首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel drug delivery system for the treatment of brain tumors was formulated by methotrexate (MTX)-loaded polymeric nanoparticles (NPs) based on Glycol chitosan (GCS) and Dextran sulfate (DS). The physicochemical properties of resulting particles were investigated, evidencing the contribution of these nanoparticles for brain targeting. In vitro release of MTX was also evaluated. The GCS-DS nanoparticles have been developed based on the modulation of ratio show promise as a system for controlled delivery of the drug to the brain.  相似文献   

2.
Zhang Z  Feng SS 《Biomacromolecules》2006,7(4):1139-1146
Polysorbate 80 (Tween 80) has been widely used as an emulsifier with excellent effects in nanoparticles technology for biomedical applications. This work was thus triggered to synthesize poly(lactide)/Tween 80 copolymers with various copolymer blend ratio, which were synthesized by ring-opening polymerization and characterized by 1H NMR and TGA. Nanoparticles of poly(lactide)/Tween 80 copolymers were prepared by the dialysis method without surfactants/emulsifiers involved. Paclitaxel was chosen as a prototype anticancer drug due to its excellent therapeutic effects against a wide spectrum of cancers. The drug-loaded nanoparticles of poly(lactide)/Tween 80 copolymers were then characterized by various state-of-the-art techniques, including laser light scattering for particles size and size distribution, field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) for surface morphology; laser Doppler anemometry for zeta potential; differential scanning calorimetry (DSC) for the physical status of the drug encapsulated in the polymeric matrix; X-ray photoelectron spectrometer (XPS) for surface chemistry; high performance liquid chromatography (HPLC) for drug encapsulation efficiency; and in vitro drug release kinetics. HT-29 cells and Glioma C6 cells were used as an in vitro model of the GI barrier for oral chemotherapy and a brain cancer model to evaluate in vitro cytotoxicity of the paclitaxel-loaded nanoparticles. The viability of C6 cells was decreased from 37.4 +/- 4.0% for poly(D,L-lactide-co-glycolic acid) (PLGA) nanoparticles to 17.8 +/- 4.2% for PLA-Tween 80-10 and 12.0 +/- 5.4% for PLA-Tween 80-20 copolymer nanoparticles, which was comparable with that for Taxol at the same 50 microg/mL drug concentration.  相似文献   

3.
聚乳酸纳米粒穿透血脑屏障的分析电镜研究   总被引:4,自引:0,他引:4  
观察以聚乳酸 (D ,L-polylacticacid,PLA)为材料制备、经吐温-80(T-80)表面改性的纳米粒对血脑屏障的穿透效果并探讨其机制 ,分别将FITC-Dextran、叶绿素铜作为PLA纳米粒的示踪标记 ,应用荧光显微镜、透射电镜及分析电镜观察经静脉注射入小鼠体内的PLA纳米粒在脑组织中的分布、穿透血脑屏障的特性。荧光显微镜观察到小鼠脑组织中散在及沿毛细血管壁分布的荧光颗粒 ,透射电镜可观察到小鼠脑毛细血管内皮细胞及周围脑组织中圆形或类圆形的外源性纳米粒 ;进一步采用分析电镜对颗粒处组织进行能谱分析证实其为叶绿素铜标记的PLA纳米粒。证实了T-80修饰的PLA纳米粒具有穿透血脑屏障的特性 ,机制可能是毛细血管内皮细胞的胞吞转运作用 ,同时 ,为研究纳米粒在组织内的定位提供了新的标记方法.  相似文献   

4.
吐温80对体外HeLa细胞的杀伤抑制   总被引:1,自引:0,他引:1  
研究吐温80对体外培养HeLa细胞的杀伤抑制。通过MTT法检测并观察了不同浓度吐温80、大肠杆菌内毒素(LPS)及前列腺素E1(PGEI)对体外培养HeLa细胞作用后细胞抑制率;将作用后细胞裂解液经SDS-PAGE及Western-blotting法测定其热休克蛋白70(Heat Shock Protein70,HSP70)表达。结果:0.02%吐温80具有明显杀伤HeLa细胞的作用,且作用后的HeLa细胞几乎无HSP70蛋白表达(正常HeLa细胞有一定量HSP70蛋白表达),但却有一种分子量为70kDa的蛋白高表达,表明吐温80显著抑制HSP70表达,以至HeLa细胞死亡,同时促使某一种蛋白大量堆积。大肠杆菌内毒素、前列腺素E1对HeLa细胞无明显抑制杀伤作用,且与吐温80无明显协同效应,同时亦对HeLa细胞HSP70表达无显著影响。推测:吐温80对HeLa细胞HSP70表达的显著抑制作用可能是其杀伤HeLa细胞的 作用机制之一,为理想的温热治疗肿瘤的协同合并作用药物,但其使细胞内大量某70kDa蛋白堆积现象有待进一步探讨。  相似文献   

