首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fulfilling the promise of biotechnology   总被引:2,自引:0,他引:2  
Genetic engineering has produced pharmaceuticals, disease-resistant plants, cloned animals and research and industrial products. While the comparably mature field of medical biotechnology now reveals its true potential, marine biotechnology is still in the realm of the future. As we explore the earth for new sources of natural chemicals, we now search the waters. Myriad organisms, most unknown to us, live there. Many produce compounds that can be commercialized, or the organisms themselves may be commercialized, through genetic engineering methods. For decades, scientists studied the ocean depths searching for unique molecules and organisms. But not until the early 1980s was there a synthesis uniting marine natural products, ecology, aquaculture and bioremediation research under the heading of marine biotechnology. As harvesting enough products from marine sources to produce sufficient amounts, even for study, is nearly impossible, we need to use genomics techniques to identify biologically active compounds. As we damage our oceanic ecosystems through pollution, overfishing and destructive fishing methods, opportunities to learn more about marine organisms and their commercial potential may be limited. Although governments and intergovernmental agencies are committed to funding and expanding oceanic research, more funding is needed to discover and study the ocean's vast, unplumbed resources.  相似文献   

2.
Molecular biotechnology of marine algae in China   总被引:1,自引:0,他引:1  
Qin  Song  Jiang  Peng  Tseng  Cheng-Kui 《Hydrobiologia》2004,512(1-3):21-26
Molecular biotechnology of marine algae is referred to as the biotechnology on the identification, modification, production and utilization of marine algal molecules. It involves not only the manipulation of macromolecules such as DNA, RNA and proteins, but also deals with low molecular weight compounds such as secondary metabolites. In the last decade, molecular systematic researches to investigate the relationship and to examine the evolutionary divergence among Chinese marine algae have been carried out by Chinese scientists. For example, RAPD has been widely used in several laboratories to elucidate genetic variations of the reds, such as Porphyra, Gracilaria, Grateloupia and the greens such as Ulva and Enteromorpha. Some important data have been obtained. The study on molecular genetic markers for strain improvement is now in progress. In 1990s, genetic engineering of economic seaweeds such as Laminaria, Undaria, Porphyra, Gracilaria and Grateloupia has been studied in China. For Laminaria japonica, the successfully cultivated kelp in China, a model transformation system has been set up based on the application of plant genetic techniques and knowledge of the algal life history. Progress has been made recently in incorporating a vaccine gene into kelp genome. Evidence has been provided showing the expression of gene products as detectable vaccines. In the present paper, the progress of molecular biotechnological studies of marine algae in China, especially researches on elucidating and manipulating nucleic acids of marine algae, are reviewed.  相似文献   

3.
【背景】放线菌具有丰富的遗传和功能多样性,其次级代谢产物活性广泛,在临床医疗、农业生产和污染防治等领域都发挥着重要的作用。海洋放线菌由于其特殊的代谢途径,能产生独特的活性天然产物而受到广泛关注。【目的】探究国内外海洋放线菌领域研究的热点和趋势,为后续研究提供参考。【方法】以“marine actinomycetes or marine actinobacteria”为关键词,在Web of Science中检索海洋放线菌领域的文章进行计量分析,使用VOSviewer软件对其关键词、国家、机构、作者、发表时间进行可视化分析。【结果】海洋放线菌领域的文章发表数量总体呈逐年上升趋势,主要集中在微生物学及药学领域,中美两国在论文数量和引用频次上远超其他国家,海洋放线菌领域的研究集中在菌株的分离鉴定、活性天然产物挖掘以及生物信息学等方面。【结论】海洋放线菌在全球范围内愈发受到重视,国内外机构应当加强合作,运用生物信息学技术进一步挖掘活性次级代谢产物,推动海洋放线菌领域进一步发展。  相似文献   

4.
Thirty years ago, molecular genetics and industrial microbiology joined their hands in marriage. The event took place in Prague at the first Symposium on the Genetics of Industrial Microorganisms. My closing plenary lecture, titled “The Marriage of Genetics and Industrial Microbiology — After a long Engagement, a Bright Future,” dealt with industrial uses of mutants, the lack of success with genetic recombination, control of branched and unbranched pathways and thoughts about the future, e.g., identifying the biochemical sites of beneficial mutations, exploitation of recombination and genetic means to increase production of enzymes. It is quite amazing that the Symposium was held 3 years before the advent of recombinant DNA technology. This important meeting was followed in 1976 by the first Genetics and Molecular Biology of Industrial Microorganisms (GMBIM) meeting in Orlando, all of the six subsequent GMBIM meetings being held in Bloomington, Indiana. Today, thousands of biotechnology companies are in existence making great progress in the pharmaceutical and agricultural sectors. Hundreds of new genetically engineered compounds, produced in microbial, mammalian or insect cells, are in clinical trails and many are already being marketed. The field is booming with new technologies such as transgenic animals and plants, site-directed mutagenesis, combinatorial biosynthesis, gene therapy, antisense, abzymes, high-throughput screening, monoclonal antibodies, PCR and many more. Agricultural biotechnology has made great strides but unfortunately its progress is being delayed by political controversy. Journal of Industrial Microbiology & Biotechnology (2001) 27, 352–356. Received 26 January 2001/ Accepted in revised form 09 July 2001  相似文献   

5.

