1)下生长的水稻叶片的净光合速率、碳同化的表观量子效率和水分利用率明显高于普通空气 (380 μmol·mol-1)下生长的水稻叶片 .但是 ,随着FACE处理时间的延长 ,高CO2 浓度对净光合速率的促进作用逐渐减小 .在相同CO2 浓度下测定时 ,FACE条件下生长的水稻叶片净光合速率和羧化效率明显比普通空气下生长的对照低 .尽管高CO2 浓度下生长的水稻叶片的气孔导度明显低于普通空气中生长的水稻叶片 ,但两者胞间CO2 浓度差异不显著 ,因此高CO2 浓度下生长的水稻叶片光合下调似乎不是由气孔导度降低造成的 .  相似文献   

11.
首先介绍静态暗箱法 气相色谱法观测确定陆地生态系统地 气CO2 净交换通量的基本原理和方法 ,然后讨论在开放式空气CO2 增加 (FACE)试验中应用该原理和方法观测研究大气CO2 浓度升高对稻田生态系统 大气CO2 净交换通量的影响 .因缺乏必要参数的实际观测值 ,本文只能根据暗箱观测值计算CO2 净交换通量的最小取值NEEmin.NEEmin计算结果表明 ,在插秧 1个月之后的水稻生长期内 ,大气CO2浓度升高 2 0 0± 4 0 μmol·mol-1使稻田生态系统对大气CO2 的净吸收约为对照的 3倍 .为根据暗箱观测准确确定NEE ,还必须在FACE和对照条件下观测水稻植株的暗维持呼吸系数、地上生物量及根冠比动态 .  相似文献   

12.
计算一定体积气体的质量都要先修正到标准状态下的体积。红外CO_2分析仪(IRGA)测量空气中CO_2的vpm(μl·1~(-1))值换算成质量单位时也要作此修正。现把Plant Photosynthetic Production Manaal and Method一书中的有关部分(161页第3.12.2节,标题为CO_2交换速率的计算  相似文献   

13.
倍增CO2分压对水稻和矶子草冠层光合潜力的影响   总被引:3,自引:0,他引:3  
倍增CO2分压增高水稻的光饱和光合速率、表观量子产率和光能转换效率,而在倍增CO2分压下矶子草的相关光合参数降低,既水稻对高CO2分压表现为正响应,而矶子草在高CO2下光合作用下调。在倍增CO2分压下,水稻的Rubisco羧化速率和氧化速率均见增高,而矶子草在高CO2分压下,Rubisco羧化速率降低,而氧化速率略见增高。倍增CO2分压并不明显改变水稻的不包括光呼吸的CO2补偿点г^*,但矶子草г^*略见增高。在高CO2分压下可能改变矶子草Rubisco生化特性。倍增CO2分压降低两种供试植物的光下呼吸速率。水稻在倍增CO2分压下其Rubisco最大羧化速率(Vc max)和最大电子传递速率(Jmax)分别增高9.3%和20.7%,而矶子草在高CO2分压下则分别降低5.7%和3%。在倍增CO2分压下水稻的净光合量增高约5%,而矶子草则降低13%,植物种的不同特性可能影响植物在倍增CO2下的碳积累。随着全球气候变化和大气CO2,分压增高,将有利于发挥水稻高光合产率的优势,由于矶子草在高CO2分压下碳积累减少,从而可能限制其生长。大气CO2分压增高可能改变目前的水稻与杂草的生态关系而有利于控制杂草和改善田间耕作。  相似文献   

14.
当空气中CO_2浓度增至较高水平(5%)时,小麦叶片毫秒延迟发光(ms-DLE)显示出强烈的振荡。若再通入正常空气,DLE仍恢复到原有水平。当将空气中的CO2含量从无增加亚空气水平时,DLE下降但不伴随明显振荡,而继续增高CO2浓度会诱导振荡出现,该振荡随CO2浓度增高而加强。解联剂尼日利亚菌素可以消除CO2诱导的DLE振荡。  相似文献   

15.
大气CO2增加对陆地生态系统微量气体地-气交换的影响   总被引:5,自引:1,他引:4  
简要综述了近年来国内外在大气CO2浓度增加对微量气体交换影响方面的研究进展,首先介绍了有关大气CO2浓度增加的研究技术和方法,比较了目前两种常用技术开顶箱(OTC)和开放式空气CO2增加(FACE)方法的优缺点,然后着重阐述了用OTC和FACE研究陆地生态系统CH4、N2O、CO2等微量气体的地气交换对大气CO2浓度增加的响应,综合现有的资料表明,大气CO2浓度增加,会促进绿色植物生物量增加,同时改变生物质的C/N,降低有机质的分解速率,增强了陆地生态系统对大气CO2的固特作用;大气CO2浓度增加会提高产甲烷菌的活性和影响CH4的排放过程,有可能导致湿地生态系统CH4的排放增加;大气CO2浓度增加对N2O排放影响的研究较少,且尚无一致的结论;另外,对于其他微量气体,尚没有盯关研究报道,鉴于此,今后应加强大气CO2浓度增加的微量气体地气交换响应研究。  相似文献   