5.
Essential oils are known to possess antimicrobial and antioxidant activity while chitosan is a biocompatible polymer with antibacterial activity against a broad spectrum of bacteria. In this work, nanoparticles with both antioxidant and antibacterial properties were prepared by grafting eugenol and carvacrol (two components of essential oils) on chitosan nanoparticles. Aldehyde groups were first introduced in eugenol and carvacrol, and the grafting of these oils to chitosan nanoparticles was carried out via the Schiff base reaction. The surface concentration of the grafted essential oil components was determined by X‐ray photoelectron spectroscopy (XPS). The antioxidant activities of the carvacrol‐grafted chitosan nanoparticles (CHCA NPs) and the eugenol‐grafted chitosan nanoparticles (CHEU NPs) were assayed with diphenylpicrylhydrazyl (DPPH). Antibacterial assays were carried out with a representative gram‐negative bacterium, Escherichia coli (E. coli) and a gram‐positive bacterium, Staphylococcus aureus (S. aureus). The grafted eugenol and carvacrol conferred antioxidant activity to the chitosan nanoparticles, and the essential oil component‐grafted chitosan nanoparticles achieved an antibacterial activity equivalent to or better than that of the unmodified chitosan nanoparticles. Cytotoxicity assays using 3T3 mouse fibroblast showed that the cytotoxicity of CHEU NPs and CHCA NPs were significant lower than those of the pure essential oils. Biotechnol. Bioeng. 2009; 104: 30–39 © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Legumain-based DNA vaccines have potential to protect against breast cancer. However, the lack of a safe and efficient oral delivery system restricts its clinical application. Here, we constructed alginic acid-coated chitosan nanoparticles (A.C.NPs) as an oral delivery carrier for a legumain DNA vaccine. First, we tested its characteristic in acidic environments in vitro. DNA agarose electrophoresis data show that A.C.NPs protected DNA better from degradation in acidic solution (pH 1.5) than did chitosan nanoparticles (C.NPs). Furthermore, size distribution analysis showed that A.C.NPs tended to aggregate and form micrometer scale complexes in pH<2.7, while dispersing into nanoparticles with an increase in pH. Mice were intragastrically administrated A.C.NPs carrying EGFP plasmids and EGFP expression was detected in the intestinal Peyer’s patches. Full-length legumain plasmids were loaded into different delivery carriers, including C.NPs, attenuated Salmonella typhimurium and A.C.NPs. A.C.NPs loaded with empty plasmids served as a control. Oral vaccination was performed in the murine orthotopic 4T1 breast cancer model. Our data indicate that tumor volume was significantly smaller in groups using A.C.NPs or attenuated Salmonella typhimurium as carriers. Furthermore, splenocytes co-cultured them with 4T1 cells pre-stimulated with CoCl2, which influenced the translocation of legumain from cytoplasm to plasma membrane, showed a 4.7 and 2.3 folds increase in active cytotoxic T lymphocytes (CD3+/CD8+/CD25+) when treated with A.C.NPs carriers compared with PBS C.NPs. Our study suggests that C.NPs coated with alginic acid may be a safe and efficient tool for oral delivery of a DNA vaccine. Moreover, a legumain DNA vaccine delivered orally with A.C.NPs can effectively improve autoimmune response and protect against breast cancer in mice.  相似文献   

