首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Proteomic dissection of plant responses to various pathogens   总被引:1,自引:0,他引:1       下载免费PDF全文
During their growth and development, plants are vulnerable to the effects of a variety of pathogens. Proteomics technology plays an important role in research studies of plant defense mechanisms by mining the expression changes of proteins in response to various biotic stresses. This review article provides a comprehensive overview of the latest developments in international proteomic research on plant biotic stress. It summarizes the methods commonly used in plant proteomic research to investigate biotic stress, analyze the protein responses of plants in adverse conditions, and reviews the applications of proteomics combined with transgenic technology in plant protection.  相似文献   

3.
4.
植物中逆境反应相关的WRKY转录因子研究进展   总被引:3,自引:0,他引:3  
李冉  娄永根 《生态学报》2011,31(11):3223-3231
WRKY转录因子是植物体内一类比较大的转录因子家族,它在植物的生长发育以及抗逆境反应中起着非常重要的作用。本文综述了WRKY转录因子在植物应对冻害、干旱、盐害等非生物胁迫与病原菌、虫害等生物胁迫反应中的重要调控功能,并概括了WRKY转录因子在调控这些逆境反应中的机制。  相似文献   

5.
6.
Transgenic expression of plant chitinases to enhance disease resistance   总被引:2,自引:0,他引:2  
Crop plants have evolved an array of mechanisms to counter biotic and abiotic stresses. Many pathogenesis-related proteins are expressed by plants during the attack of pathogens. Advances in recombinant DNA technology and understanding of plant–microbe interactions at the molecular level have paved the way for isolation and characterization of genes encoding such proteins, including chitinases. Chitinases are included in families 18 and 19 of glycosyl hydrolases (according to www.cazy.org) and they are further categorized into seven major classes based on their aminoacid sequence homology, three-dimensional structures, and hydrolytic mechanisms of catalytic reactions. Although chitin is not a component of plant cell walls, plant chitinases are involved in development and non-specific stress responses. Also, chitinase genes sourced from plants have been successfully over-expressed in crop plants to combat fungal pathogens. Crops such as tomato, potato, maize, groundnut, mustard, finger millet, cotton, lychee, banana, grape, wheat and rice have been successfully engineered for fungal resistance either with chitinase alone or in combination with other PR proteins.  相似文献   

7.
The signaling processes in plants that initiate cellular responses to biotic and abiotic factors are believed to be located in the plasma membrane (PM). A better understanding of the PM proteome response to environmental stresses might lead to new strategies for improving stress-tolerant crops. A sub-cellular proteomics approach was applied to monitor changes in abundance of PM-associated protein in response to salinity, a key abiotic stress affecting rice productivity worldwide. Proteome was extracted from a root plasma-membrane-rich fraction of a rice salt tolerant variety, IR651, grown under saline and normal conditions. Comparative two-dimensional electrophoresis revealed that 24 proteins were differentially expressed in response to salt stress. From these, eight proteins were identified by mass spectrometry analysis. Most of the proteins identified are likely to be PM-associated and are known to be involved in several important mechanisms of plant adaptation to salt stress. These include regulation of PM pumps and channels, membrane structure, oxidative stress defense, signal transduction, protein folding, and the methyl cycle. To investigate the correlation between mRNA and protein level in response to salinity, we performed quantitative Real-Time PCR analysis of three genes that were salt responsive at the protein level, including 1,4-Benzoquinone reductase, a putative remorin and a hypersensitive induced response protein. No concordance was detected between the changes in levels of gene and protein expression. Our results indicate that the proteomics approach is suitable for expression analysis of membrane associated proteins under salt stress.  相似文献   

8.
9.
植物扎根土壤,面对不利的环境胁迫无法逃避。然而,植物已经进化出对环境胁迫的记忆(stress memory)与警备抗性(或防御警备defense priming)等机制适应环境。环境胁迫在短时间内无法改变植物的DNA碱基序列,因此表观遗传被认为是植物对环境胁迫产生记忆和产生防御警备的主要机制,而组蛋白修饰被认为是最重要的机制,为胁迫记忆提供了可能。本文综述了非生物和生物胁迫下植物分别以胁迫记忆和防御警备机制为主导的组蛋白修饰参与抵御不良环境的最新进展,并提出该研究领域存在的问题和今后研究的重点与方向。深入探究组蛋白修饰与植物适应环境胁迫的关系,可为提高植物抗性、植物表型塑造、器官再生和作物改良等方面提供理论和技术指导。  相似文献   

