首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
BioMetals - The dinoflagellate Alexandrium catenella is a well-known paralytic shellfish toxin producer that forms harmful algal blooms (HABs) worldwide. Blooms of this species have repeatedly...  相似文献   

2.
The occurrence of harmful algal blooms (HABs) throughout the world has increased and poses a large threat to human health, fishery resources and tourism industries. The genus Alexandrium includes a number of toxic species associated with HABs. Therefore, it is very important to rapidly detect and monitor the harmful algae, such as Alexandrium genus. In this study, a standard curve of plasmid containing 18S rDNA-28S rDNA region from Alexandrium catenella was constructed and 5.8S rDNA sequence served as the primer of the real-time PCR. Cultured A. catenella, Alexandrium affine, Alexandrium lusitanicum and Alexandrium minutum samples were analyzed by real-time PCR using the same set of primers simultaneously. Using microscopy cells counts, 5.8S rDNA copies per cell and total DNA per cell were estimated. This assay method is promising for rapid detection of large number of Alexandrium samples.  相似文献   

3.
《Harmful algae》2005,4(3):449-470
Prorocentrum minimum (Pavillard) Schiller, a common, neritic, bloom-forming dinoflagellate, is the cause of harmful blooms in many estuarine and coastal environments. Among harmful algal bloom species, P. minimum is important for the following reasons: it is widely distributed geographically in temperate and subtropical waters; it is potentially harmful to humans via shellfish poisoning; it has detrimental effects at both the organismal and environmental levels; blooms appear to be undergoing a geographical expansion over the past several decades; and, a relationship appears to exist between blooms of this species and increasing coastal eutrophication. Although shellfish toxicity with associated human impacts has been attributed to P. minimum blooms from a variety of coastal environments (Japan; France; Norway; Netherlands; New York, USA), only clones isolated from the Mediterranean coast of France, and shellfish exposed to P. minimum blooms in this area, have been shown to contain a water soluble neurotoxic component which killed mice. Detrimental ecosystem effects associated with blooms range from fish and zoobenthic mortalities to shellfish aquaculture mortalities, attributable to both indirect biomass effects (e.g., low dissolved oxygen) and toxic effects. P. minimum blooms generally occur under conditions of high temperatures and incident irradiances and low to moderate salinities in coastal and estuarine environments often characterized as eutrophic, although they have been found under widely varying salinities and temperatures if other factors are conducive for growth. The physiological flexibility of P. minimum in response to changing environmental parameters (e.g., light, temperature, salinity) as well as its ability to utilize both inorganic and organic nitrogen, phosphorus, and carbon nutrient sources, suggest that increasing blooms of this species are a response to increasing coastal eutrophication.  相似文献   

4.
Naturally occurring allelopathic compounds, specific to some phytoplankton, may be a good source of bio-control agents against microalgae responsible for harmful algal blooms (HABs). Global expansion of HABs has invigorated research into different approaches to control these algae, including the search for naturally derived algicidal compounds. Here, we investigated the effects of a filtrate from the algicidal marine bacterium Shewanella sp. IRI-160 on photochemical function of four cultured dinoflagellates, Karlodinium veneficum, Gyrodinium instriatum, Prorocentrum minimum, and Alexandrium tamarense. The filtrate (designated IRI-160AA) contains bioactive compound(s), which were recently shown to inhibit growth of several dinoflagellate species. Results of this study show that all dinoflagellates but P. minimum exhibited photosystem II (PSII) inhibition, loss of photosynthetic electron transport, and varying degrees of cellular mortality. Exposure assays over 24 h showed that PSII inhibition and loss of cell membrane integrity occurred simultaneously in G. instriatum, but not in K. veneficum, where PSII activity declined prior to losing outer-membrane integrity. In addition, PSII inhibition and population growth inhibition were dose-dependent in K. veneficum, with an average EC-50 of 7.9 % (v/v) IRI-160AA. Application of IRI-160AA induced significantly higher PSII inhibition and cell mortality in K. veneficum subjected to continuous darkness as compared to cells maintained with 12:12 h light/dark cycles, while no such dark effect was noted for G. instriatum. The marked differences in the rate and impact of this algicide suggest that multiple cellular targets and different cascades of cellular dysfunction occur across these dinoflagellates.  相似文献   