7.
Chitosan-based nanoparticles (NPs) deserve particular attention as suitable drug carriers in the field of pharmaceutics, since they are able to protect the encapsulated drugs and/or improve their efficacy by making them able to cross biological barriers (such as the blood-brain barrier) and reach their intracellular target sites. Understanding the intracellular location of NPs is crucial for designing drug delivery strategies. In this study, fluorescently-labelled chitosan NPs were administered in vitro to a neuronal cell line, and diaminobenzidine (DAB) photoconversion was applied to correlate fluorescence and transmission electron microscopy to precisely describe the NPs intracellular fate. This technique allowed to demonstrate that chitosan NPs easily enter neuronal cells, predominantly by endocytosis; they were found both inside membrane-bounded vesicles and free in the cytosol, and were observed to accumulate around the cell nucleus.  相似文献   

8.
【目的】构建蜱传脑炎病毒(Tick-borne encephalitis virus,TBEV)跨血脑屏障研究的体外细胞模型,研究2种不同细胞的TBEV培养物在病毒跨过血脑屏障中的主要差异,从而为进一步TBEV跨血脑屏障的分子机制研究奠定基础。【方法】利用人脑微血管内皮细胞(Human brain microvascular endothelial cells,hCMEC/D3)构建体外血脑屏障的细胞模型。用BHK-21细胞中培养的蜱传脑炎病毒感染人脑微血管内皮细胞,检测TBEV在hCMEC/D3中的复制增殖情况;将TBEV加入体外血脑屏障模型的上层微孔中,用实时荧光定量PCR和噬斑测定的方法检测跨过血脑屏障的病毒量;将感染TBEV的人单核细胞加入血脑屏障模型的上层微孔中,观察渗漏进下层孔中的淋巴细胞,并用实时荧光定量PCR和噬斑测定的方法检测跨过血脑屏障的病毒量。利用伊文思蓝标记的白蛋白确定血脑屏障细胞的渗透率变化。【结果】实时荧光定量PCR和病毒滴度测定结果表明,TBEV不能在hCMEC/D3细胞中复制增殖,也不能直接跨过血脑屏障;然而,人单核细胞THP-1感染TBEV后,尽管单核细胞不能直接携带TBEV跨过血脑屏障,但THP-1中产生的病毒却能跨过血脑屏障模型进入下层孔中,并引起血脑屏障渗透率的增高。【结论】单核细胞有助于TBEV跨过血脑屏障。  相似文献   

9.
10.
Effect of Tween 80 on the growth of Leptospira canicola strain Utrecht and L. icterohaemorrhagiae strain Mikawajima was examined. The suspension of washed leptospira was inoculated into modified Korthof's basal medium containing varied amounts of Tween 80 and cultured at 30 C. Cell numbers were counted by using Petroff-Hausser counting chamber every other day. Optimum Tween 80 concentrations for L. canicola were 0.0125 and 0.025%. Cell counts in the second sub-cultures reached 108 per ml the same as the primary cultures. Generation time of L. canicola in 0.025% Tween 80 medium was about 13 hours. Growth of L. icterohaemorrhagiae was inhibited at concentrations greater than 0.0125 per cent. Cell numbers increased about 4 times at concentration of 0.0000125% Tween 80. L. canicola utilizes Tween 80 as a nutrient while L. icterohaemorrhagiae appears sensitive to it. A difference of more than 1,000 times in maximal growth-supporting concentration between L. canicola and L. icterohaemorrhagiae exists. This difference appears to be caused by difference in surface structure and metabolic requirements.  相似文献   

11.
Tween 80 (0.1%, v/v) added to Thermomonospora curvata growing in minimal medium caused a transient lowering of the dry cell mass, decreased the optimal growth temperature of the thermophile from 62 to 54°C, and increased extracellular esterase activity. Cells grown in the presence of Tween 80 had decreased concentrations of branched chain fatty acids and increased concentrations of oleic acid. The detergent removed surface protuberances from mycelia and increased the liberation of enzymes active against crystalline cellulose, but did not stimulate liberation of enzymes active against carboxymethylcellulose, starch or pectin.  相似文献   

