首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Significant genetic variation in leaf photosynthetic rate has been reported in grain sorghum [Sorghum biocolor (L.) Moench]. The relationships between leaf photosynthetic rates and total biomass production and grain yield remain to be established and formed the purpose of this experiment. Twenty two grain sorghum parent lines were tested in the field during the 1988 growing season under well-watered and water-limited conditions. Net carbon assimilation rates were measured at mid-day during the 30 day period from panicle initiation to head exertion on upper-most fully expanded leaves using a portable photosynthesis system (LI-6200). Total biomass and grain production were determined at physiological maturity. The lines exhibited significant genetic variation in leaf photosynthetic rate, total biomass production and grain yield. Significant positive correlations existed between leaf photosynthesis and total biomass and grain production under both well-watered and water-limited conditions. The results suggest that leaf photosynthetic rate measured prior to flowering is a good indicator of productivity in grain sorghum.  相似文献   

2.
Two cultivars of spring wheat (Triticum aestivum L.) were grown to maturity in hydroponic cultures. Nitrogen accumulation was controlled by daily growth-limiting additions of nitrate together with all other nutrients in excess. Six different curves of N accumulation were used, with the same relative changes from day to day, but with different amplitudes. These curves were obtained by using the same mathematic formula of the N accumulation curves but varying the value of initial N content. The total amount of nitrogen added varied from 20 mg plant(-1) to 65 mg plant(-1). Plant bioproductivity showed a linear response to accumulated N. The number of grains per plant increased linearly with increased N availability whereas grain weights were essentially unaffected. Grain N concentrations and N content varied slightly, with highest values generally at the lower N availability levels. The quantitatively most important response to increased N availability was an increased number of earbearing tillers per plant. This varied from 0.1 tiller plant(-1) at maturity when given 20 mg N plant(-1), up to about 2 tillers plant(-1) when given 65 mg N plant(-1). Not all tillers that were initiated developed ears. The reduction of tillers seems to be one important mechanism in adapting plant productivity to N availability. Other individual characters influenced by N availability were straw height and the number of spikelets per spike. The two cultivars behaved in a qualitatively similar manner over the range of N availability even though they quantitatively differed in grain size, N concentrations and yield.  相似文献   

3.
Sixteen rice ( Oryza sativa L.) cultivars from 7 different geographical regions were grown in greenhouses at the Univ. of Maryland with and without supplemental ultraviolet-B (UV-B) radiation to determine alterations in biomass, morphology and maximum photosynthesis that would be anticipated from potential reductions in the stratospheric ozone column. A wide range of UV-B effects were observed, with the Philippines cultivar Carreon (5993) and the Sri Lankan cultivar Kurkaruppan (15449) showing the greatest decrease and increase, respectively, in total biomass with supplemental UV-B radiation. Approximately one-third of all cultivars tested showed a statistically significant decrease in total biomass with UV-B radiation. For these sensitive cultivars, leaf area and tiller number were also significantly reduced. Photosynthetic capacity as determined by oxygen evolution declined for some cultivars, but the correlation between changes in photosynthesis and biomass with increasing UV-B was equivocal. Results from this experiment indicate that: (1) a number of rice cultivars are sensitive to potential increases in UV-B radiation: and (2) the diversity exhibited by rice in response to increased levels of UV-B suggests that selective breeding might be successfully used to develop UV-B-tolerant rice cultivars.  相似文献   

4.
《Genomics》2020,112(3):2647-2657
Rice serves as one of the essential staple food for half of the global human population. However, due to rapid human population growth, there is an increase in food demand across the globe. Thus, to lessen the gap between food demand and supply, there is an urgent requirement for grain yield enhancement in various important cereals crops, including rice. In the present study, the authors attempted to characterize haplotypes and single nucleotide polymorphisms associated with Gn1a for high grain number formation in rice plants. Result obtained reveals that high grain number gene sequences are under balancing selection and four high grain number specific missense SNPs decreases the stability of Gn1a. Earlier studies have also suggested that decreases Gn1a expression causes cytokinin accretion in inflorescence meristems, which in turn led to increase in grain yield. Hence, these four SNPs may be utilized for increasing grain yield in rice plants.  相似文献   

