首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A stromal cell clone, ST2, which can support both myelopoiesis and B lymphopoiesis of adult bone marrow was used as an in vitro microenvironment for investigating the ontogeny of the B cell progenitor in murine embryos. The B cell progenitor clonable on an ST2 layer first become detectable in the embryonal body rather than in the yolk sac around day 9.5 of gestation. As soon as it develops in the embryo, it enters the blood circulation and becomes detectable both in the developing fetal liver and the yolk sac of the 10 day embryo. On the other hand, mast cell and polymorphonuclear cell progenitors, which are also generated on the ST2 layer, develop first in the yolk sac and migrate to the fetal liver around day 10-11 of gestation. At the late stage of embryonal development, day 15-16 of gestation, the B cell progenitor enters the femur as vascularization of the femur starts. These results suggest that the localization of the committed stem cells for various hemopoietic cell lineages differs in the early embryo, although the localization of the pluripotent stem cells is yet to be determined.  相似文献   

2.
Summary The present investigations have been concerned with factors which determine and influence the localization and development of hemopoietic bone marrow in the embryo mouse and the adult. These studies, which have employed organ cultures and the transplantation of mouse embryo femur and tail rudiments, indicate that the surrounding mesenchyme is required for the normal development of the cartilage rudiment and its ossification, and for the formation and colonization of the marrow cavity. It was suggested that hemopoiesis results from the colonization of the “prepared” marrow cavity by stem cells arising from sources external to the rudiment. The addition of erythropoietin and L-thyroxine produced distinct erythropoietic differentiation in the normally myelocytic embryonic marrow cavity. The significance of the microenvironment present in developing bone rudiments and the initiation of hemopoiesis in stem cells was discussed. A hypothesis was developed to explain marrow localization in adults based on the colonization of bone rudiments which are developing their marrow sites at a time when the blood contains large numbers of colony-forming units.  相似文献   

3.
Stem cell biology is one of the most exciting, controversial, and debated fields in science today. It has been suggested that neuronal replacement therapy using stem cell transplants may be one possible answer to a host of neuropathological disorders including spinal cord injury, stroke, and neurodegenerative diseases. Important sources for stem cells include the developing embryo and adult central nervous system, but will these populations of cells exhibit similar behavior and responses to stimuli? This review will discuss some important similarities and differences between the embryonic and adult stem cell, as well as the basis for developing therapeutic approaches for stem cell replacement.  相似文献   

4.
Since the first successful cord blood transplant was performed in 1988 there has been a gradual increase in the use of cord blood for hemopoietic stem cell transplantation. Worldwide, over 8,000 unrelated cord blood transplants have been performed with the majority being for children with hemopoietic malignancies. Transplantation for adults has increased but is limited by the low number of nucleated cells and CD34(+) cells within a single cord blood collection. Cord blood hemopoietic stem cells are more primitive than their adult counterparts and have high proliferative potential. Cord blood ex vivo expansion is designed to improve transplant outcomes by increasing the number of hemopoietic stem cells with long term repopulating potential and their differentiated progeny. However, despite a large amount of research activity during the last decade, this aim has not been realized. Herein we discuss the rationale for this approach; culture methods for ex vivo expansion, ways to assess the functional capacity of ex vivo generated hemopoietic stem cells and clinical outcomes following transplantation with ex vivo expanded cord blood.  相似文献   

5.
6.
Colony-forming cells (CFU), which have the general properties of hemopoietic “stem” cells, appear to be augmented in the mouse fetal liver from 12–18 days gestation and then decrease in the newborn. This finding suggests that few, if any, hemopoietic “stem” cells remain in the adult liver, an organ which appears to be unable to function erythropoietically, even at times of severe crises. In the spleen, and active adult as well as embryonic hematopoietic organ, the total number of CFU increases from 18 days gestation until at least 7 days after birth. Spleen and liver CFU augmentation seems to occur in cojunction with an analogous expansion of non-hematopoietic cells. The data suggests, in fact, that while there is an increase in the total number of liver CFU, there is also a dilution of liver CFU in the total cell population at successively later gestational ages.  相似文献   