16.
土壤CO2浓度的动态观测、模拟和应用   总被引:3,自引:0,他引:3  
盛浩  罗莎  周萍  李腾毅  王娟  李洁 《应用生态学报》2012,23(10):2916-2922
土壤CO2浓度不仅是地上、地下生物活动的反映,其变化对未来大气CO2浓度和气候变化也有重要影响.本文综述了国内外土壤CO2浓度的原位测定方法及其优缺点,分析了不同时(昼夜、几天、季节、年际)空(剖面、立地、景观)尺度上土壤CO2浓度的变化规律和影响因素,概括了现有土壤CO2浓度的模拟模型和发展态势,并总结了土壤CO2浓度梯度法在土壤呼吸研究中的应用和限制因素.最后展望了未来有待研究的4个领域:1)研发适于恶劣土壤环境(如淹水、石质土)的土壤CO2气体采集、测定技术;2)探讨土壤CO2浓度对天气变化的响应及其调控机理;3)加强土壤CO2浓度空间异质性的研究;4)扩大通量梯度法在热带、亚热带土壤呼吸测定中的应用.  相似文献   

17.
柚树叶片CO2驯化的光合参数变化   总被引:3,自引:3,他引:0  
柚树(Citrus grandis)幼树生长在砂和磋石的生长介质,每周供给0.05mmol P(正常P,P)和0.1mmol P(高磷,2P)的营养液.植株分别生长在空气CO2分压(约39Pa)和倍增CO2分压(81±5Pa)下45d,利用CI-301PS(CID,Inc)光合作用测定系统在较高光强(1150μmol·m^-2·s^-1)下测定叶片光合速率并得出的Pn-Pi关系曲线和在较高CO2分压(PCO2,56Pa)下得出Pn-PAR关系曲线计算有关光合参数。结果表明,大气CO2分压下2P植株最大光合速率较P植株高13.3%,倍增CO2分压下,无论P或2P植株最大光合速率较大气CO2分压下相应植株低,但在倍增CO2分压下2P植株较P植株高,且2P植株有较P植株高的表观量子产率和光能利用效率(P<0.05),但并不改变г^*、Rd和Rubisco羧化速率(Vc)和氧速率的比率(P>0.05)在大气CO2分压下2P植株的Vcmax和Jmax较P植株分别高83%和12.5%,在倍增CO2分压下2P植株的Vcmax和Jmax均较P植株高,柚树在高CO2驯化中改变叶N在Rubisco和捕光组分分配系数,但不改变叶N在光合电子传递链的分配系数,结果表明,增加P供给可以促进高CO2分压下光合碳循环中P的周转,提高倍增CO2分压下植株的光合速率,调节柚树叶片的CO2驯化的光合参数。  相似文献   

18.
目的:对日立H7180、奥林帕斯Au640全自动生化分析仪校准周期的对比分析。方法:相同条件下,两生化分析仪进行定标校准后,每隔2小时测定高、中、低3种浓度的质控血清各一次直到24 h,后每间隔24 h测定一次,共测定30 d,检测项目均重复测定4次取平均值。从校准完成后开始计时到累积变异系数(CV)大于1/6 CLIA'88允许误差时终止,确定该项目的校准周期。通过绘制校准周期图获得两种全自动生化分析仪不同检测项目的校准周期,并对结果进行对比分析。结果:以碱性磷酸酶(ALP)为例绘制校准周期图,进行对比分析。各检测项目在日立H7180中,低水平质控CV最先达到校准要求,高水平质控CV最后达到校准要求;而在奥林帕斯Au640中,中水平质控CV最先达到校准要求,高水平质控CV最后达到校准要求。结论:日立H7180和奥林帕斯Au640全自动生化分析仪,其校准周期基本一致,个别项目存在差异。  相似文献   

19.
开顶式气室可精准控制大气CO2(或其它气体成分)的浓度,使之稳定在一个特定的水平,为研究未来大气CO2浓度升高(或其它气体成分变化)对植物一害虫一天敌之间相互关系的影响提供了条件。该装置由CO2气源、CO2浓度测控系统和气室3部分组成。气室又包括无色透明玻璃(2.5mm厚)室壁,正八边形的铁框架和中空底座,以及换气扇组成的通风系统4部分。能实现气室内CO2浓度的自动控制。经试验检测,气室内CO2浓度、温度、相对湿度等环境条件的水平分布和垂直分布都很均匀,与自然环境十分接近。该气室设计的结构合理,使用性能稳定,可广泛应用于大气特定成分变化对生态系统影响的研究。  相似文献   

20.
目的:制备Eudragit S100纳米颗粒。方法:采用超临界流体强化溶液分散(SEDS)法制备,考察了Eudragit S100浓度、超临界CO2流速、溶液流速、压力、温度对Eudragit S100纳米粒形貌和粒径的影响,并用场发射扫描式电子显微镜、激光粒度分析仪、差示扫描量热仪、傅里叶变换红外光谱仪对样品进行表征。结果:SEDS法可以制备球形的、粒径分布窄的Eudragit S100纳米粒,所得纳米粒的平均粒径在90~220 nm之间。降低Eudragit S100浓度和温度、升高压力有利于制备形貌好、粒径小的纳米粒;提高超临界CO2流速和降低溶液流速也有利于制备粒径小的纳米粒,但当超临界CO2流速升高至4 kg/h或溶液流速降低至0.5 ml/min时,纳米粒的产率较低。SEDS处理后Eudratit S100仍以无定形态存在,且SEDS过程没有对Eudratit S100的化学键造成破坏。结论:采用SEDS法可用于Eudragit S100纳米粒的制备,工艺简单可行。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号