10.
The signaling processes in plants that initiate cellular responses to biotic and abiotic factors are believed to be located in the plasma membrane (PM). A better understanding of the PM proteome response to environmental stresses might lead to new strategies for improving stress-tolerant crops. A sub-cellular proteomics approach was applied to monitor changes in abundance of PM-associated protein in response to salinity, a key abiotic stress affecting rice productivity worldwide. Proteome was extracted from a root plasma-membrane-rich fraction of a rice salt tolerant variety, IR651, grown under saline and normal conditions. Comparative two-dimensional electrophoresis revealed that 24 proteins were differentially expressed in response to salt stress. From these, eight proteins were identified by mass spectrometry analysis. Most of the proteins identified are likely to be PM-associated and are known to be involved in several important mechanisms of plant adaptation to salt stress. These include regulation of PM pumps and channels, membrane structure, oxidative stress defense, signal transduction, protein folding, and the methyl cycle. To investigate the correlation between mRNA and protein level in response to salinity, we performed quantitative Real-Time PCR analysis of three genes that were salt responsive at the protein level, including 1,4-Benzoquinone reductase, a putative remorin and a hypersensitive induced response protein. No concordance was detected between the changes in levels of gene and protein expression. Our results indicate that the proteomics approach is suitable for expression analysis of membrane associated proteins under salt stress.  相似文献   

11.
12.
OsWRKY71, a rice transcription factor, is involved in rice defense response   总被引:13,自引:0,他引:13  
  相似文献   

13.
Agrawal GK  Rakwal R 《Proteomics》2011,11(9):1630-1649
Growing rice is an important socio-economic activity. Rice proteomics has achieved a tremendous progress in establishing techniques to proteomes of almost all tissues, organs, and organelles during the past one decade (year 2000-2010). We have compiled these progresses time to time over this period. The present compilation discusses proteomics research in rice published between 1st April 2008 and 30th July 2010. Progress continues mainly towards protein cataloging deep into the proteome with high-confident protein assignment and some functional significance than ever before by (i) identifying previously unreported/low-abundance proteins, (ii) quantifying relative/absolute values of proteins, (iii) assigning protein responses to biotic/abiotic stresses, (iv) protein localization into organelles, (v) validating previous proteomes and eliminating false-positive proteins, and (vi) discovering potential biomarkers for tissues, organs, organelles, and for screening transgenic plants and food-safety evaluation. The notable achievements in global mapping of phosphorylation sites and identifying several novel secreted proteins into the extracellular space are worth appreciating. Our ever-increasing knowledge on the rice proteomics is beginning to impact the biology of not only rice, but also crops and plants. These major achievements will be discussed in this review keeping in mind newcomers, young, and established scientists in proteomics and plants.  相似文献   

14.
Plant proteome analysis: a 2004-2006 update   总被引:1,自引:0,他引:1  
Since the appearance of the review entitled "Plant Proteome Analysis" in Proteomics in February 2004 (Cánovas, F. M., Dumas-Gaudot, E., Recorbert, G., Jorrín, J. et al., Proteomics 2004, 4, 285-298), about 200 original articles focusing on plant proteomics have been published. Although this represents less than 1% of the global proteomics output during this period, it nevertheless reflects an increase in activity over the period 1999-2004. These papers concern the proteome of at least 35 plant species but have concentrated mainly on thale cress (Arabidopsis thaliana) and rice (Oryza sativa). The scientific objectives have ranged from a proteomic analysis of organs, tissues, cell suspensions, or subcellular fractions to the study of plant development and response to various stresses. A number of contributions have covered PTMs and protein interactions. The dominant analytical platform has been 2-DE coupled to MS, but "second generation" techniques such as DIGE, multidimensional protein identification technology, isotope-coded affinity tags, and stable isotope labeling by amino acids in cell culture have begun to make an impact. This review aims to provide an update of the contribution of proteomics to plant biology during the period 2004-2006, and is divided into six sections: introduction, subcellular proteomes, plant development, responses to biotic and abiotic stresses, PTMs, and protein interactions. The conclusions summarize a view of the major pitfalls and challenges of plant proteomics.  相似文献   

15.
The rice Oryza sativa selenium-binding protein homologue (OsSBP) gene encodes a homologue of mammalian selenium-binding proteins, and it has been isolated as one of the genes induced by treating a plant with a cerebroside elicitor from rice blast fungus. The possible role of OsSBP in plant defense was evaluated by using a transgenic approach. Plants overexpressing OsSBP showed enhanced resistance to a virulent strain of rice blast fungus as well as to rice bacterial blight. The expression of defense-related genes and the accumulation of phytoalexin after infection by rice blast fungus were accelerated in the OsSBP overexpressors. A higher level of H(2)O(2) accumulation and reduced activity of such scavenging enzymes as ascorbate peroxidase and catalase were seen when the OsSBP-overexpressing plants were treated with the protein phosphatase 1 inhibitor, calyculin A. These results suggest that the upregulation of OsSBP expression conferred enhanced tolerance to different pathogens, possibly by increasing plant sensitivity to endogenous defense responses. Additionally, the OsSBP protein might have a role in modulating the defense mechanism to biotic stress in rice.  相似文献   