5.
Two bacteriolytic enzymes were produced when Hartmanella glebae was grown in the presence of both Enterobacter aerogenes and Alcaligenes faecalis. The identification of enzyme I as N-acetylmuramidase was reported earlier. Enzyme II was purified by gel filtration on a Bio-Gel A column. A recovery of 68.76% with 72.3-fold purification was obtained. It was found that 5 and 10 mM MgCl2 significantly increased the bacteriolytic activity. It is a basic protein. The cell walls of Micrococcus lysodeikticus were lysed by the enzyme, and the products of digestion were purified by Amberlite CG-120 and Sephadex G-15 chromatography to facilitate the detection of amino sugars. After reduction of the oligosaccharides with sodium borohydride and acid hydrolysis, the amino sugars were identified by paper chromatography. It was found that enzyme II cleaved the glycosidic bond between N-acetylmuramic and and N-acetylglucosamine of the peptidoglycan moiety of the cell walls. Thus, the enzyme was identified as endo-beta-N-acetylmuramidase.  相似文献   

6.
不同土壤水分处理对水稻光合特性及产量的影响   总被引:7,自引:0,他引:7  
王唯逍  刘小军  田永超  姚霞  曹卫星  朱艳 《生态学报》2012,32(22):7053-7060
为探明土壤水分对水稻生长发育的影响机理,以武香粳14和两优培九为试验材料,分析了不同土壤水分处理下(W1、W2、W3和CK分别表示土壤体积含水量为20%、30%、40%和5cm水层灌溉)的水稻光合特性、产量及水分生产率等。结果表明,轻度水分胁迫(W3)具有处理间最大的叶片气孔导度、蒸腾速率和净光合速率,其他处理规律不显著。灌浆初期各水分处理下叶位间光合指标均表现为:剑叶>顶2叶>顶3叶>顶4叶,其他生育期规律不显著。与对照处理(CK)相比,武香粳14的W1、W2和W3处理的产量分别减少61.14%和29.13%、增加0.96%,水分生产率分别减少10.69%、增加1.53%和20.61%;两优培九的产量分别减少64.11%和28.76%,增加2.08%,水分生产率分别减少16.39%,增加2.46%和22.13%。研究结果为水稻精确灌溉和节水生产提供了技术支撑。  相似文献   

7.
Summary Complete plant submergence for 6 or 9 days at 20 days after transplanting effected the same decrease in grain yield as submergence for 12 days at 40 days after transplanting. With increasing duration of submergence, tiller number, green leaves and dry weight of all varieties tested decreased. The decrease was less in the flood tolerant variety FR 13A than in other varieties. Contents of reducing sugars and amylase activity also decreased with increasing duration of submergence. The reducing sugar contents and amylase activity were higher and peroxidase activity was lower in flood tolerant variety FR 13A than in other varieties. The N contents increased and P and K contents decreased with duration of submergence.  相似文献   

8.
Plant architecture, a complex of the important agronomic traits that determine grain yield, is a primary target of artificial selection of rice domestication and improvement. Some important genes affecting plant architecture and grain yield have been isolated and characterized in recent decades; however, their underlying mechanism remains to be elucidated. Here, we report genetic identification and functional analysis of the PLANT ARCHITECTURE AND YIELD 1 (PAY1) gene in rice, which affects plant architecture and grain yield in rice. Transgenic plants over‐expressing PAY1 had twice the number of grains per panicle and consequently produced nearly 38% more grain yield per plant than control plants. Mechanistically, PAY1 could improve plant architecture via affecting polar auxin transport activity and altering endogenous indole‐3‐acetic acid distribution. Furthermore, introgression of PAY1 into elite rice cultivars, using marker‐assisted background selection, dramatically increased grain yield compared with the recipient parents. Overall, these results demonstrated that PAY1 could be a new beneficial genetic resource for shaping ideal plant architecture and breeding high‐yielding rice varieties.  相似文献   