5.
In this study, we examined the algal-lytic activities and biological control mechanisms of Pseudoalteromonas haloplanktis AFMB-08041, which was isolated from surface seawater obtained at Masan Bay in Korea. In addition, we assessed whether AFMB-08041 could be used as a biocontrol agent to regulate harmful dinoflagellate Prorocentrum minimum. From these experiments, we found that the inoculation of AFMB-08041 at a final density of 2.5 × 104 cfu ml−1 caused P. minimum cells to degrade (>90%) within 5 days. The algal cells were lysed through an indirect attack by the AFMB-08041 bacterial strain. Our results also suggest that the algal-lytic compounds produced by AFMB-08041 may have β-glucosidase activity. However, P. haloplanktis AFMB-08041 was not able to suppress the growth of other alga such as Alexandrium tamarense, Akashiwo sanguinea, Cochlodinium polykrikoides, Gymnodinium catenatum, and Heterosigma akashiwo. Moreover, we observed that the growth of Prorocentrum dentatum, which has a very similar morphological structure to P. minimum, was also effectively suppressed by P. haloplanktis AFMB-08041. Therefore, the effect of AFMB-08041 on P. minimum degradation appears to be species specific. When testing in an indoor mesocosms, P. haloplanktis AFMB-08041 reduced the amount of viable P. minimum cells by 94.5% within 5 days after inoculation. The combined results of this study clearly demonstrate that this bacterium is capable of regulating the harmful algal blooms of P. minimum. In addition, these results will enable us to develop a new strategy for the anthropogenic control of harmful algal bloom-forming species in nature.  相似文献   

6.
We have focused on ciliates as potential grazers on toxic phytoplankton because they are major herbivores in aquatic food webs. Ciliates may exert top down control on toxic phytoplankton blooms, potentially suppressing or shortening the duration of harmful algal blooms (HABs). We measured the growth rates of several ciliate species on uni-algal and mixed diets of both HAB and non-HAB algae. The tintinnids Favella ehrenbergii, Eutintinnus pectinis and Metacylis angulata and the non-loricate ciliates Strombidinopsis sp. and Strombidium conicum were isolated from Long Island Sound (LIS), and fed HAB species including the prymnesiophyte Prymnesium parvum (strain 97-20-01) and the dinoflagellate Prorocentrum minimum (strains Exuv and JA 98-01). Ciliates were fed algal prey from cultures at various growth phases and at varying concentrations. We observed no harmful effects of P. minimum (Exuv) on any of the ciliates. However in a comparison of strains, P. minimum (Exuv) supported high growth rates, whereas P. minimum (JA 98-01) supported only nominal growth. P. parvum was acutely toxic to ciliates at high concentrations (2×104–3×104 cells ml−1). At low concentrations (5×103–1×104 cells ml−1), or in culture filtrate, ciliates survived for at least several hours. In mixed diet experiments, as long as a non-toxic alga was available, ciliates survived and at times grew well at concentrations of P. parvum (5×102–3×104 cells ml−1) that would otherwise have killed them. The present study suggests that prior to the onset of toxicity and bloom formation ciliates may exert grazing pressure on these HAB species, potentially contributing to the suppression or decline of P. minimum and P. parvum blooms.  相似文献   