16.
Alfalfa, the most widely grown leguminous crop in the world, is generally exposed to severe salinity stress in Tunisia, notably affecting its germination performance. Toward a better understanding of alfalfa seed vigor, we have used proteomics to characterize protein changes occurring during germination and osmopriming, a pretreatment that accelerates germination and improves seedling uniformity particularly under stress conditions. The data revealed that germination was accompanied by dynamic changes of 79 proteins, which are mainly involved in protein metabolism, cell structure, metabolism, and defense. Comparative proteomic analysis also revealed 63 proteins specific to osmopriming, 65 proteins preferentially varying during germination, and 14 proteins common to both conditions. Thus, the present study unveiled the unexpected finding that osmopriming cannot simply be considered as an advance of germination-related processes but involves other mechanisms improving germination such as the mounting of defense mechanisms enabling osmoprimed seeds to surmount environmental stresses potentially occurring during germination. The present results therefore provide novel avenues toward understanding the mechanisms of invigoration of low vigor seeds by priming treatments that are widely used both in commercial applications and in developing countries (on farm seed priming) to better control crop yields.  相似文献   

17.
应用差异蛋白质组学方法分析作物化感作用的分子机理   总被引:9,自引:1,他引:8  
试验旨在分析运用分子标记技术(QTL)和差异蛋白组学技术研究作物化感作用分子机理的差异性。首先运用差异蛋白组学技术探讨在生物胁迫(稗草)下水稻化感作用潜力变化的内在分子机理。分别用稗草和水稻的根系分泌物培养切自一株5叶龄化感水稻P I312777植株并经恢复的2个分蘖。7d后,提取处理和对照相同叶位叶片的全蛋白质并进行双向电泳,每张电泳胶片上获得800多个电泳胶点,其中差异表达的蛋白质点有4个。采用M ALD I-TOF-M S对各差异蛋白质点进行肽质量指纹图谱分析,经过SW ISS-PROT数据库查询,结果表明化感水稻P I312777在稗草胁迫下的特异蛋白分别与苯丙氨酸氨解酶(PAL)、硫还原型蛋白(T rx-m)、3-羟基-3-甲基戊二酰辅酶A还原酶(HM GR)和过氧化物酶(POD)相匹配。根据编码以上4个差异蛋白质的DNA序列,发现编码以上4个差异蛋白的基因分别位于水稻染色体4、7、8和12上的特定克隆位点,这就是与化感作用相关基因。前人也运用QTL方法开展作物化感作用的分子机理研究,但由于所采用的供体材料、受体植物及对表型性状的评价方法等的不同,定位结果存在较大的差异。综合比较两种方法后认为,运用差异蛋白组学技术分析水稻化感作用的分子机理,比QTL技术更加直接和深入。因为比较胁迫处理和对照植物组织的2-DE图谱将能鉴定出由表达候选基因编码的胁迫蛋白质,氨基酸残基序列的测定将揭示那些功能与胁迫性状密切相关的蛋白质,这种编码的基因就是兼具功能与表达的候选基因。  相似文献   

18.
Members of the Pathogenesis Related (PR) 10 protein family have been identified in a variety of plant species and a wide range of functions ranging from defense to growth and development has been attributed to them. PR10 protein possesses ribonuclease (RNase) activity, interacts with phytohormones, involved in hormone-mediated signalling, afforded protection against various phytopathogenic fungi, bacteria, and viruses particularly in response to biotic and abiotic stresses. The resistance mechanism of PR10 protein may include activation of defense signalling pathways through possible interacting proteins involved in mediating responses to pathogens, degradation of RNA of the invading pathogens. Moreover, several morphological changes have been shown to accompany the enhanced abiotic stress tolerance. In this review, the possible mechanism of action of PR10 protein against biotic and abiotic stress has been discussed. Furthermore, our findings also confirmed that the in vivo Nitric oxide (NO) is essential for most of environmental abiotic stresses and disease resistance against pathogen infection. The proper level of NO may be necessary and beneficial, not only in plant response to the environmental abiotic stress, but also to biotic stress. The updated information on this interesting group of proteins will be useful in future research to develop multiple stress tolerance in plants.  相似文献   

19.
The mitogen-activated protein (MAP) kinase cascade is an important signaling module which is involved in biotic and abiotic stress responses as well as plant growth and development. In this study, we identified 17 tobacco MAPKs including 11 novel tobacco MAPK genes that have not been identified before. Comparative analysis with MAPK gene families from other plants, such as Athaliana thaliana, rice and poplar, suggested that tobacco MAPKs (such as NtMPK1, NtMPK3 and NtMPK8) might play similar functions in response to abiotic and biotic stresses. QRT-PCR analysis revealed that a total of 14 NtMPKs were regulated by SA and/or MeJA, suggesting their potential roles involved in plant defense response. In addition, 6 NtMPKs were induced by drought treatment, implying their roles in response to drought stress. Our results indicated that most of tobacco MAPK might be involved in plant defense response, which provides the basis for further analysis on physiological functions of tobacco MAPKs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号