9.
10.
11.
Rice, Oryza sativa, plants regenerated from anther culture with and without in vitro selection pressure were evaluated for chalky seed. Progeny evaluated included 21 spontaneously doubled haploids selfed 4 times, progeny from plants regenerated from S-aminoethylcysteine resistant callus selfed 4 times and backcrosses of both types to the parental type. All lines with in vitro histories had higher seed chalkiness than the controls both in the intensity of chalkiness and in the number of seeds expressing the character. The full range of intensity and amount of chalkiness was expressed in the progeny. The average intensity of anther/tissue culture-derived progeny was 4–5, based on a scale of 1 (translucent) to 10 (fully opaque), and the average amount of chalkiness within plants sampled was 50–75 percent. The chalky characteristic is transmitted from parent to offspring into a range of identifiable F2 segregants. Disclaimer statement Mention of a trademark or proprietary product does not constitute a guarantee or warranty of the product by the USDA, and does not imply its approval to the exclusion of other products that may also be suitable.  相似文献   

12.
综合已有作物模型(包括冠层结构、冠层光分布和冠层光合作用与干物质生产模型)的优点,构建了双季稻光合生产模型.利用独立的田间试验资料,对冠层内的光分布和干物质积累量进行了初步检验;利用模型定量分析了直接辐射在上挺下挺、上挺下披和上披下披3种典型株型水稻冠层内水平面上和叶面上的分布、冠层日光合量及其随叶面积指数的变化特征.结果表明: 模拟值与观测值之间具有较好的一致性,预测双季稻冠层内光分布的根均方差、相对根均方差和相关系数分别为12.01 J·m-2·s-1、8.2%和0.9929;预测双季稻干物质积累量的根均方差、相对根均方差和相关系数分别为0.83 t·hm-2、14.6%和0.9772,表明模型预测性较好;上挺下披株型水稻的冠层日光合量最高,取决于较大的叶面受光量、叶片光合效能和叶面积指数.  相似文献   

13.
Three plant growth promoting rhizobacterial (PGPR) strains, PF1,FP7 and PB2, were tested alone and in combinations for suppression ofrice sheath blight disease and promotion of plant growth underglasshouse and field conditions. The mixture of PGPR strainssignificantly reduced the sheath blight incidence when applied as eitherbacterial suspension through seed, root, foliar and soil application inglasshouse conditions, or as talc-based formulation under fieldconditions, compared to the respective individual strains. The averagemean of disease reduction was 29.2% for single strains and45.1% for mixtures. In addition to disease suppression, treatmentwith mixture of PGPR strains promoted plant growth in terms of increasedplant height and number of tillers, and ultimately grain yield. Theaverage increases in yield for single strains were 17.7%, and25.9% in case of mixture. Mixture of three PGPR strains reduceddisease and promoted growth to a level equivalent to two strainmixtures. Though seed treatment of either single strain or strainmixtures alone could reduce the disease, subsequent application to root,leaves or soil further reduced the disease and enhanced the plantgrowth. The mixture consisting of PF1 plus FP7 was the most effective inreducing the disease and in promoting plant growth and grainyield.  相似文献   