7.
Developments in modern hematology.   总被引:1,自引:0,他引:1  
In the past 40 years our concepts about hemopoiesis have been changed dramatically. The results of bone marrow transplantation into lethally irradiated mice since the mid-fifties suggested the existence of a hemopoietic stem cell, which was initially identified as a spleen colony forming cell (CFU-S). Later experiments showed that the stem cell compartment is rather heterogeneous and that the most primitive stem cell, unlike the CFU-S, has the ability for long-term engraftment of an irradiated recipient. Daughter cells of such primitive quiescent stem cells lose their capacity for self-generation gradually with each mitosis and become more and more committed to a specific differentiation lineage. In vitro culture techniques in a serum-free semi-solid medium enabled the establishment and analysis of specific hemopoietic growth factors. Such factors, which are essential for the maintenance, proliferation and differentiation of progenitor cells and the functional activity of mature cells can now be produced with recombinant DNA techniques in pure form and large quantities. Hemopoiesis requires an appropriate microenvironment, consisting of various stromal cell types and an extracellular matrix. Intercellular contacts, adhesion of cells and growth factors to the matrix molecules seem essential in the regulating action of this hemopoietic microenvironment. In long-term bone marrow cultures the development of a stromal hemopoietic microenvironment can facilitate long-term maintenance of stem cells and hemopoietic differentiation. For bone marrow transplantation and infusion of hemopoietic growth factors many clinical indications are well established and our possibilities to interfere in the regulation of hemopoiesis are still growing.  相似文献   

8.
9.
Hemopoietic stem and progenitor cells from different sources differ in radiosensitivity. Recently, we have demonstrated that the multinucleated cell responsible for bone resorption and marrow cavity formation, the osteoclast, is in fact of hemopoietic lineage. In this investigation we have studied the radiosensitivity of osteoclast formation from two different hemopoietic tissues: fetal liver and adult bone marrow. Development of osteoclasts from hemopoietic progenitors was induced by coculture of hemopoietic cell populations with fetal mouse long bones depleted of their own osteoclast precursor pool. During culture, osteoclasts developed from the exogenous cell population and invaded the calcified hypertrophic cartilage of the long bone model, thereby giving rise to the formation of a primitive marrow cavity. To analyze the radiosensitivity of osteoclast formation, either the hemopoietic cells or the bone rudiments were irradiated before coculture. Fetal liver cells were found to be less radiosensitive than bone marrow cells. The D0, Dq values and extrapolation numbers were 1.69 Gy, 5.30 Gy, and 24.40 for fetal liver cells and 1.01 Gy, 1.85 Gy, and 6.02 for bone marrow cells. Irradiation of the (pre)osteoclast-free long bone rudiments instead of the hemopoietic sources resulted in a significant inhibition of osteoclast formation at doses of 4 Gy or more. This indirect effect appeared to be more prominent in the cocultures with fetal than with adult hemopoietic cells. Furthermore, radiation doses of 8.0-10.0 Gy indirectly affected the appearance of other cell types (e.g., granulocytes) in the newly formed but underdeveloped marrow cavity. The results indicate that osteoclast progenitors from different hemopoietic sources exhibit a distinct sensitivity to ionizing irradiation. Radiation injury to long bone rudiments disturbs the osteoclast-forming capacity as well as the hemopoietic microenvironment.  相似文献   

10.
Our previous investigations in 3- to 4-day avian chimeras have revealed that the wall of the aorta is a site from which hemopoietic stem cells can be obtained. In the present work using an in vitro clonal assay, we searched for cells with monocytic potentiality in this location as well as in the remainder of the embryo's body. In each experimental series thoracic segments from 30 chick embryo aortae were dissociated by a pancreatin treatment and plated in agar medium containing chicken serum and fibroblast-conditioned medium. Eighty to 620 macrophage colonies developed when 50,000 cells from 4-day aortae were plated, somewhat fewer when 3-day cells were plated (19-110). By contrast no progenitors were detected when cells were plated from 3- or 4-day embryos after their aorta had been removed. The cell composition and morphology of colonies deriving from aorta cells, their growth requirement and kinetics of development were identical to these of colonies deriving from young chicken bone marrow cells, cultured in the same conditions. The presence of macrophage progenitors in the wall of the 3- or 4-day embryo aorta and their absence in the rest of the embryo argues for a specific role of that region in embryonic hemopoiesis, namely that this is the location where intraembryonic hemopoietic stem cells emerge from the mesoderm at that period of development.  相似文献   