7.
Península Valdés (PV) in Argentina is an important calving ground for southern right whales (SRWs, Eubalaena australis). Since 2005, right whale mortality has increased at PV, with most of the deaths (~90%) being calves <3 mo old. We investigated the potential involvement of harmful algal blooms (HABs) in these deaths by examining data that include: timing of the SRW deaths, biotoxins in samples from dead SRWs, abundances of the diatom, Pseudo‐nitzschia spp., and the dinoflagellate, Alexandrium tamarense, shellfish harvesting closure dates, seasonal availability of whale prey at PV and satellite chlorophyll data. Evidence of the whales' exposure to HAB toxins includes trace levels of paralytic shellfish toxins (PSTs) and domoic acid (DA) in tissues of some dead whales, and fragments of Pseudo‐nitzschia spp. frustules in whale feces. Additionally, whales are present at PV during both closures of the shellfish industry (due to high levels of PSTs) and periods with high levels of Pseudo‐nitzschia spp. and A. tamarense. There is a positive statistical relationship between monthly Pseudo‐nitzschia densities (but not A. tamarense) and calf deaths in both gulfs of PV.  相似文献   

8.
The dinoflagellate Akashiwo sanguinea is a well known, cosmopolitan harmful microalga that frequently forms harmful algal blooms (HABs) in marine estuaries from temperate to tropical waters, and has posed a severe threat to fish, shellfish, and sea birds. Therefore, it is important to understand the ecology of this species, particularly the mechanisms regulating its ubiquitous geographic distribution and frequent recurrence of. To date, the mechanisms regulating distribution and recurrence of HABs by this species have been poorly understood. While resting cyst production can play a central role in the geographic expansion and initiation of HABs, studies of the life cycle of this alga, including cyst production, have been lacking. Here, we demonstrate that A. sanguinea produces sexual resting cysts homothallically. We present evidence for cell pairs in sexual mating, biflagellated planozygote formation, and cysts of different morphologies, and we describe time series for germination of cysts to germlings with two longitudinal flagella, along with studies of possible factors affecting cyst production. Phylogenetic analysis of large sub‐unit rDNA sequences revealed a monophyly of this species and thus possibly a recent common ancestor for all global populations. The discovery of resting cyst production by A. sanguinea suggests its frequent recurrence of blooms and global distribution may have been facilitated by the natural and anthropogenic transport of resting cysts.  相似文献   

9.
Oysters, Crassostrea virginica, from two populations, one from a coastal pond experiencing repeated dinoflagellate blooms (native), and the other from another site where blooms have not been observed (non-native), were analyzed for cellular immune system profiles before and during natural and simulated (by adding cultured algae to natural plankton) blooms of the dinoflagellate Prorocentrum minimum. Significant differences in hemocytes between the two oyster populations, before and after the blooms, were found with ANOVA, principal components analysis (PCA) and ANOVA applied to PCA components. Stress associated with blooms of P. minimum included an increase in hemocyte number, especially granulocytes and small granulocytes, and an increase in phagocytosis associated with a decrease in aggregation and mortality of the hemocytes, as compared with oysters in pre-bloom analyses. Non-native oysters constitutively had a hemocyte profile more similar to that induced by P. minimum than that of native oysters, but this profile did not impart increased resistance. The effect of P. minimum on respiratory burst was different according to the origin of the oysters, with the dinoflagellate causing a 35% increase in the respiratory burst of the native oysters but having no effect on that of the non-native oysters. Increased respiratory burst in hemocytes of native oysters exposed to P. minimum in both simulated and natural blooms may represent an adaptation to annual blooms whereby surviving native oysters protect themselves against tissue damage from ingested P. minimum.  相似文献   