Biotechnologies are expected to have profound impacts across industrial and industrializing economies. One of the critical shaping influences on the development and use of these technologies will be the multiple social contests that have developed over their sustainability. For new technologies to become embedded in social, economic and institutional systems, processes of mutual adjustment must take place in both the technology and its social contexts. These adjustment processes tend to be complex and unpredictable, and their scale and scope reflect the anticipated significance of a new technology. I review the range of debates and contests about the impacts of biotechnology on environmental and social sustainability that will influence its development and diffusion. These contests are viewed as contingent, in that they are often framed by already established concerns and interests. In this sense, debates about biotechnology are primarily 'additive', rather than wholly novel.  相似文献   

6.
High-quality research in the field of marine biotechnology is one of the key-factors for successful innovation in exploiting the vast diversity of marine life. However, fascinating scientific research with promising results and claims on promising potential applications (e.g. for pharmaceuticals, nutritional supplements, (feed-)products for aquaculture and bioremediation solutions) is not the only factor to realise the commercial applications of marine biotechnology. What else is needed to exploit the promising potential of marine biotechnology and to create new industrial possibilities? In the study project 'Ocean Farming-Sustainable exploitation of marine organisms', we explore the possibilities of marine organisms to fulfill needs, such as safe and healthy food, industrial (raw) materials and renewable energy in a sustainable way. One of the three design groups is envisioning the future of strong land-based 'marine' market chains. Marine biotechnology is one of the foci of attention in this design group. This article provides a model of future-oriented thinking in which a variety of experts actively participate.  相似文献   

7.

Modern biotechnology has been characterized by being surrounded by scientific and public debate and by interest conflicts. An early Danish debate and regulation has been criticized for inhibiting or retarding development and thus growth. Though much regulation and debate have been transferred to the European arena, their role and extension are still an issue. In this paper, the often anticipated innovation-inhibiting effects of regulation are questioned by giving an account of regulations and debates in Denmark. An account which includes the shifting positions of industry, the research community, environmental groups, regulators and other interest groups. The paper indicates that the regulatory measures, introduced as a response to public and interest group critique, have generally reduced industrial uncertainty and promoted industrial Danish biotechnology development. It is further found that regulation and debate changed the rate and direction of new biotechnology development, contributing to technology acceptance, without however ensuring it. The paper thus questions the caricatured assumptions in economics and industrial policy that regulation restrict techno-economic growth. The paper further states regulation and controversies to have contributed actively to the specific technology development, but also states the difficulties in setting radically different technology development agendas.  相似文献   

8.
ABSTRACT

The genus Gluconobacter comprises some of the most frequently used microorganisms when it comes to biotechnological applications. Not only has it been involved in “historical” production processes, such as vinegar production, but in the last decades many bioconversion routes for special and rare sugars involving Gluconobacter have been developed. Among the most recent are the biotransformations involved in the production of L-ribose and miglitol, both very promising pharmaceutical lead molecules. Most of these processes make use of Gluconobacter's membrane-bound polyol dehydrogenases. However, recently other enzymes have also caught the eye of industrial biotechnology. Among them are dextran dextrinase, capable of transglucosylating substrate molecules, and intracellular NAD-dependent polyol dehydrogenases, of interest for co-enzyme regeneration. As such, Gluconobacter is an important industrial microbial strain, but it also finds use in other fields of biotechnology, such as biosensor-technology. This review aims to give an overview of the myriad of applications for Gluconobacter, with a special focus on some recent developments.  相似文献   

9.

This paper presents quantified estimates of the prospective impacts on the UK economy over 2000-05 of the development of biotechnology. The study has proceeded by identifying the key effects that we expect biotechnology to have, determining on the basis of logic and economic theory the qualitative character of the expected economic consequences, constructing scenarios within the Cambridge Multisectoral Dynamic Model of the UK economy to represent these effects and examining and interpreting the consequences revealed by the model's results. Biotechnology is still at such an early stage that attention is mainly focussed on the impact of biotechnology production, rather than diffusion. The industrial application of biotechnology in relation to the overall economy is likely to remain modest through to 2005, but will probably be greater in the longer term as the producing sectors grow in importance and as the technology becomes more pervasive.  相似文献   

