首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The chimerical gene, Arabidopsis thaliana sHSP18.2 promoter fused to E. coli gusA gene, was Agrobacterium rhizogenes-mediated transformed into Nicotiana tabacum as a heat-regulatable model, and the thermo-inducible expression of GUS activity in N. tabacum transgenic hairy roots was profiled. An activation of A. rhizogenes with acetosyringone (AS) before cocultured with tobacco's leaf disc strongly promoted transgenic hairy roots formation. Transgenic hairy roots formation efficiency of A. rhizogenes precultured with 200 μM AS supplementation was 3.1-fold and 7.5-fold, respectively, compared to the formation efficiency obtained with and without AS supplementation in coculture. Transgenic hairy roots transformed with different AS concentration exhibited a similar pattern of thermo-inducibility after 10 min to 3 h heat treatments detected by GUS expression. The peak of expressed GUS specific activity, 399,530 pmol MUG per mg total protein per min, of the transgenic hairy roots was observed at 48 h after 3 h of 42°C heat treatment, and the expressed GUS specific activity was 7–26 times more than that reported in A. thaliana, tobacco BY-2 cells and Nicotiana plumbaginifolia. Interference caused by AS supplementation on the growth of transgenic hairy roots, time-course of GUS expression and its expression level were not observed.  相似文献   

2.
Picrorhiza kurroa Royle ex Benth. is an endangered plant producing various compounds of medicinal importance. Hairy roots of P. kurroa were obtained following cocultivation of shoot tip explants with Agrobacterium rhizogenes strains A 4 and PAT 405. Bacterial strain A 4 appeared to be better than the strain PAT 405 in terms of both growth of respective hairy root cultures and secondary metabolite production. The optimal growth of both the hairy root cultures occurred on half-strength semisolid medium with 3% sucrose. Picrotin and picrotoxinin from the roots of wild type field grown plants were compared with 8-week-old hairy root cultures induced by the A 4 and PAT 405 strains of A. rhizogenes. Picrotin and picrotoxinin content were evaluated in hairy root cultures as well as roots of field grown plant of P. kurroa. In terms of the production of picrotin and picrotoxinin, the A 4 induced hairy roots appeared to be a better performer than the PAT 405 induced hairy root cultures. The picrotin and picrotoxinin content was highest in 8-week-old A 4 induced hairy roots (8.8 μg/g DW and 47.1 μg/g DW, respectively). Rapid growth of the hairy roots of P. kurroa with in vitro secondary metabolite production potential may offer an attractive alternative to the exploitation of this endangered plant species.  相似文献   

3.
A genetic transformation method using Agrobacterium rhizogenes was developed for Harpagophytum procumbens. The influence of three factors on hairy root formation was tested: bacterial strains (A4 and ATCC 15834), various types of explants and acetosyringone (AS) (200 μM). The highest frequency of transformation (over 50% of explants forming roots at the infected sites after 6 weeks of culture on Lloyd and McCown (WP) medium) was achieved using a combination of nodal stem explants and A. rhizogenes strain A4. The addition of 200 μM AS to root induction medium was found to enhance hairy root induction but its effect varied depending on bacterial strain and explant type. Three of the most vigorously growing hairy root clones of H. procumbens were chosen and analyzed for accumulation of iridoid and phenylethanoid glycosides. The transgenic nature of these root clones was confirmed by PCR amplification; they were positive for rolB and rolC genes. Harpagoside, verbascoside and isoverbascoside were identified by HPLC and LC–ESI-MS as the major compounds from all analyzed hairy root clones. The Hp-3 root clone showed the higher harpagoside content (0.32 mg g−1 dry wt.) compared with other analyzed transformed and non-tuberized untransformed roots of H. procumbens. However, the level of the compound in the hairy root clone was lower than that detected in a sample of commercially available root tubers of H. procumbens. The Hp-3 root clone also produced high amounts of verbascoside and isoverbascoside (8.12 mg g−1 dry wt. and 9.97 mg g−1 dry wt., respectively) comparable to those found in root tubers.  相似文献   

