首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fungi produce various mixtures of gas-phase, carbon-based compounds called volatile organic compounds (VOCs) that due to their small size are able to diffuse through the atmosphere and soils. Despite some methodological and technological constraints, researchers have detected and characterized approximately 250 fungal VOCs, many of which have characteristic odors and are produced during primary and secondary metabolism. Fungal VOCs may contribute to a controversial medical diagnosis called “sick building syndrome” and may also be important in the success of some biocontrol species of Trichoderma. VOCs also play important signaling roles for fungi in their natural environments. Many ecological interactions are mediated by VOCs, including those between fungi and plants, arthropods, bacteria, and other fungi. The diverse functions of fungal VOCs can be developed for use in biotechnological applications for biofuel, biocontrol, and mycofumigation. Volatiles represent a new frontier in bioprospecting, and the study of these gas-phase compounds promises the discovery of new products for human exploitation and will generate new hypotheses in fundamental biology.  相似文献   

2.
3.
A set of three complementary analytical methods were developed specifically for exhaled breath as collected in evacuated stainless steel canisters using gas chromatographic-mass spectrometric detection. The first is a screening method to quantify the carbon dioxide component (generally at 4–5% concentration), the second method measures the very volatile high-level endogenous compounds [e.g. acetone and isoprene at 500–1000 parts per billion by volume (ppbv), methanol, ethanol, dimethylsulfide at 2–10 ppbv], and the third method is designed to measure trace-level environmental contaminants and other endogenous volatile organic compounds (VOCs) (sub-ppbv) in breath. The canister-based sample format allows all three methods to be applied to each individual sample for complete constituent characterization. Application of these methods is shown to be useful in the following ways: analysis of CO2 levels indicates the approximate quantity of alveolar breath collected (as opposed to whole breath) in a sample; levels of major endogenous compounds are shown to be influenced by physical activities and subsequent recovery periods; and environmental exposures to xenobiotic VOCs can be characterized by assessment of post-exposure breath elimination curves. The instrumentation and methodology are described and example chromatograms and quantitative data plots demonstrating the utility of the methods are presented.  相似文献   

4.
5.
《Process Biochemistry》2014,49(9):1543-1554
Emissions of volatile sulfur compounds (VSCs) including hydrogen sulfide (H2S), methanethiol (MT), dimethylsulfide (DMS), and dimethyldisulfide (DMDS), referred to collectively as reduced sulfur compounds (RSCs), occur from a host of anthropogenic sources including the pulp and paper industries, refineries, petrochemicals, sewage treatment plants, etc. This article is organized to provide an overview of the biotreatment processes for VSCs with an emphasis on biofiltration in the pulp and paper industry. To this end, we discuss up-to-date knowledge on the generation of sulfurous odorants and their microbial degradation processes in biotreatment techniques. The fundamental characteristics of such techniques are described with respect to the configuration and design of the bioreactor treatment facilities and the associated mechanisms of operation. Finally, we add our perspectives on future research and development needs in this research area.  相似文献   

6.
7.
8.
Biofiltration of volatile organic compounds   总被引:6,自引:0,他引:6  
The removal of volatile organic compounds (VOCs) from contaminated airstreams has become a major air pollution concern. Improvement of the biofiltration process commonly used for the removal of odorous compounds has led to a better control of key parameters, enabling the application of biofiltration to be extended also to the removal of VOCs. Moreover, biofiltration, which is based on the ability of micro-organisms to degrade a large variety of compounds, proves to be economical and environmentally viable. In a biofilter, the waste gas is forced to rise through a layer of packed porous material. Thus, pollutants contained in the gaseous effluent are oxidised or converted into biomass by the action of microorganisms previously fixed on the packing material. The biofiltration process is then based on two principal phenomena: (1) transfer of contaminants from the air to the water phase or support medium, (2) bioconversion of pollutants to biomass, metabolic end-products, or carbon dioxide and water. The diversity of biofiltration mechanisms and their interaction with the microflora mean that the biofilter is defined as a complex and structured ecosystem. As a result, in addition to operating conditions, research into the microbial ecology of biofilters is required in order better to optimise the management of such biological treatment systems.  相似文献   