10.
Marine invertebrates often have complex life histories that include a swimming planktivorous larval stage, at which time they are vulnerable to a variety of stressors, including those associated with nutritional stress and harmful algal blooms. Lipid stores have been shown to be especially important for post-metamorphic survivorship and growth in a variety of marine invertebrates. We investigated the effects of the harmful brown tide alga Aureococcus anophagefferens on the lipid stores and growth of larvae of the hard clam (northern quahog, Mercenaria mercenaria), a dominant bivalve in many western Atlantic bays and estuaries. M. mercenaria was the dominant bivalve in Great South Bay, Long Island, until the mid-1970s, but very few larvae are presently found in these waters. Recent brown tide blooms have been hypothesized to pose a barrier to recovery of M. mercenaria populations and hinder recent restoration efforts by negatively affecting clam larvae. To test whether a diet of the brown tide alga affects the accumulation of beneficial lipid stores, we fed larvae one of three diets representing equal biovolumes of Isochrysis galbana, a nutritious control alga; A. anophagefferens, the brown tide alga for which nutritional quality is not presently known; or a mixture of the two. Larvae fed only brown tide had significantly less lipid stores than those in the other dietary treatments. In addition, brown tide negatively affected larval size. We also tested for evidence of tradeoffs between larval growth and lipid stores, predicting that when the diet was less nutritious as in the brown tide treatments, larval size and lipids would be negatively correlated. In contrast, we found that larvae fed a mixed algal diet or only A. anophagefferens showed a significant positive correlation between lipid stores and size, suggesting that some larvae were simply better at obtaining food and associated nutrients. Larval success likely depends on a complex interplay between genetic and environmental factors. Our study suggests that poor nutrition associated with a harmful alga can have negative effects on larval size and lipids stores, which in turn are mediated by the inter-individual variability in the ability to grow and accumulate necessary lipid stores. Phytoplankton quality is likely to be important for the sustainability of bivalve populations even when it primarily impacts the larval phase; and a diet of brown tide algae may have lasting legacies for juveniles and adults.  相似文献   

11.
A systematic sampling programme was carried out in a large numberof confined waters (principally harbours) along the Catalancoast (NW Mediterranean) in the context of a new MonitoringProgramme. This Monitoring Programme was associated not onlywith areas subject to aquaculture activities, and thereforeunder legislation, but also with confined areas with a highrisk of harmful algal blooms (HABs) occurrence, in order toprovide an early warning of potentially widespread HABs. Thesystematic programme was performed weekly in summer and bi-monthlyin winter for five years. The main results were: (i) the detectionof many harmful species and the presence of high numbers ofharmful dinoflagellates, mainly of the genera Alexandrium andDinophysis; (ii) the detection of Alexandrium catenella, newin the study area, which had hardly ever been detected in theMediterranean Sea; (iii) the presence of some potentially harmfulspecies, including Dinophysis sacculus, present at all periodsof the year; (iv) bloom recurrence in several stations; (v)occasional coincidence of small-scale blooms, such as thoseconfined inside the harbours, with widespread blooms (mesoscaleblooms) of the same organism. The implications of this highfrequency of HAB detection is discussed in relation to the suitabilityof this sampling programme (focused on confined waters) forthe early detection of algal blooms.  相似文献   

12.
Dinoflagellates are a major cause of harmful algal blooms (HABs), with consequences for coastal marine ecosystem functioning and services. Alexandrium fundyense (previously Alexandrium tamarense) is one of the most abundant and widespread toxigenic species in the temperate Northern and Southern Hemisphere and produces paralytic shellfish poisoning toxins as well as lytic allelochemical substances. These bioactive compounds may support the success of A. fundyense and its ability to form blooms. Here we investigate the impact of grazing on monoclonal and mixed set-ups of highly (Alex2) and moderately (Alex4) allelochemically active A. fundyense strains and a non-allelochemically active conspecific (Alex5) by the heterotrophic dinoflagellate Polykrikos kofoidii. While Alex4 and particularly Alex5 were strongly grazed by P. kofoidii when offered alone, both strains grew well in the mixed assemblages (Alex4 + Alex5 and Alex2 + Alex5). Hence, the allelochemical active strains facilitated growth of the non-active strain by protecting the population as a whole against grazing. Based on our results, we argue that facilitation among clonal lineages within a species may partly explain the high genotypic and phenotypic diversity of Alexandrium populations. Populations of Alexandrium may comprise multiple cooperative traits that act in concert with intraspecific facilitation, and hence promote the success of this notorious HAB species.  相似文献   