11.
Early in development, one X‐chromosome in each cell of the female embryo is inactivated. Knowing the number of certain human tissue cells at the time of X‐inactivation can improve our understanding of certain diseases such as cancer or genetic disorders as well as cellular development. However, the moment of X‐inactivation in humans is difficult to observe directly. In this study, we developed a mathematical model using branching processes and asymptotic normal approximation that will more accurately determine a relationship between the number of cells at X‐inactivation with the proportion of one allele found in normal heterozygous adult females. We then conducted computer simulations to show the adequacy of this model. Finally, this model was used to more accurately estimate the number of hemopoietic stem cells at X‐inactivation using a real life data set.  相似文献   

12.
The difficulties associated with studying molecular mechanisms important in hemopoietic stem cell (HSC) function such as the problems of purifying homogeneous stem cell populations, have prompted us to adapt the murine ES cell system as an in vitro model of HSC generation and function. We now report that careful analysis of the time course of HSC generation in differentiating ES cells allows them to be used as a source of known and novel hemopoietic gene products. We have generated a subtracted library using cDNA from ES cells collected just prior to and just following the emergence of HSCs. Analysis of this library shows it to be a rich source of known hemopoietic and hemopoietic related gene products with 44% of identifiable cDNAs falling into these camps. We have demonstrated the value of this system as a source of novel genes of relevance to HSC function by characterizing a novel membrane protein encoding cDNA that is preferentially expressed in primitive hemopoietic cells. Intriguingly, further analysis of the known components of the subtracted library is suggestive of erythroid preconditioning of the ES cell-derived HSC. We have used dot-blot and in situ analysis to indicate that this erythroid preconditioning is probably restricted to primitive but not definitive HSC.  相似文献   

13.
A concept of hemopoietic regulation and its biomathematical realization   总被引:3,自引:0,他引:3  
Although the amount of experimental data on the behavior of the hemopoietic system after various perturbations is considerable, a conclusive understanding of hemopoietic regulation is still absent. In the last years, we have examined murine erythropoiesis, thrombopoiesis, granulopoiesis, and stem cell hemopoiesis by means of mathematical modeling in order to identify some of the underlying principles. Our results can be summarized in four hypotheses. 1) The regulation of hemopoiesis is governed by three interrelated control loops: autoregulation of stem cells, feedback from progenitors and precursors to the stem cells, and feedback from mature cells to progenitor and precursor cells. 2) The feedback from mature cells to the progenitor and precursor cells predominantly varies the number of cell divisions taking place during hemopoietic maturation. 3) Two distinct properties of the stem cells are regulated: their cyclic activity and their self-renewal. Both are under the control of stem cell autoregulation and the feedback from progenitors and precursors. 4) A large variance in the maturation time from the stem cells to the mature cells stabilizes the hemopoietic control. The mathematical formulation of these assumptions allows us to understand a broad range of experimental observations including recovery from stem cell damage, hypoproliferative and hyperproliferative situations, and interactions between different cell lines.  相似文献   

14.
Delayed immune reconstitution in adult recipients of allogeneic hemopoietic stem cell transplantations (HSCT) is related to age-induced thymic atrophy. Overcoming this paucity of T cell function is a major goal of clinical research but in the context of allogeneic transplants, any strategy must not exacerbate graft-vs-host disease (GVHD) yet ideally retain graft-vs-tumor (GVT) effects. We have shown sex steroid ablation reverses thymic atrophy and enhances T cell recovery in aged animals and in congenic bone marrow (BM) transplant but the latter does not have the complications of allogeneic T cell reactivity. We have examined whether sex steroid ablation promoted hemopoietic and T cell recovery following allogeneic HSCT and whether this benefit was negated by enhanced GVHD. BM and thymic cell numbers were significantly increased at 14 and 28 days after HSCT in castrated mice compared with sham-castrated controls. In the thymus, the numbers of donor-derived thymocytes and dendritic cells were significantly increased after HSCT and castration; donor-derived BM precursors and developing B cells were also significantly increased. Importantly, despite restoring T cell function, sex steroid inhibition did not exacerbate the development of GVHD or ameliorate GVT activity. Finally, IL-7 treatment in combination with castration had an additive effect on thymic cellularity following HSCT. These results indicate that sex steroid ablation can profoundly enhance thymic and hemopoietic recovery following allogeneic HSCT without increasing GVHD and maintaining GVT.  相似文献   