9.
Headspace analysis combined with high-resolution gas chromatography and detection by mass spectrometry was evaluated for the analysis of 53 volatile organic compounds (VOCs) in river waters, waste waters and treated water samples down to 0.1 microgl(-1) concentration levels. The conditions optimised included sample thermostatting time and temperature, autosampler parameters and the nature of salt, added to the sample. The pollutions origin and their seasonal rippling have been done. It was shown that the content of VOCs in river water mainly correlates to the content of these compounds in waste waters, which shows the anthropogenic character of the pollutions.  相似文献   

10.
The biological treatment of waste-waters containing 1,2-dichloroethane (DCE) in conventional bioreactors results in air-stripping of DCE. In the present work, a novel bioreactor system intended to overcome this problem has been developed for the treatment of a synthetically concocted DCE-containing waste-water (1000 mg DCE l–1). The operation of a conventional air-lift bioreactor at a waste-water flow rate of 0.24 l h–1 led to 33% of the DCE supplied to the reactor being lost to the exit gas stream. The use of the novel enclosed system, operated with a recycling O2 sparge instead of air, resulted in negligible air-stripping at the same waste-water flow rate. A control system was implemented to add O2 as required to maintain the pressure of the recycle gas stream, and a scrubber removed the CO2 produced. Over 99% of DCE supplied was biodegraded during operation of this system, and virtually all carbon entering the system was evolved as CO2. Correspondence to: A. G. Livingston Correspondence to: A. G. Livingston  相似文献   

11.
The cleaning of the exhaust gases of a bioreactor containing volatile hydrocarbons in a bioreactor system with a closed gas circuit is described. The bioreactor system consisted of three different reactor types: a stirred tank which was filled with hydrocarbon-containing waste water to simulate the exhaust gases of a remediation process; a trickle-bed reactor for aerobic treatment of the exhaust gas from the stirred tank; and a photoreactor containing an algae culture which assimilated CO2 from the trickle-bed reactor and also produced O2. With this bioreactor system, it was possible to efficiently remove volatile organic compounds (VOC) from the waste gases. Depending on the type of waste water investigated, elimination rates of 41% to 93% of BTEX (benzene, ethylbenzene, toluene, xylene) and 29% to 53% of VCH (volatile chlorinated hydrocarbons) were obtained. Due to the photosynthesis of the algae in the system's photoreactor, oxygen concentrations between 12% and 18% [v/v], equivalent to about 57% to 83% DOT, were obtained. This concentration permitted the aerobic degradation to be carried out without having to add fresh air. The trickle-bed reactor and the photoreactor worked continuously, whereas the waste water in the stirred bioreactor was replaced in different batches. The accumulation of toxic compounds in the nutrient solutions of the trickle-bed (EC-50 > 30 g/l) and of the photoreactor (EC-50 > 35 g/l) was low. Carbon dioxide concentrations in the gas flow were higher than in fresh air (1% to 3% [vol/vol]), but no long-term accumulation of CO2 occurred. This means that the algae in the photoreactor were active enough to assimilate the CO2 which had been produced. They were also able to produce sufficient oxygen for aerobic hydrocarbon degradation. The system described is a first step towards treating waste gases which results from the bioremediation of hydrocarbon-contaminated media in a closed gas circuit without any emission (e.g. VOC, CO2, germs).  相似文献   

12.
A novel method for the determination of microbial growth kinetics on hydrophobic volatile organic compounds (VOC) has been developed. A stirred tank reactor was operated as a fed-batch system to which the VOC was continuously fed via the gas phase, assuring a constant VOC concentration in the mineral medium. A flow of air was saturated with the VOC, and then mixed with a further flow of air, to obtain a predetermined VOC concentration. Thus, different VOC concentrations in the mineral medium could be obtained by altering the VOC concentration in the feed gas. The growth kinetics of Xanthobacter autotrophicus GJ10 on 1,2-dichloroethane (DCE) and of Pseudomonas sp. strain JS150 on MonoChloroBenzene (MCB) were assessed using this method. The growth of strain JS150 was strongly inhibited at MCB concentrations higher than 160 mg l−1, and the results were fitted using a piecewise function. The growth kinetics of strain GJ10 were described by the Luong model where maximum growth rate μmax = 0.12 h−1, substrate saturation constant K S = 7.8 mg l−1, and maximum substrate concentration S m (above which growth is completely inhibited) = 1080 mg l−1. Varying nitrogen and oxygen flows enabled the effect of oxygen concentration on the growth kinetics of Pseudomonas JS150 to be determined. Received: 30 November 1998 / Received revision: 19 March 1999 / Accepted: 20 March 1999  相似文献   