14.
Apical dominance in assimilate filling impacts grain growth in basal spikelets of rice panicle. In this study, organic materials of the pericarp, apoplasmic space and endosperm of the apical and basal caryopses, and photosynthesis of the flag leaf were measured during early part of grain development in three types of rice cultivars with similar phenology, but difference in grain weight and size in the dry and wet seasons of 2006 and 2007, respectively. Photosynthetic activity of the flag leaf was consistently low in small-seeded cultivars. Rates of grain filling and cell division of endosperm and concentration of assimilates, starch, proteins and chlorophylls of the caryopsis were lower, but spikelet ethylene production and peroxidase activity were higher in a small-seeded cultivar compared to a big-seeded cultivar. Similar disparities in grain filling and other attributes were noticed for the inferior basal spikelets of the panicle compared to the superior apical spikelets, except the assimilate concentration of the pericarp and endosperm. Temporal fluctuation in assimilate concentration of the organs were similar between the cultivars. Concentration of apoplasmic assimilates mostly exhibited negative correlation with that of pericarp and endosperm. Compared to the apical spikelets, correlation was more negative for the basal spikelets. Conversely, correlation was positive between the concentration of apoplasmic assimilates and endosperm cell number and grain weight of the cultivars. Ethylene released from the spikelets at anthesis affected growth and cell division rates of endosperm and enhanced protein and chlorophyll degradation and peroxidase activity of the caryopsis. It was concluded that variation in spikelet ethylene production may be responsible for differences in size or weight of grains among rice cultivars and spikelets at different locations of the panicle. The concentration of apoplasmic assimilates could be an indicator for grain filling capacity, and ethylene regulated the concentration by affecting pericarp activity for assimilate unloading.  相似文献   

15.
Influence of different inoculum levels of 0, 10, 100, 1000 and 10,000 individuals of Hirschmanniella oryzae on nematode reproduction and plant growth of rice cv. Giza171 and biochemical changes of infected plants was studied under screen-house conditions. Rate of nematode build up (Pf/Pi) was negatively correlated with the progressive increase in nematode inoculum levels. The percentage reduction in growth parameters, rice grain yield and the amount of total and reducing sugars were markedly affected showing a negative correlation with the tested inocula. The conspicuous reductions of plant growth, yield and total and reducing sugar contents were obtained by using 1000 and 10,000 nematodes per pot. The inoculum level of 1000 nematodes per pot was identified as critical population at which control programme must be started.  相似文献   

16.
Boron (B) is amongst the important micronutrients required for rice from start till physiological maturity. This study was conducted to explore the role of boron application in seedling emergence, leaf appearance and elongation, chlorophyll content, water relations and yield related traits of fine rice. Boron was applied as seed priming. For priming seeds of fine rice cultivars Super Basmati and Shaheen Basmati were soaked in 0.001 and 0.01?% aerated B solutions (w/v); while untreated dry seeds and water soaked (hydropriming) seeds were taken as control. Substantial improvement in seedling emergence was noted by seed priming in 0.001 and 0.01?% solutions. Rate of leaf emergence and elongation and tiller appearance were also improved in seedlings raised from seeds primed in 0.001?% B solution in the tested cultivars. Likewise, leaf chlorophyll contents were significantly improved by B especially with 0.001?% concentration; as was the case for water relations of rice cultivars. At final harvest, all yield contributing parameters were improved by B priming. Increase in yield was due to decrease in panicle sterility by B treatments. A linear increase in leaf and grain B contents was observed with increase in concentration of B priming solution. Overall, B application at very low rate substantially improved seedling emergence, leaf appearance and elongation, tillering, chlorophyll, water relations and yield related traits resulting in better yield and grain B contents. In this regard, seed priming offers an effective and pragmatic way of B application.  相似文献   

17.
Plant growth-promoting rhizobacteria (PGPR) are able to promote plant growth using a wide variety of mechanisms as well as provide bioprotection against biotic and abiotic stresses. The objectives of this study were to isolate and characterize putative PGPR associated with rice cultivars with a distinct tolerance to iron toxicity grown in two areas: one area with a well-established history of iron toxicity and another without iron toxicity. Bacterial strains were selectively isolated based on their growth in selective media and were identified by partial sequencing of their 16S rRNA genes. Bacterial isolates were evaluated for their ability to produce indolic compounds, siderophores, and ACC deaminase and to solubilize tricalcium phosphates. In vitro biological nitrogen fixation was evaluated for the bacterial isolates used in the inoculation experiments. A total of 329 bacterial strains were isolated. The composition of the bacterial genera and the occurrence of different plant growth-promoting (PGP) traits were significantly affected by the iron conditions and by the cultivar. Strains belonging to the Burkholderia and Enterobacter genera were the most abundant of all the Gram-negative isolates, and those belonging to the Paenibacillus and Bacillus genera were the most abundant of the Gram-positive isolates. A large number of putative PGPR belonging to different bacterial genera presented several PGP traits. Strains belonging to the Burkholderia, Chryseobacterium, and Ochrobactrum genera contributed to plant growth as well as to enhanced nutrient uptake of the rice plants in in vivo experiments. Growth and nutrient uptake of plants inoculated with isolate FeS53 (Paenibacillus sp.) in the presence of an iron excess were similar to those of plants submitted to the control iron condition, indicating that this bacterium can mitigate the effects caused by iron stress.  相似文献   