10.
In recent years, the genus Clostridium has risen to the forefront of both medical biotechnology and industrial biotechnology owing to its potential in applications as diverse as anticancer therapy and production of commodity chemicals and biofuels. The prevalence of hyper-virulent strains of C. difficile within medical institutions has also led to a global epidemic that demands a more thorough understanding of clostridial genetics, physiology, and pathogenicity. Unfortunately, Clostridium suffers from a lack of sophisticated genetic tools and techniques which has hindered the biotechnological exploitation of this important bacterial genus. This review provides a comprehensive summary of biotechnological progress made in clostridial genetic tool development, while also aiming to serve as a technical guide for the advancement of underdeveloped clostridial strains, including recalcitrant species, novel environmental samples, and non-type strains. Relevant strain engineering techniques, from genome sequencing and establishment of a gene transfer methodology through to deployment of advanced genome editing procedures, are discussed in detail to provide a blueprint for future clostridial strain construction endeavors. It is expected that a more thorough and rounded-out genetic toolkit available for use in the clostridia will bring about the construction of superior bioprocessing strains and a more complete understanding of clostridial genetics, physiology, and pathogenicity.  相似文献   

11.
For some years students of science and industry have been predicting the pervasive impact of biotechnology on the health care industry. Much has been discussed about the role biotechnology will play in industrial process, diagnostics, and pharmaceutical products. This review examines two branches of biotechnology which are emerging in the in-vitro diagnostics arena which are likely to bear edible fruit in the current decade—monoclonal antibodies and DNA probes.  相似文献   

12.
During the last decade, the demand for economical and sustainable bioprocesses replacing petrochemical-derived products has significantly increased. Rhamnolipids are interesting biosurfactants that might possess a broad industrial application range. However, despite of 60 years of research in the area of rhamnolipid production, the economic feasibility of these glycolipids is pending. Although the biosynthesis and regulatory network are in a big part known, the actual incidents on the cellular and process level during bioreactor cultivation are not mastered. Traditional engineering by random and targeted genetic alteration, process design, and recombinant strategies did not succeed by now. For enhanced process development, there is an urgent need of in-depth information about the rhamnolipid production regulation during bioreactor cultivation to design knowledge-based genetic and process engineering strategies. Rhamnolipids are structurally comparable, simple secondary metabolites and thus have the potential to become instrumental in future secondary metabolite engineering by systems biotechnology. This review summarizes current knowledge about the regulatory and metabolic network of rhamnolipid synthesis and discusses traditional and advanced engineering strategies performed for rhamnolipid production improvement focusing on Pseudomonas aeruginosa. Finally, the opportunities of applying the systems biotechnology toolbox on the whole-cell biocatalyst and bioprocess level for further rhamnolipid production optimization are discussed.  相似文献   

13.
Despite the economic and sanitary problems caused by harmful biofilms, biofilms are nonetheless used empirically in industrial environmental and bioremediation processes and may be of potential use in medical settings for interfering with pathogen development. Escherichia coli is one of the bacteria with which biofilm formation has been studied in great detail, and it is especially appreciated for biotechnology applications because of its genetic amenability. Here we describe the development of two new genetic tools enabling the constitutive and inducible expression of any gene or operon of interest at its native locus. In addition to providing valuable tools for complementation and overexpression experiments, these two compact genetic cassettes were used to modulate the biofilm formation capacities of E. coli by taking control of two biofilm-promoting factors, autotransported antigen 43 adhesin and the bscABZC cellulose operon. The modulation of the biofilm formation capacities of E. coli or those of other bacteria capable of being genetically manipulated may be of use both for reducing and for improving the impact of biofilms in a number of industrial and medical applications.  相似文献   

14.
Abstract

The budding yeast Saccharomyces cerevisiae is now widely used as a model organism in the study of gene structure, function, and regulation in addition to its more traditional use as a workhorse of the brewing and baking industries. In this article the plethora of methods available for manipulating the genome of S. cerevisiae are reviewed. This will include a discussion of methods for manipulating individual genes and whole chromosomes, and will address both classic genetic and recombinant DNA-based methods. Furthermore, a critical evaluation of the various genetic strategies for genetically manipulating this simple eukaryote will be included, highlighting the requirements of both the new and the more traditional biotechnology industries.  相似文献   

15.
Abstract

This paper is concerned with representations of the human genome and medical applications of modern biotechnology in Finnish television news. The main focus is on the way that news stories are framed by various linguistic and visual means and on how scientists appearing in the news are positioned. The qualitative analysis shows that in the national frame, biotechnology was treated as a field with great future promise, weighing the prospects of Finnish scientists to succeed in international competition. In the disease frame, the focus was on the achievements of genetic research in the treatment of serious diseases. In the breakthrough frame, it was predicted that genetics will revolutionise the treatment of diseases in ‘the near future’. Finally, news stories presented in the threat frame were mainly concerned to predict and avert problems arising from the potential abuse of genetic research. The analysis suggests that these frames implied certain speaking positions to the scientists appearing in the news stories.  相似文献   