12.
A series of novel quinazolinone derivatives containing a substituted amino moiety were synthesized, evaluated for their cytotoxic and antibacterial activities. The results of MTT assay showed that all synthesized target compounds 5A  –  5O showed potent cytotoxicity against SGC‐7901 (IC50, 0.72 – 1.41 μm ). Moreover, the compounds 5D , 5I , and 5K showed better selectivity as compared with positive controls pemetrexed and MTX due to weak cytotoxicity against normal tissue cell line HUVSMC. Among synthesized compounds, the compounds 5E , 5J , 5L , and 5N showed broad‐spectrum cytotoxic activities against at least four cancer cell lines at a micromolar level. The results of antibacteria evaluation revealed that all synthesized compounds showed good to moderate antibacterial activities against Gram‐negative bacteria Escherichia coli. Among them, the MIC values of the compounds 5C , 5F , and 5M were 0.31 μg/mL.  相似文献   

13.
Despite the wide interest raised by lung administration of nanoparticles (NPs) for the treatment of various diseases, little information is available on their effect toward the airway epithelial barrier function. In this study, the potential damage of the pulmonary epithelium upon exposure to poly(lactide-co-glycolide) (PLGA) NPs has been assessed in vitro using a Calu-3-based model of the bronchial epithelial barrier. Positively and negatively charged as well as neutral PLGA NPs were obtained by coating their surface with chitosan (CS), poloxamer (PF68), or poly(vinyl alcohol) (PVA). The role of NP surface chemistry and charge on the epithelial resistance and mucus turnover, using MUC5AC as a marker, was investigated. The interaction with mucin reduced the penetration of CS- and PVA-coated NPs, while the hydrophilic PF68-coated NPs diffused across the mucus barrier leading to a higher intracellular accumulation. Only CS-coated NPs caused a transient but reversible decrease of the trans-epithelial electrical resistance (TEER). None of the NP formulations increased MUC5AC mRNA expression or the protein levels. These in vitro results highlight the safety of PLGA NPs toward the integrity and function of the bronchial airway barrier and demonstrate the crucial role of NP surface properties to achieve a controlled and sustained delivery of drugs via the pulmonary route.  相似文献   

14.
《Chirality》2017,29(6):304-314
S‐naproxen by enantioselective hydrolysis of racemic naproxen methyl ester was produced using immobilized lipase. The lipase enzyme was immobilized on chitosan beads, activated chitosan beads by glutaraldehyde, and Amberlite XAD7. In order to find an appropriate support for the hydrolysis reaction of racemic naproxen methyl ester, the conversion and enantioselectivity for all carriers were compared. In addition, effects of the volumetric ratio of two phases in different organic solvents, addition of cosolvent and surfactant, optimum pH and temperature, reusability, and inhibitory effect of methanol were investigated. The optimum volumetric ratio of two phases was defined as 3:2 of aqueous phase to organic phase. Various water miscible and water immiscible solvents were examined. Finally, isooctane was chosen as an organic solvent, while 2‐ethoxyethanol was added as a cosolvent in the organic phase of the reaction mixture. The optimum reaction conditions were determined to be 35 °C, pH 7, and 24 h. Addition of Tween‐80 in the organic phase increased the accessibility of immobilized enzyme to the reactant. The optimum organic phase compositions using a volumetric ratio of 2‐ethoxyethanol, isooctane and Tween‐80 were 3:7 and 0.1% (v /v/v), respectively. The best conversion and enantioselectivity of immobilized enzyme using chitosan beads activated by glutaraldehyde were 0.45 and 185, respectively.  相似文献   

15.
Cryptococcus neoformans penetration into the central nervous system (CNS) requires traversal of the blood–brain barrier that is composed of a single layer of human brain microvascular endothelial cells (HBMEC), but the underlying mechanisms of C. neoformans traversal remain incompletely understood. C. neoformans transcytosis of HBMEC monolayer involves rearrangements of the host cell actin cytoskeleton and small GTP‐binding Rho family proteins such as Rac1 are shown to regulate host cell actin cytoskeleton. We, therefore, examined whether C. neoformans traversal of the blood–brain barrier involves host Rac1. While the levels of activated Rac1 (GTP‐Rac1) in HBMEC increased significantly upon incubation with C. neoformans strains, pharmacological inhibition and down‐modulation of Rac1 significantly decreased C. neoformans transcytosis of HBMEC monolayer. Also, Rac1 inhibition was efficient in preventing C. neoformans penetration into the brain. In addition, C. neoformans phospholipase B1 (Plb1) was shown to contribute to activating host cell Rac1, andSTAT3 was observed to associate with GTP‐Rac1 in HBMEC that were incubated with C. neoformans strain but not with its Δplb1 mutant. These findings demonstrate for the first time that C. neoformans Plb1 aids fungal traversal across the blood–brain barrier by activating host cell Rac1 and its association with STAT3, and suggest that pharmacological intervention of host–microbial interaction contributing to traversal of the blood–brain barrier may prevent C. neoformans penetration into the brain.  相似文献   