13.
A bioactive foam reactor (BFR), a novel bioreactor operated using surfactant foams and suspended microorganisms for the treatment of gaseous toluene, was investigated to characterize its performance with respect to the mass transfer and biodegradation rates. The BFR system consisted of two reactors in series; a foam column for toluene mass transfer using fine bubbles and a cell reservoir where suspended microorganisms actively biodegraded toluene. In this study, a series of short-term experiments demonstrated that the BFR could achieve stable removal performance and a high elimination capacity (EC) for toluene at 100.3 g/m3/h. A numerical model, combining mass balance equations for the mass transfer and subsequent biodegradation, resulted in reasonable agreement with the experimental findings. At an inlet toluene concentration of 100 ppmv, the toluene concentration in the liquid phase remained extremely low, indicating that the microbial activity was not hindered in the BFR system. However, the experimental and model prediction results showed that the actual mass of toluene transferred into the liquid phase was not closely balanced with the amount of toluene biodegraded in the BFR used in this study. Consequently, methods, such as increasing the effective volume of the foam column or the mass transfer coefficient, need to be implemented to achieve higher toluene EC and better BFR performance.  相似文献   

14.
Bioprocess and Biosystems Engineering - Determination of hydrogen peroxide (H2O2) has become essential in pharmaceutical, biological, clinical and environmental studies. The conventional detection...  相似文献   

15.
Two-phase partitioning bioreactors (TPPBs) allow the biological removal of volatile organic compounds (VOCs) from contaminated gas streams at unprecedented rates and concentrations. TPPBs are constructed by adding a non-aqueous phase (e.g. hexadecane, silicone oil) to an aqueous phase that contains the microorganisms responsible for degrading the VOCs. Presence of a water-immiscible phase improves the transfer of hydrophobic substrates (e.g. hexane, oxygen) or reduces the toxicity of inhibitory substances (e.g. benzene, toluene) to the microorganisms present in the aqueous phase. The non-aqueous phase is selected based on cost, safety, good partitioning properties towards the target pollutants, biocompatibility, and non-biodegradability. TPPBs have hitherto been designed as laboratory-scale well-mixed stirred-tank reactors or as biofilters that contain a non-aqueous phase. Scale-up and industrial use of TPPBs require elucidation and modeling of the mechanisms of substrate transfer and uptake; understanding of the mechanisms of microbial selection; identification or synthesis of new inexpensive and robust non-aqueous phases; and generation of suitable guidelines for process design and control.  相似文献   

16.
We explored the influence of methodological and chemical parameters on the detection of nasal chemesthesis (i.e., trigeminal stimulation) evoked by volatile organic compounds (VOCs). To avoid odor biases, chemesthesis was probed via nasal pungency detection in anosmics and via nasal localization (i.e., lateralization) in normosmics, in both cases using forced-choice procedures. In the experiments with anosmics, 12 neat VOCs were selected based on previous reports of lack of chemesthetic response. Although none of the VOCs reached 100% detection, detectability and confidence of detection were higher when using a glass vessel system adapted with nosepieces to fit the nostrils tightly than when using wide-mouth glass jars. Half the stimuli were detected well above chance and half were not. When the latter were tested again after being heated to 37 degrees C, that is, body temperature (from room temperature, 23 degrees C), to increase their vapor concentration, only one, octane, significantly increased its detectability. Chemesthesis gauged with normosmics mirrored that with anosmics. Gas chromatography measurements showed that, even at 23 degrees C, the saturated vapor concentrations of the undetected stimuli, except vanillin, were well above the respective calculated nasal pungency threshold (NPT) from an equation that, in the past, had accurately described and predicted NPTs. We conclude that, except for octane and perhaps vanillin, the failure of the other four VOCs to precipitate nasal chemesthesis rests on a chemical-structural limitation, for example, the molecules lack a key property to fit a receptor pocket, rather than on a concentration limitation, for example, the vapor concentration is too low to reach a threshold value.  相似文献   