13.
In order to test the use of lectins as a tool for the differentiation of harmful algal species, 13 species and 23 strains of algae were tested with 14 fluorescein isothiocyanate (FITC)-conjugated lectins, and the results examined using flow cytometry (FCM), epifluorescence microscopy (EFM) and spectrofluorometry (SFM). The lectin probes SBA, WGA, GSL I, DBA and PHA-E could distinguish between morphologically similar Gymnodinium-like species, such as Karenia mikimotoi (GMDH01), Takayama pulchellum (TPXM01) and Gymnodinium sp. (GspXM01), by their different binding activities. With the precise quantitative measurements of binding obtained using SFM and FCM, lectins appeared to be useful in distinguishing different strains of the same species. The results also showed that PHA-E could differentiate Alexandrium tamarense (ATDH04) from other strains of this species, and SJA could distinguish A. tamarense (ATMJ02) from other strains of this species (including ATMJ01). Similarly, PNA could identify A. tamarense (ATDH01, 02, 03); UEA I could recognize A. tamarense (ATCI01-JN, ATCI01); and RCA120 could differentiate Alexandrium sp (AspGX01) from strain AspGX02, which was shown to produce different levels of paralytic shellfish poisoning toxin. Lectin probes could also bind these target cells in mixed algal samples. Positive cells identified by FCM were clearer than negative cells thus, in EFM, both GspXM01 and TPXM01 labeled with a WGA lectin probe could be distinguished from target cells of K. mikimotoi, Prorocentrum donghaiense and P. minimum (PMDH01, PMXM01) in mixed algal samples. FCM, EFM and SFM analysis could clearly distinguish lectin-probe-bound cells from negative cells in culture.  相似文献   

14.
The harmful dinoflagellate Prorocentrum minimum has different effects upon various species of grazing bivalves, and these effects also vary with life-history stage. Possible effects of this dinoflagellate upon mussels have not been reported; therefore, experiments exposing adult blue mussels, Mytilus edulis, to P. minimum were conducted. Mussels were exposed to cultures of toxic P. minimum or benign Rhodomonas sp. in glass aquaria. After a short period of acclimation, samples were collected on day 0 (before the exposure) and after 3, 6, and 9 days of continuous-exposure experiment. Hemolymph was extracted for flow-cytometric analyses of hemocyte, immune-response functions, and soft tissues were excised for histopathology. Mussels responded to P. minimum exposure with diapedesis of hemocytes into the intestine, presumably to isolate P. minimum cells within the gut, thereby minimizing damage to other tissues. This immune response appeared to have been sustained throughout the 9-day exposure period, as circulating hemocytes retained hematological and functional properties. Bacteria proliferated in the intestines of the P. minimum-exposed mussels. Hemocytes within the intestine appeared to be either overwhelmed by the large number of bacteria or fully occupied in the encapsulating response to P. minimum cells; when hemocytes reached the intestine lumina, they underwent apoptosis and bacterial degradation. This experiment demonstrated that M. edulis is affected by ingestion of toxic P. minimum; however, the specific responses observed in the blue mussel differed from those reported for other bivalve species. This finding highlights the need to study effects of HABs on different bivalve species, rather than inferring that results from one species reflect the exposure responses of all bivalves.  相似文献   

15.
Biofouling ascidians are ubiquitous in coastal ecosystems and are among the main colonizers of aquaculture gear. Our study tested the hypothesis that the transport, removal, and transfer of fouling ascidian species by aquaculturists provide a mechanism for concentration and distribution of harmful-algal cells to new areas. Wild-caught specimens of common, biofouling ascidian species (Styela clava, Ciona intestinalis, Molgula manhattensis, Botrylloides violaceus, Didemnum vexillum, and Botryllus schlosseri) were exposed individually to cultured strains of co-occurring harmful algae (Prorocentrum minimum, Alexandrium fundyense, Alexandrium monilatum, Karenia brevis, Aureococcus anophagefferens, or Heterosigma akashiwo) at simulated bloom cell densities of each HAB species. After feeding, ascidians were transferred to ultrafiltered seawater. Immediately after exposure, and after 24 and 48 h in ultrafiltered seawater, biodeposits were collected and observed microscopically for the presence of intact, potentially viable cells. Subsamples of biodeposits were transferred into culture tubes with ultrafiltered seawater and monitored for algal growth during 8 weeks. Cells of all HAB species were found to pass intact through the ascidian digestive system, remained viable, and in many cases were capable of re-establishing populations at least 48 h post-ingestion. The results of our study will inform industry and managers of the potential threat and ecological impact of spreading biofouling ascidians, and practices to mitigate adverse impacts. Additionally, these management practices have been formally incorporated into a new cost-share program developed to help shellfish producers prevent the further spread of ascidians and associated HAB species.  相似文献   