15.
Neuronal death during nervous system development, a widely observed phenomenon, occurs through unknown mechanisms. Recent evidence suggests an active, destructive process requiring new gene expression. Sulfated glycoprotein-2 (SGP-2), a secretory product of testicular Sertoli cells has been shown to up-regulate in several nonneural tissues undergoing programmed cell death and in several types of neuronal degeneration. In order to determine if this message up-regulates in neurons undergoing developmentally determined cell death, we have studied the expression of SGP-2 mRNA in the developing and adult rat central nervous system (CNS) with in situ hybridization. We also report on the expression of this message in nonneural tissues from several regions of the developing embryo. The developing and adult rat central nervous system as well as widely varied tissues in the rat embryo express SGP-2 mRNA in a pattern that does not correlate with regions undergoing developmental cell death. In the nervous system, SGP-2 mRNA is expressed in neuronal populations including motor neurons, cortical neurons, and hypothalamic neurons at ages when the period of developmental cell death has passed. In a nonneural tissue (palatal shelve epithelium) for which a developmental cell death period has been described, SGP-2 mRNA was not present in the region where cell death occurs. We conclude that SGP-2 mRNA expression cannot be correlated with programmed cell death in neural or nonneural tissues. The results of this study as well as recently reported SGP-2 homologies indicate a possible role for this protein in secretion and lipid transport.  相似文献   

16.
Adult mouse hemopoietic stem cells (HSCs) are typically quiescent and enter and progress through the cell cycle rarely in steady-state bone marrow, but their rate of proliferation can be dramatically enhanced on demand. We have studied the cell cycle kinetics of HSCs in the developing fetal liver at a stage when they expand extensively. Despite that 100% of fetal liver HSCs divide within a 48-h period, their average cell cycle transit time (10.6 h) is twice that of their downstream progenitors, translating into a prolonged G(1) transit and a period of relative quiescence (G(0)). In agreement with their prolonged G(1) transit when compared with hemopoietic progenitors, competitive transplantation experiments demonstrate that fetal HSCs are highly enriched in G(1) but also functional in S-G(2)-M. This observation combined with experimental data demonstrating that adult HSCs forced to expand ex vivo also sustain a uniquely prolonged cell cycle and G(1) transit, demonstrate at least in part why purified HSCs at any state of development or condition are highly enriched in the G(0)-G(1) phases of the cell cycle. We propose that a uniquely prolonged cell cycle transit is a defining stem cell property, likely to be critical for their maintenance and self-renewal throughout development.  相似文献   

17.
Characterization of thymic progenitors in adult mouse bone marrow   总被引:5,自引:0,他引:5  
Thymic cellularity is maintained throughout life by progenitor cells originating in the bone marrow. In this study, we describe adult mouse bone cells that exhibit several features characteristic of prothymocytes. These include 1) rapid thymic engraftment kinetics following i.v. transplantation, 2) dramatic expansion of thymic progeny, and 3) limited production of hemopoietic progeny other than thymocytes. The adult mouse bone marrow population that is depleted of cells expressing any of a panel of lineage-specific Ags, stem cell Ag-1 positive, and not expressing the Thy1.1 Ag (Thy1.1(-)) (Thy1.1(-) progenitors) can repopulate the thymus 9 days more rapidly than can hemopoietic stem cells, a rate of thymic repopulation approaching that observed with transplanted thymocytes. Additionally, Thy1.1(-) progenitors expand prolifically to generate thymocyte progeny comparable in absolute numbers to those observed from parallel hemopoietic stem cell transplants, and provide a source of progenitors that spans multiple waves of thymic seeding. Nevertheless, the Thy1.1(-) population yields relatively few B cells and rare myeloid progeny posttransplant. These observations describe the phenotype of an adult mouse bone marrow population highly enriched for rapidly engrafting, long-term thymocyte progenitors. Furthermore, they note disparity in B and T cell expansion from this lymphoid progenitor population and suggest that it contains the progenitor primarily responsible for seeding the thymus throughout life.  相似文献   