16.
Kong  Fanzhi  Wang  Jiaying  Han  Rui  Ji  Shuaiqi  Yue  Jin  Wang  Yongliang  Ma  Lei 《Mycopathologia》2020,185(3):485-494

The aim of this research was to study the effects of different concentrations of magnesium oxide nanoparticles (MgO NPs) on the growth and key virulence factors of Candida albicans (C. albicans). The minimum inhibitory concentration (MIC) of MgO NPs against C. albicans was determined by the micro-broth dilution method. A time-kill curve of MgO NPs and C. albicans was established to investigate the ageing effect of MgO NPs on C. albicans. Crystal violet staining, the MTT assay, and inverted fluorescence microscopy were employed to determine the effects of MgO NPs on C. albicans adhesion, two-phase morphological transformation, biofilm biomass, and metabolic activity. The time-kill curve showed that MgO NPs had fungicidal and antifungal activity against C. albicans in a time- and concentration-dependent manner. Semi-quantitative crystal violet staining and MTT assays showed that MgO NPs significantly inhibited C. albicans biofilm formation and metabolic activity, and the difference was statistically significant (p?<?0.001). Inverted fluorescence microscopy showed that MgO NPs could inhibit the formation of C. albicans biofilm hyphae. Adhesion experiments showed that MgO NPs significantly inhibited the initial adhesion of C. albicans (p?<?0.001). This study demonstrates that MgO NPs can effectively inhibit the growth, initial adhesion, two-phase morphological transformation, and biofilm formation of C. albicans and is an antifungal candidate.

  相似文献   

17.
Background

Colorectal cancer (CRC) is major aliment around the word, with a cumulative rate of mortality. Metformin (MT) was recently approved as anticancer drug against solid tumors, such as CRC. Resistance to MT therapy remains to be a challenging matter facing the development of possible anti-cancer strategy. To circumvent this problem, MT nano-encapsulation has been introduced to sensitize resistant cancer cells. The purpose of the current study is to explore the MT's aptitude encapsulated in lecithin (LC) and chitosan (CS) nanoparticles to inhibit CRC proliferation through modulations of long noncoding RNAs (lncRNAs), micro RNAs (miRNAs), and some biochemical markers.

Methods and results

Cytotoxic screenings of the newly synthesized MT-based regimens; MT, MT-LC NPs (NP1), MT-CS NPs (NP2), and MT-LC-CS NPs (NP3) against colorectal cancerous Caco-2 and HCT116 cell lines versus normal WI-38 cells were performed. The epigenetic mechanistic effects of these proposed regimens on lncRNAs and miRNAs were investigated. Additionally, some protein levels were assessed in CRC cells upon treatments; YKL-40, PPARγ, E-cadherin (ECN), and VEGF. We resulted that NP1 recorded the highest significant cytotoxic effect on CRC cells. HCT116 cells were more sensitive to the NP1 compared to Caco-2 cells. Intriguingly, it was suggested that NP1 tackled the CRC cells through down-regulation of the H19, HOTTIP, HULC, LINC00641, miR-200, miR‐92a, miR-21, YKL-40, PPARγ, and VEGF expressions, as well as up-regulation of the miR-944 and ECN expressions.

Conclusions

We concluded that the NP1 can potentially be cytotoxic to CRC cells in-vitro by modulating noncoding RNA.