16.
While searching for effective bio-agents to control harmful algal blooms (HABs), the bacterial strain LP-10, which has strong algicidal activity against Phaeocystis globosa (Prymnesiophyceae), was isolated from surface seawater samples taken from the East China Sea. 16S rDNA sequence analysis and morphological characteristics revealed the strain LP-10 belonged to the genus Bacillus. The lytic effect of Bacillus sp. LP-10 against P. globosa was both concentration- and time-dependent. Algicidal activities of different growth stages of the bacterial culture varied significantly. The lytic effect of different parts of the bacterial cultures indicated that the algal cells were lysed by algicidal active compounds in the cell-free filtrate. Analysis of the properties of the active compounds showed that they had a molecular weight of less than 1000 Da and that the active compounds were stable between −80 and 121 °C. The algicidal range assay indicated that five other algal species were also suppressed by strain LP-10, including: Alexandrium catenella, A. tamarense, A. minutum, Prorocentrum micans and Asterionella japonica. Our results suggested that the algicidal bacterium Bacillus sp. LP-10 could be a potential bio-agent to control the blooms of harmful algal species.  相似文献   

17.
目的:近年来,赤潮在我国的发生呈增加的趋势,并造成了极大的经济损失。过去研究赤潮发生的机理主要集中在理化因素的影响,而越来越多的证据表明仅凭借营养盐等环境因素并不能解释大部分赤潮现象,藻际微生物可能发挥着重要作用。本文跟踪观测了2010年7月深圳大鹏湾海域爆发的锥状斯氏藻赤潮生消过程中细菌群落丰度种类的变化,从微生物与赤潮藻相互作用的角度探讨了赤潮的生消过程,讨论了不同时期不同关键菌群的特殊作用,为解释赤潮爆发和消亡提供了新的视角,为赤潮的监控和防治新方法的建立奠定了理论基础。方法:本文按时间顺序共采集该赤潮9次样本,利用末端限制性酶切片段长度多态性分析(T-RFLP)等分子生物学方法,通过主成分分析、克隆文库的构建,研究了微生物群落的变化过程,并探讨了特定种属的微生物在赤潮发生、发展和消亡过程中的作用。结果:从浮游细菌丰度来看,随着锥状斯氏藻细胞数量的波动,浮游细菌总数也随之呈现相应的变化。从浮游细菌的种类来看,它们主要属于变形杆菌门(Proteobacteria)、拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)。从浮游细菌的动态变化过程来看,赤潮生消过程中,浮游细菌群落呈现出一定的演替现象,特别是在赤潮后期,群落主成分变化尤为显著。从关键菌群的作用来看,属于γ变形杆菌门的Alteromonas sp.一直占有较高的丰度,赤潮中后期受到菌群相互作用导致比例下降,而赤潮后期其他关键菌群的丰度的增高可能是导致赤潮消亡的重要原因。结论:本文利用T-RFLP这一DNA指纹技术分析微生物群落结构和多样性特征,通过研究赤潮生消过程中藻际浮游细菌群落的动态变化,发现随着赤潮的发展,浮游细菌群落发生着相应的变化。结果说明赤潮藻体丰度数量的改变影响着浮游细菌群落的组成。相对地,细菌群落的适应调整迅速造成赤潮藻体局部生长环境的改变,从而影响赤潮的发展过程。  相似文献   