4.
A simple and easy transformation strategy was accomplished on field growing plants of Phyllanthus amarus, an anti-hepatitis B drug plant. Infection of Agrobacterium rhizogenes strains A4M70GUS and ATCC 15834 on decapitated shoots of field growing P. amarus induced hairy roots and crown gall, respectively. Infection with A4M70GUS yielded a mean of 23.2 roots from 40% plants in 40-day period. The crown gall induced on 30% plants after infection with ATCC 15834 grew to 5–10 mm in diameter. The roots and crown galls established in vitro on Murashige and Skoog (MS) basal medium grew well. The hairy roots yielded fivefold (6.91 g) biomass in half-strength MS liquid medium to that of the adventitious roots derived from internode explants in MS medium with 8.0 μM α-naphthaleneacetic acid (1.39 g). Histochemical assay and PCR analysis using the primers of uidA coding region confirmed the hairy roots induced by A4M70GUS. The crown galls induced by ATCC 15834 were confirmed by PCR analysis using rolB gene primers. The protocol enables an easy and early accomplishment of hairy roots.  相似文献   

5.
6.
Agrobacterium rhizogenes is the etiological agent for hairy-root disease (also known as root-mat disease). This bacterium induces the neoplastic growth of plant cells that differentiate to form “hairy roots.” Morphologically, A. rhizogenes-induced hairy roots are very similar in structure to wild-type roots with a few notable exceptions: Root hairs are longer, more numerous, and root systems are more branched and exhibit an agravitropic phenotype. Hairy roots are induced by the incorporation of a bacterial-derived segment of DNA transferred (T-DNA) into the chromosome of the plant cell. The expression of genes encoded within the T-DNA promotes the development and production of roots at the site of infection on most dicotyledonous plants. A key characteristic of hairy roots is their ability to grow quickly in the absence of exogenous plant growth regulators. As a result, hairy roots are widely used as a transgenic tool for the production of metabolites and for the study of gene function in plants. Researchers have utilized this tool to study root development and root–biotic interactions, to overexpress proteins and secondary metabolites, to detoxify environmental pollutants, and to increase drought tolerance. In this review, we provide an up-to-date overview of the current knowledge of how A. rhizogenes induces root formation, on the new uses for A. rhizogenes in tissue culture and composite plant production (wild-type shoots with transgenic roots), and the recent development of a disarmed version of A. rhizogenes for stable transgenic plant production.  相似文献   

7.
Persian poppy (Papaver bracteatum Lindl.) is an important medicinal plant and source of the opium alkaloids codeine, morphine and thebaine. Transgenic root cultures of P. bracteatum Lindl. are well-defined model systems to investigate the molecular and metabolic regulation of benzylisoquinoline alkaloid biosynthesis. Agrobacterium rhizogenes was able to produce hairy roots on wounded Persian poppy seedlings. Excised shoots from 7-day-old Persian poppy were co-cultivated with the A. rhizogenes strain R15834 carrying the pBI121 binary vector. All media, except for the co-cultivation medium, included 40 mg l−1 paromomycin to select for pBI121 transformants and 200 mg l−1 cefotaxime to eliminate the Agrobacterium. Eight weeks after infection, paromomycin-resistant roots appeared on 45–50% of explants maintained on hormone-free medium. Isolated hairy roots were propagated in liquid medium containing 1.0 mg l−1 1-naphthaleneacetic acid to promote rapid growth. Also, callus induction and shoot regeneration of transformed Calli in vitro was achieved on B5 medium containing 1.0 mg l−1 1-naphthaleneacetic acid. Detection of the neomycin phosphotransferase gene and GUS histochemical localization confirmed the integrative transformation of root cultures. This is the first study to illustrate useful protocol to introduce foreign genes into transgenic Persian poppy hairy root cultures using A. rhizogenes strain R15834.  相似文献   

8.
Summary Protoplasts were isolated from Agrobacterium rhizogenes A4-transformed cell line of Medicago sativa L. The highest yield of protoplasts (4.2×106 per g fresh weight) was obtained from 12-d-old calluses after being subeultured on fresh medium. The viability of protoplasts reached over 80%. Protoplasts were induced to undergo sustained divisions when cultured in Durand et al. (DPD) medium supplemented with 2 mgl−1 (9.05 μM) 2,4-dichlorophenoxyacetic acid, 0,2mgl−1 (0.93 μM) kinetin, 0.3 M mannitol, 2% (w/v) sucrose, and 500 mgl−1 casein hydrolyzate at a plating density of 1.0×105 per ml. An agarose-beads culture method was appropriate for protoplast division of transformed alfalfa. The division frequency was about 30%. Numerous hairy roots were induced from protocalluses on Murashige and Skoog medium without growth regulators. Paper electrophoresis revealed that all of the regenerated hairy roots tested synthesized the corresponding opines. This protoplast culture system would be valuable for further somatic hybridization in forage legumes.  相似文献   