17.
The need for improved rapid diagnostic tests for tuberculosis disease has prompted interest in the volatile organic compounds (VOCs) emitted by Mycobacterium tuberculosis complex bacteria. We have investigated VOCs emitted by Mycobacterium bovis BCG grown on Lowenstein-Jensen media using selected ion flow tube mass spectrometry and thermal desorption-gas chromatography-mass spectrometry. Compounds observed included dimethyl sulphide, 3-methyl-1-butanol, 2-methyl-1-propanol, butanone, 2-methyl-1-butanol, methyl 2-methylbutanoate, 2-phenylethanol and hydrogen sulphide. Changes in levels of acetaldehyde, methanol and ammonia were also observed. The compounds identified are not unique to M.?bovis BCG, and further studies are needed to validate their diagnostic value. Investigations using an ultra-rapid gas chromatograph with a surface acoustic wave sensor (zNose) demonstrated the presence of 2-phenylethanol (PEA) in the headspace of cultures of M.?bovis BCG and Mycobacterium smegmatis, when grown on Lowenstein-Jensen supplemented with glycerol. PEA is a reversible inhibitor of DNA synthesis. It is used during selective isolation of gram-positive bacteria and may also be used to inhibit mycobacterial growth. PEA production was observed to be dependent on growth of mycobacteria. Further study is required to elucidate the metabolic pathways involved and assess whether this compound is produced during in vivo growth of mycobacteria.  相似文献   

18.
In ecosystems, plant and bacterial volatile organic compounds (VOCs) are known to influence plant growth but less is known about the physiological effects of fungal VOCs. We have used Arabidopsis thaliana as a model to test the effects of VOCs from the soil fungus Trichoderma viride. Mature colonies of T. viride cultured on Petri plates were placed in a growth chamber in a shared atmosphere with A. thaliana without direct physical contact. Compared to controls, plants grown in the presence of T. viride volatiles were taller, bigger, flowered earlier, and had more lateral roots. They also had increased total biomass (45 %) and chlorophyll concentration (58 %). GC–MS analysis of T. viride VOCs revealed 51 compounds of which isobutyl alcohol, isopentyl alcohol, and 3-methylbutanal were most abundant. We conclude that VOCs emitted by T. viride have growth promoting effects on A. thaliana in the absence of direct physical contact.  相似文献   

19.
植物挥发性气体(VOCs)研究进展   总被引:7,自引:0,他引:7  
植物挥发性气体(VOCs)在植物一植食性昆虫-天敌三级营养关系、植物间信息传递及适应性改变上都发挥着重要作用.植物释放VOCs具特异性、系统性、时序性与节律性等特点,VOCs主要在寄主选择行为、产卵行为、求偶行为、引来昆虫夭敌干涉等方面影响植食性昆虫.VOCs-介导的植物间信息传递作用包括4个过程:"释放者"植物合成及释放气体、气体在空气中的运输、气体在植物表面的吸附及"接收者"植株对气体信号的感知.收集VOCs的方法主要有吸附-溶剂洗脱法和吸附-热脱附法.  相似文献   

20.
BackgroundWhile much is known about the effect of chronic kidney disease (CKD) on composition of body fluids little is known regarding its impact on the gases found in exhaled breath or produced by intestinal microbiome. We have recently shown significant changes in the composition of intestinal microbiome in humans and animals with CKD. This study tested the hypothesis that uremia-induced changes in cellular metabolism and intestinal microbiome may modify the volatile organic metabolites found in the exhaled breath or generated by intestinal flora.MethodsSD rats were randomized to CKD (5/6 nephrectomy) or control (sham operation) groups. Exhaled breath was collected by enclosing each animal in a glass chamber flushed with clean air, then sealed for 45 min and the trapped air collected. Feces were collected, dissolved in pure water, incubated at 37 °C in glass reactors for 24 h and the trapped air collected. Collected gases were analyzed by gas chromatography.ResultsOver 50 gases were detected in the exhaled breath and 36 in cultured feces. Four gases in exhaled breath and 4 generated by cultured feces were significantly different in the two groups. The exhaled breath in CKD rats showed an early rise in isoprene and a late fall in linear aldehydes. The CKD animals' cultured feces released larger amounts of dimethyldisulfide, dimethyltrisulfide, and two thioesters.ConclusionsCKD significantly changes the composition of exhaled breath and gaseous products of intestinal flora.General significanceAnalysis of breath and bowel gases may provide useful biomarkers for detection and progression of CKD and its complications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号