16.
17.
Abstract

Arguably, the richest source of knowledge (as opposed to fact and data collections) about biology and biotechnology is captured in natural-language documents such as technical reports, conference proceedings and research articles. The automatic exploitation of this rich knowledge base for decision making, hypothesis management (generation and testing) and knowledge discovery constitutes a formidable challenge. Recently, a set of technologies collectively referred to as knowledge discovery in text (KDT) has been advocated as a promising approach to tackle this challenge. KDT comprises three main tasks: information retrieval, information extraction and text mining. These tasks are the focus of much recent scientific research and many algorithms have been developed and applied to documents and text in biology and biotechnology. This article introduces the basic concepts of KDT, provides an overview of some of these efforts in the field of bioscience and biotechnology, and presents a framework of commonly used techniques for evaluating KDT methods, tools and systems.  相似文献   

18.
MotivationStreptomyces is one of the best-studied genera of the order Actinomycetales due to its great importance in medical science, ecology and the biotechnology industry. A comprehensive, detailed and robust phylogeny of Streptomyces and its relatives is needed for understanding how this group emerged and maintained such a vast diversity throughout evolution and how soil-living mycelial forms (e.g., Streptomyces s. str.) are related to parasitic, unicellular pathogens (e.g., Mycobacterium tuberculosis) or marine species (e.g., Salinispora tropica). The most important application area of such a phylogenetic analysis will be in the comparative re-annotation of genome sequences and the reconstruction of Streptomyces metabolic networks for biotechnology.MethodsClassical 16S-rRNA-based phylogenetic reconstruction does not guarantee to produce well-resolved robust trees that reflect the overall relationship between bacterial species with widespread horizontal gene transfer. In our study we therefore combine three whole genome-based phylogenies with eight different, highly informative single-gene phylogenies to determine a new robust consensus tree of 45 Actinomycetales species with completely sequenced genomes.ResultsNone of the individual methods achieved a resolved phylogeny of Streptomyces and its relatives. Single-gene approaches failed to yield a detailed phylogeny; even though the single trees are in good agreement among each other, they show very low resolution of inner branches. The three whole genome-based methods improve resolution considerably. Only by combining the phylogenies from single gene-based and genome-based approaches we finally obtained a consensus tree with well-resolved branches for the entire set of Actinomycetales species. This phylogenetic information is stable and informative enough for application to the system-wide comparative modeling of bacterial physiology.  相似文献   

19.
Abstract

Associated microorganisms have been described in numerous marine sponges. Their metabolic activity, however, has not yet been investigated in situ. We quantified for the first time microbial processes in a living sponge. Sulfate reduction rates of up to 1200 nmol cm?3d?1 were measured in the cold-water bacteriosponge Geodia barretti . Oxygen profiles and chemical analysis of sponge tissue and canal water revealed steep oxygen gradients and a rapid turnover of oxygen and sulfide, dependent on the pumping activity of the sponge. Identification of the microbial community with fluorescently labelled oligonucleotide probes (FISH) indicates the presence of sulfate-reducing bacteria belonging to the Desulfoarculus/Desulfomonile/Syntrophus -cluster in the choanosome of this sponge. Analysis of lipid biomarkers indicates biomass transfer from associated sulfate-reducing bacteria or other anaerobic microbes to sponge cells. These results show the presence of an anoxic micro-ecosystem in the sponge G. barretti, and imply mutualistic interactions between sponge cells and anaerobic microbes. Understanding the importance of anaerobic processes within the sponge/microbe system may help to answer unsolved questions in sponge ecology and biotechnology.  相似文献   

20.
冯璨  马香  刘柱  李宏  李娟娟  彭欣  唐燕琼 《微生物学通报》2022,49(10):4291-4304
【背景】微生物蛋白酶在工业生物技术上具有广阔的应用前景。在微生物蛋白酶中,碱性蛋白酶占全球酶总产量的50%以上,获取产碱性蛋白酶的新微生物资源意义重要。【目的】在海南近海贝类养殖基地海泥中筛选获得高产碱性蛋白酶的菌株,对其生长特性进行探究并优化菌株产酶条件,获得新的蛋白酶生产资源。【方法】以酪素培养基为筛选培养基,采用形态学结合系统发育分析鉴定菌株,通过响应面实验优化菌株的产酶条件。【结果】筛选获得一株高产碱性蛋白酶的菌株F3,鉴定为粘质沙雷氏菌(Serratia marcescens)。菌株在最优产酶条件下发酵酶活达到(339.36±4.30) U/mL。【结论】筛选获得的菌株粘质沙雷氏菌F3有较好的产碱性蛋白酶的能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号