9.
Recalcitrance of most large-seeded legumes, such as peanut, to regeneration and genetic transformation has hampered studies on gene function and efforts for genetic improvement. Agrobacterium rhizogenes-mediated transformation provides a system for rapid and efficient transformation of plant tissues. In this study, embryonic axes along with cotyledons of peanut were injected with a suspension culture of A. rhizogenes using microliter syringes. The influence of several factors such as plant genotype, A. rhizogenes culture stage, co-culture period of A. rhizogenes, and acetosyringone concentration in the co-cultivation medium have been evaluated. It is found that A. rhizogenes-mediated transformation of peanut is genotype-independent. Up to 61% transformation was recorded when embryonic axes were co-cultivated with 5 × 107 A. rhizogenes cells from logarithmic phase for 2 days on co-culture medium containing 50 μmol l−1 acetosyringone. Composite plants with transgenic roots were harvested after 45 days of treatment. Furthermore, this method was applied to assess the insecticidal activity of a synthetic cry8Ea1 gene against Holotrichia parallela in transgenic roots of peanut.  相似文献   

10.
11.
Shoot cultures of nickel hyperaccumulating Alyssum murale were established from epicotyl explants of seedlings aseptically germinated on hormone-free MS medium. They were further maintained on media with 0–0.92 μM kinetin. Optimal shoot multiplication was at 0.46 μM kinetin. Inoculation by shoot wounding was performed with overnight suspension of A. rhizogenes A4M70GUS which contains GUS gene cointegrated in pRiA4. After 30 days hairy roots were produced at the wounding site in 31 explant (25% out of 124). Hairy roots were excised and further propagated on hormone-free medium as separate clones. In the first passage clones 3 and 6 could be distinguished by fast growth and spontaneous shoot regeneration. In other clones (12, 23 and 25) shoot regeneration required presence of cytokinins. The five shoot culture clones regenerated from hairy roots were further cultured on media with 0.46 μM kinetin. These shoots were characterized by good elongation and lateral shoot branching, short internodes, minute slightly curled leaves and well developed plagiotropic root system spreading over the surface of media. Thus all plants regenerated from hairy root cultures manifested the characteristic Ri syndrome phenotype. They all had a strong positive GUS reaction. PCR analysis confirmed presence of uidA sequence from the gus construct. They were also tolerant to nickel accumulating up to 24,700 μg g−1 dry weight.  相似文献   

12.
An efficient transformation system for the medicinal and aromatic plant, Pogostemon cablin Benth was developed by using agropine-type Agrobacterium rhizogenes ATCC15834. Hairy roots formed directly from the cut edges of leaf explants or via callus stage 8 days after inoculation with the bacterium. The highest frequency of leaf explant transformation by Agrobacterium rhizogenes ATCC15834 was about 80% after infection for 25 days. Hairy roots grew rapidly on plant growth regulators (PGRs)-free Murashige and Skoog (MS) or 6,7-V medium and had characteristics of transformed roots such as fast growth and high lateral branching. The PCR amplification showed that rol genes of Ri plasmid of A. rhizogenes were integrated and expressed into the genome of transformed hairy roots. The hairy root line, PL6, grew very slowly in the first 8 days, then grew very quickly between day 8 and day 24. The optimum medium for callus induction of hairy roots consisted of 2.0 mg l−1 benzyladenine (BA) and 0.1 mg/l α-naphthaleneacetic acid (NAA); while optimum medium for adventitious shoot regeneration from these cultures consisted of 0.1 mg l−1 BA and 0.1 mg l−1 NAA. Adventitious shoots could be rooted on 1/2MS. Southern blot analysis confirmed that rol genes of TL-DNA of Ri plasmid was integrated with at least three copies into the genome of hairy roots- regenerated P. cablin plants. The results presented provide a solid foundation for production of patchouli essential oil from hairy roots or its regenerated plants and also provide possibilities for utilization of artifical polyploidization or chemical mutation of hairy roots for improving germplasm and breeding of a new cultivar of P. cablin.  相似文献   