18.
The OsGS3 gene plays a principal role in controlling grain weight and grain length in rice. However, the function of an orthologous gene TaGS in wheat has not been analyzed to date. In the present study, we cloned the gDNA of TaGS gene, designated TaGS-D1, with four exons and three introns on chromosome 7DS by a comparative genomics approach. The cDNA of TaGS-D1 is 255 bp, and it encodes 85 amino acids. We also found a plant-specific organ size regulation domain in the deduced polypeptide, indicating that TaGS-D1, like OsGS3, does not belong to the PEBP family. DNA sequencing of the TaGS-D1 locus revealed no diversity in the coding sequence of exons, but there was a single nucleotide polymorphism (SNP) in the first intron, and 30 SNPs, a 40-bp InDel and a 3-bp InDel were found in the second intron between genotypes with higher and lower thousand grain weights (TGW). Based on the 40-bp InDel, a co-dominant STS marker, designated GS7D, was developed to discriminate the two alleles. GS7D was 8.0 cM from Xbarc184 located on chromosome 7DS by linkage mapping. A QTL for TGW and grain length at GS7D locus explained up to 16.3 and 7.7 %, respectively, of the phenotypic variances in a RIL population derived from Doumai/Shi 4185 grown in Shijiazhuang and Beijing. One hundred and seventy-five Chinese wheat cultivars were genotyped with GS7D, indicating that TaGS-D1 was significantly associated with grain weight. The allelic distribution at the TaGS-D1 locus showed that the frequencies of TaGS-D1a were high in cultivars from Serbia, Japan, Australia, Canada, and the Northeastern Spring Wheat and Northern Winter Wheat Regions of China.  相似文献   

19.
Total aerobic heterotrophs and N2-fixing putative azospirilla associated with rice plant grown in long-term unfertilized wetland rice field at 5 sites in the Philippines were enumerated. Several azospirilla isolates were identified based on cellular morphology, biochemical tests and reaction to immunodiffusion. Azospirilla constitute about one percent of the total aerobic heterotrophs. Most (85%) of the Azospirillum isolates belong toA. lipoferum indicating its preferential colonization to the rice plant.  相似文献   

20.
Transgenic plant production mediated by Agrobacterium in Indica rice   总被引:3,自引:0,他引:3  
Summary A reproducible system has been developed for the production of transgenic plants in indica rice using Agrobacterium-mediated gene transfer. Three-week-old scutella calli served as an excellent starting material. These were infected with an Agrobacterium tumefaciens strain EHA101 carrying a plasmid pIG121Hm containing genes for -glucuronidase (GUS) and hygromycin resistnace (HygR). Hygromycin (50 mg/l) was used as a selectable agent. Inclusion of acetosyringone (50M) in the Agrobacterium suspension and co-culture media proved to be indispensable for successful transformation. Transformation efficiency of Basmati 370 was 22% which was as high as reported in japonica rice and dicots. A large number of morphologically normal, fertile transgenic plants were obtained. Integration of foreign genes into the genome of transgenic plants was confirmed by Southern blot analysis. GUS and HygR genes were inherited and expressed in R1 progeny. Mendelian segregation was observed in some R1 progeny.Abbreviations GUS ß-glucuronidase - HygR hygromycin-resistance - AS acetosyringone  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号