  相似文献   

18.
The aim of this work was to study chemical structures and biological activities of rhamnolipids produced by Pseudomonas aeruginosa B189 isolated from milk factory waste. The culture produced two biosurfactants, a and b, which showed strong activity and were identified as L-rhamnopyranosyl-L-rhamnopyranosyl-beta-hydroxydecanoyl-beta-hydroxydecanoate or Rha-Rha C10-C10 and L-rhamnopyranosyl-L-rhamnopyranosyl-beta-hydroxydecanoyl-beta-hydroxydodecanoate or Rha-Rha C(10)-C(12), respectively. Both compounds exhibited higher surfactant activities tested by the drop collapse test than several artificial surfactants such as SDS and Tween 80. Rhamnolipid a showed significant antiproliferative activity against human breast cancer cell line (MCF-7) at minimum inhibitory concentration (MIC) at 6.25 microg/mL while rhamnolipid b showed MIC against insect cell line C6/36 at 50 microg/mL.  相似文献   

19.
Steinberg G 《PloS one》2012,7(5):e38181
The Transfersome? is a lipid vesicle that contains membrane softeners, such as Tween 80, to make it ultra-deformable. This feature makes the Transfersome? an efficient carrier for delivery of therapeutic drugs across the skin barrier. It was reported that TDT 067 (a topical formulation of 15 mg/ml terbinafine in Transfersome? vesicles) has a much more potent antifungal activity in vitro compared with conventional terbinafine, which is a water-insoluble fungicide. Here we use ultra-structural studies and live imaging in a model fungus to describe the underlying mode of action. We show that terbinafine causes local collapse of the fungal endoplasmic reticulum, which was more efficient when terbinafine was delivered in Transfersome? vesicles (TFVs). When applied in liquid culture, fluorescently labeled TFVs rapidly entered the fungal cells (T(1/2)~2 min). Entry was F-actin- and ATP-independent, indicating that it is a passive process. Ultra-structural studies showed that passage through the cell wall involves significant deformation of the vesicles, and depends on a high concentration of the surfactant Tween 80 in their membrane. Surprisingly, the TFVs collapsed into lipid droplets after entry into the cell and the terbinafine was released from their interior. With time, the lipid bodies were metabolized in an ATP-dependent fashion, suggesting that cytosolic lipases attack and degrade intruding TFVs. Indeed, the specific monoacylglycerol lipase inhibitor URB602 prevented Transfersome? degradation and neutralized the cytotoxic effect of Transfersome?-delivered terbinafine. These data suggest that (a) Transfersomes deliver the lipophilic fungicide Terbinafine to the fungal cell wall, (b) the membrane softener Tween 80 allows the passage of the Transfersomes into the fungal cell, and (c) fungal lipases digest the invading Transfersome? vesicles thereby releasing their cytotoxic content. As this mode of action of Transfersomes is independent of the drug cargo, these results demonstrate the potential of Transfersomes in the treatment of all fungal diseases.  相似文献   

20.
Non-small cell lung cancer (NSCLC) and hepatocellular carcinoma (HCC) are leading causes of cancer mortality and morbidity around the world. Despite the recent advances in their diagnosis and therapy, their prognosis remains poor owing to the development of drug resistance and metastasis. Raloxifene (RX), a drug first used in the treatment of osteoporosis, was recently approved for NSCLC and HCC prevention. Unfortunately, many of the therapies that use RX are likely to become ineffective due to drug resistance. Herein, we developed a novel delivery strategy by utilizing hyaluronic acid (HA) and chitosan (CS) complexation to increase the half-life and activity of RX. Consequently, we explored the pro-apoptotic and cytotoxic effects of RX-HA-CS nanoparticles (NPs) against NSCLC (A549) and HCC (HepG2 and Huh-7) cell lines. The highest entrapment efficiency (EE%) was noted in RX-HA-CS NPs (92%) compared to RX-HA NPs (87.5%) and RX-CS NPs (68%). In addition, RX-HA-CS NPs induced the highest cytotoxicity against A549 cells compared to other platforms. The significant suppression of A549 cell viability was achieved via glucose uptake reduction resulting in diminished bioenergetics of cancer cells and activation of apoptosis via nitric oxide level elevation. This study is the first to assess the efficacy of RX in its HA-CS nano-formulation against lung and liver cancer cells and demonstrated its selective cytotoxic and apoptotic potential against human lung A549 cancer cell line. These findings demonstrate a promising drug delivery system to help mitigate drug resistance in lung cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号