13.
The tetrasporophyte of Asparagopsis armata has been previously established as a novel seaweed biofilter for integrated land-based mariculture. The species growth and biofiltration rates were much higher than the values described in the literature for Ulva spp., the most common seaweed biofilter. However, a validation of the advantage of one species over the other requires a study of the performances of these two species in the same system at the same time. In this work, we compared the biofiltration performance and biomass yield of A. armata and Ulva rigida cultivated in the effluents of a fish farm in southern Portugal. Comparisons were performed at different water renewal rates and in two seasons of the year. The maximum total ammonia nitrogen (TAN) removal rates were similar for both species in December (2.7 and 2.8 g TAN m–2 day–1 for U. rigida and A. armata, respectively) and higher for A. armata (6.5 g TAN m–2 day–1) than for U. rigida (5.1 g TAN m–2 day–1) in May. Higher differences were observed when estimating the nitrogen biofiltration through the organic nitrogen yield (N yield) of the biomass produced, particularly in May. This estimate is directly related with the biomass yield and the N content in the tissue which were always higher for A. armata than for U. rigida. In December, the maximum biomass yields were 71 g dry weight (DW) m–2 day–1 for A. armata and 44 g DW m–2 day–1 for U. rigida, while in May, the yield of A. armata was 125 g DW m–2 day–1 and of U. rigida was 73 g DW m–2 day–1. This study confirmed that A. armata is indeed a more efficient biofilter than U. rigida. To the best of our knowledge, the production rates reported here are the highest ever reported for macroalgae cultivated in tanks.  相似文献   

14.
Methylthioalkylmalate (MAM) synthases and their associated genes that have been extensively investigated in Arabidopsis control the side-chain elongation of methionine during the synthesis of aliphatic glucosinolates. A Brassica homolog of the Arabidopsis MAM genes was used in this study to analyze the role of MAM genes in B. napus through RNA interference (RNAi). The silencing of the MAM gene family in B. napus canola and B. napus rapeseed resulted in the reduction of aliphatic glucosinolates and total glucosinolate content. The results indicated that RNAi has potential for reducing glucosinolate content and improving meal quality in B. napus canola and rapeseed cultivars. Interestingly, MAM gene silencing in B. napus significantly induced the production of 2-propenyl glucosinolate, a 3-carbon side-chain glucosinolate commonly found in B. juncea mustard. Most transgenic plants displayed induction of 2-propenyl glucosinolate; however, the absolute content of this glucosinolate in transgenic B. napus canola was relatively low (less than 1.00 μmol g−1 seed). In the high glucosinolate content progenies derived from the crosses of B. napus rapeseed and transgenic B. napus canola, MAM gene silencing strongly induced the production of 2-propenyl glucosinolate to high levels (up to 4.45 μmol g−1 seed).  相似文献   

15.
Using different explants of in vitro seed grown Scutellaria baicalensis Georgi plantlets, hairy roots were induced following inoculation of Agrobacterium rhizogenes strains A4GUS, R1000 LBA 9402 and ATCC11325. The A4GUS proved to be more competent than other strains and the highest transformation rates were observed in cotyledonary leaf explant (42.6 %). The transformed roots appeared after 15–20 d of incubation on hormone free Murashige and Skoog medium. Growth of hairy roots was assessed on the basis of total root elongation, lateral root density and biomass accumulation. Maximum growth rate was recorded in root:medium ratio 1:100 (m/v). Hairy root lines were further established in Gamborg B5 medium and the biomass increase was maximum from 15 to 30 d. PCR, Southern hybridization and RT-PCR confirmed integration and expression of left and right termini-linked Ri T-DNA fragment of the Ri plasmid from A4GUS into the genome of Scutellaria baicalensis hairy roots. GUS assay was also performed for further integration and expression. All the clones showed higher growth rate them non-transformed root and accumulated considerable amounts of the root-specific flavonoids. Baicalin content was 14.1–30.0 % of dry root mass which was significantly higher then that of control field grown roots (18 %). The wogonin content varies from 0.08 to 0.18 % among the hairy root clones which was also higher than in non-transformed roots (0.07 %).  相似文献   

16.
Zhao D  Fu C  Chen Y  Ma F 《Plant cell reports》2004,23(7):468-474
Axenically grown Saussurea medusa plantlets were inoculated with four Agrobacterium rhizogenes strains, and hairy root lines were established with A. rhizogenes strain R1601 in N6 medium. PCR and Southern hybridization confirmed integration of the T-DNA fragment of the Ri plasmid from A. rhizogenes into the genome of S. medusa hairy roots. In N6 medium, maximum biomass of the hairy root cultures was achieved [8 g (dry weight) per liter; growth ratio 35-fold] after 21 days of culture. The amount of jaceosidin extracted from the hairy root cultures was 46 mg/l (production ratio of 37-fold) after 27 days of culture. The maximum jaceosidin content obtained using N6 medium was higher than that obtained with Modified White, MS or B5 medium. In N6 medium, the tip segments were more efficient for hairy root growth and jaceosidin production than the middle and basal regions of the root.Abbreviations AS Acetosyringone - BA Benzyladenine - cef Cefotaxime sodium - DW Dry weight - FW Fresh weight - HPLC High-performance liquid chromatography - IAA Indole-3-acetic acid - km Kanamycin - NAA -Naphthaleneacetic acid - SDS Sodium dodecyl sulfate  相似文献   