18.
A review of one of the key problems of experimental hematology: the origin of hemopoietic stem cells in the development of vertebrates (amphibians, birds, and mammals). The appearance and functioning of two independent sources of hemopoietic stem cells (extra- and intraembryonic) were considered in amphibians, birds, and mammals. The contribution of each source to the formation of definitive hemopoietic tissue was analyzed. It was shown for amphibians and birds that intraembryonic organs such as the dorsolateral plate and the mesenchyme of dorsal aorta are involved in the formation of adult hemopoietic tissue, while the extraembryonic organs such as ventral islets and the yolk sac are devoid of true stem cells and provide only for the primary, transient hemopoiesis. New data have been considered concerning the previously unknown intraembryonic hemopoietic organ in mammals, a region of aorta–gonad–mesonephros arising in embryogenesis simultaneously with the yolk sac. Two extreme views on the involvement of stem cells of all these organs in the formation of definitive hemopoiesis have been considered. The data are provided on the interaction of the embryonic hemopoietic stem cells and the hemopoietic microenvironment of adult recipients.  相似文献   

19.
Integrin alphaIIb is a cell adhesion molecule expressed in association with beta3 by cells of the megakaryocytic lineage, from committed progenitors to platelets. While it is clear that lymphohemopoietic cells differentiating along other lineages do not express this molecule, it has been questioned whether mammalian hemopoietic stem cells (HSC) and various progenitor cells express it. In this study, we detected alphaIIb expression in midgestation embryo in sites of HSC generation, such as the yolk sac blood islands and the hemopoietic clusters lining the walls of the major arteries, and in sites of HSC migration, such as the fetal liver. Since c-Kit, which plays an essential role in the early stages of hemopoiesis, is expressed by HSC, we studied the expression of the alphaIIb antigen in the c-Kit-positive population from fetal liver and adult bone marrow differentiating in vitro and in vivo into erythromyeloid and lymphocyte lineages. Erythroid and myeloid progenitor activities were found in vitro in the c-Kit(+)alphaIIb(+) cell populations from both origins. On the other hand, a T cell developmental potential has never been considered for c-Kit(+)alphaIIb(+) progenitors, except in the avian model. Using organ cultures of embryonic thymus followed by grafting into athymic nude recipients, we demonstrate herein that populations from murine fetal liver and adult bone marrow contain T lymphocyte progenitors. Migration and maturation of T cells occurred, as shown by the development of both CD4(+)CD8- and CD4-CD8(+) peripheral T cells. Multilineage differentiation, including the B lymphoid lineage, of c-Kit(+)alphaIIb(+) progenitor cells was also shown in vivo in an assay using lethally irradiated congenic recipients. Taken together, these data demonstrate that murine c-Kit(+)alphaIIb(+) progenitor cells have several lineage potentialities since erythroid, myeloid, and lymphoid lineages can be generated.  相似文献   

20.
Knockout studies have shown that the polycomb gene Bmi-1 is important for postnatal, but not embryonic, neural stem cell (NSC) self-renewal and have identified the cell-cycle inhibitors p16/p19 as molecular targets. Here, using lentiviral-delivered shRNAs in vitro and in vivo, we determined that Bmi-1 is also important for NSC self-renewal in the embryo. We found that neural progenitors depend increasingly on Bmi-1 for proliferation as development proceeds from embryonic through adult stages. Acute shRNA-mediated Bmi-1 reduction causes defects in embryonic and adult NSC proliferation and self-renewal that, unexpectedly, are mediated by a different cell-cycle inhibitor, p21. Gene array analyses revealed developmental differences in Bmi-1-controlled expression of genes in the p21-Rb cell cycle regulatory pathway. Our data therefore implicate p21 as an important Bmi-1 target in NSCs, potentially with stage-related differences. Understanding stage-related mechanisms underlying NSC self-renewal has important implications for development of stem cell-based therapies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号