18.
Biosurfactants have been suggested as a method to control harmful algal blooms (HABs), but warrant further and more in-depth investigation. Here we have investigated the algicidal effect of a biosurfactant produced by the bacterium Pseudomonas aeruginosa on five diverse marine and freshwater HAB species that have not been tested previously. These include Alexandrium minutum (Dinophycaee), Karenia brevis (Dinophyceae), Pseudonitzschia sp. (Bacillariophyceae), in marine ecosystems, and Gonyostomum semen (Raphidophyceae) and Microcystis aeruginosa (Cyanophyecae) in freshwater. We examined not only lethal but also sub-lethal effects of the biosurfactant. In addition, the effect of the biosurfactant on Daphnia was tested. Our conclusions were that very low biosurfactant concentrations (5 μg mL−1) decreased both the photosynthesis efficiency and the cell viability and that higher concentrations (50 μg mL−1) had lethal effects in four of the five HAB species tested. The low concentrations employed in this study and the diversity of HAB genera tested suggest that biosurfactants may be used to either control initial algal blooms without causing negative side effect to the ecosystem, or to provoke lethal effects when necessary.  相似文献   

19.
Several algal species responsible for harmful algal blooms (HABs), such as Alexandrium fundyense, are mixotrophic under certain environmental conditions. The ability to switch between photosynthetic and heterotrophic modes of growth may play a role in the development of HABs in coastal regions. We examined the influence of humic dissolved organic matter (HDOM) derived from terrestrial (plant/soil) and microbial sources on the growth of A. fundyense. We found that a terrestrially derived HDOM, Suwannee River humic acid (SRHA), did enhance A. fundyense growth; however, a microbially derived HDOM, Pony Lake fulvic acid (PLFA) did not enhance growth. A. fundyense grows in association with bacteria in culture and we observed that bacterial cell densities were much lower in A. fundyense cultures than in bacteria‐only cultures, consistent with bacterial grazing by A. fundyense in culture. In bacteria‐only cultures with added algal exudates (EX), the addition of PLFA and SRHA resulted in a slight increase in bacterial cell density compared to cultures without HDOM added. Changes over time in the chemical quality of the HDOM in the A. fundyense cultures reflected contributions of microbially derived material with similar characteristics as the PLFA. Overall, these results suggest that the chemical differences between SRHA and PLFA are responsible for the greater effect of SRHA on A. fundyense growth, and that the differential effect is not a result of an effect on the growth of associated bacteria.  相似文献   

20.
In this paper, haemocyte antigenicity of seven bivalve species (scallop (Chlamys farreri), bay scallop (Argoecten irradians), oyster (Crassostrea talienwhanensis), asiatic hard clam (Meretrix meretrix), monila clam (Ruditapes philipinarum), purplish washington clam (Saxidomus purpuratus) and horny ark (Scapharca subcrenta)) were analysed using monoclonal antibodies (MAbs) 1E7, 1F12, 2C6 and 2H5 against haemocytes of C. farreri, employed methods of immuno-dotblotting (IDB), indirect immunofluorescence assay (IIFA) and western-blotting (WB). The four MAbs react with haemocytes of seven bivalve species. As the results for both IDB and IIFA, MAb 1E7 was positive with haemocytes of R. philipinarum, MAb 1F12 with haemocytes of A. irradians, M. meretrix, R. philipinarum and S. purpuratus; MAb 2C6 with haemocytes of the other five bivalve species except for S. purpuratus. MAb 2H5 was negative with haemocytes of the other six bivalve species in IDB, but was positive with haemocytes of R. philipinarum and S. purpuratus in IIFA. Further experiments by WB showed MAb 1F12 was able to recognise the protein of A. irradians haemocyte at molecular weights of 156 and 80 kDa, haemocytes of M. meretris, R. philipinarum, S. purpuratus, at 60, 30, 58 kDa, respectively. MAb 2C6 recognised haemocyte M. meretris proteins at 50 and 37 kDa, A. irradians, C. talienwhanensis, R. philipinarum, S. subcrenta at 40, 38, 38, 45 kDa, respectively. There were no protein bands reacting with MAb 1E7 and MAb 2H5. The results indicate antigenic similarities exist among haemocytes of the seven bivalve species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号