17.
The objective of this research was to establish an efficient system of genetic transformation and plant regeneration from hairy roots by infecting the leaf sections and stem segments of in vitro Rehmannia glutinosa Libosch. f. hueichingensis Hsiao plantlets. Hairy roots were induced from them after co-culturing with Agrobacterium rhizogenes strain 15834 at a frequency of 32 and 29.4%, respectively. The calluses were induced from hairy roots on half-strength Murashige and Skoog medium containing 0.2 mg/l kinetin and 3.0 mg/l benzyladenine at a frequency of 100%, from which transgenic shoots and plantlets were developed. Transgenic plantlets did not have differences in morphology except the shortened internodes and an increase in adventitious root formation compared to wild-type plants. PCR and Southern-blot analyses confirmed that rolB gene of TL-DNA was inserted in the genome of transformed hairy roots and plantlets. RT-PCR analysis and opine paper electrophoresis revealed that rolB gene was expressed in the transformed hairy roots and plantlets. Conclusively, transgenic hairy roots and transgenic plants of Rehmannia glutinosa Libosch. f. hueichingensis Hsiao were developed for the first time. This text was submitted by the authors in English. Published in Russian in Fiziologiya Rastenii, 2009, Vol. 56, No. 2, pp. 247–255.  相似文献   

18.
Plants belonging to genus Drosera (family Droseraceae) contain pharmacologically active naphthoquinones such as ramentaceone and plumbagin. Hairy root cultures obtained following Agrobacterium rhizogenes-mediated transformation have been reported to produce elevated levels of secondary compounds as well as exhibit desirable rapid biomass accumulation in comparison to untransformed plants. The aim of this study was to establish hairy root or teratoma cultures of Drosera capensis var. alba and to increase the level of ramentaceone in transformed tissue by application of abiotic and biotic elicitors. The appearance of transformed tissues—teratomas but not hairy roots was observed 18 weeks after transformation. The transformation efficiency was 10% and all teratoma cultures displayed about 3 times higher growth rate than non-transformed cultures of D. capesis. The transformation was confirmed by PCR and Southern hybridization using primers based on the A. rhizogenes rolB and rolC gene sequences. HPLC analysis of ramentaceone content indicated 60% higher level of this metabolite in teratoma tissue in comparison to non-transformed cultures. Among the elicitors tested jasmonic acid (2.5 mg l−1) turned out to be the most effective. The productivity of ramentaceone in elicited teratoma cultures was about sevenfold higher than in liquid cultures of D. capensis var. alba and amounted to 2.264 and 0.321 mg respectively during 4 weeks of cultivation. This is the first report on the transformation of Drosera plant with A. rhizogenes.  相似文献   

19.
Zhou L  Cao X  Zhang R  Peng Y  Zhao S  Wu J 《Biotechnology letters》2007,29(4):631-634
Two oligosaccharides, a heptasaccharide (HS) and an octasaccharide (OS), isolated from Paris polyphylla var. yunnanensis, stimulated the growth and saponin accumulation of Panax ginseng hairy roots at 5–30 mg l−1. HS and OS at 30 mg l−1, fed separately to hairy root cultures at 10 days post-inoculation, increased the root biomass dry weight by more than 70% to ∼20 g l−1 from 13 g l−1 and the total saponin content of roots by more than 1-fold to ∼3.5% from 1.6% (w/w). The results suggest that the two oligosaccharides may have plant growth-regulatory activity in plant tissue cultures.  相似文献   

20.
The balloon flower (Platycodon grandiflorum) is a popular traditional medicinal plant used in Korea to treat conditions such as bronchitis, asthma, tuberculosis, diabetes, and inflammatory diseases. Recently, immunopharmacological research identified triterpenoid and saponin as important active compounds in P. grandiflorum. To study and extract these compounds and other metabolites from P. grandiflorum, a technique was developed for producing hairy root cultures, which are a reliable source of plant compounds. To achieve this, the activity of Agrobacterium rhizogenes was exploited, which can transfer DNA segments into plant genomes after infecting them. In this study, the A. rhizogenes strain R1000 was determined that had the highest infection frequency (87.5%) and induced the most hairy roots per plant, and the concentration of antibiotics (75 mg/l kanamycin) was elucidated for selection after transformation. Wild-type and transgenic hairy roots contained various phenolic compounds, although both of them had similar concentrations of phenolic compounds. In the future, the protocols described here should be useful for studying and extracting valuable metabolites such as phenolic compounds from P. grandiflorum hairy root cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号