首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Comparative characteristics of three human embryonic stem cell lines   总被引:3,自引:0,他引:3  
Human embryonic stem (hES) cells have unique features including unlimited growth capacity, expression of specific markers, normal karyotypes and an ability to differentiate. Many investigators have tried to use hES cells for cell-based therapy, but there is little information about the properties of available hES cell lines. We compared the characteristics of three hES cell lines. The expression of SSEA-1, -3, -4, and APase, was examined by immunocytochemistry, and Oct-4 expression was analyzed by RT-PCR. Differentiation of the hES cells in vitro and in vivo led to the formation of embryoid bodies (EBs) or teratomas. We examined the expression of tissue-specific markers in the differentiated cells by semiquantitative RT-PCR, and the ability of each hES cell line to proliferate was measured by flow cytometry of DNA content and ELISA. The three hES cell lines were similar in morphology, marker expression, and teratoma formation. However there were significant differences (P < 0.05) between the differentiated cells formed by the different cell lines in levels of expression of tissue-specific markers such as renin, kallikrein, Glut-2, beta- and delta-globin, albumin, and alpha1-antitrypsin (alpha1-AT). The hES cell lines also differed in proliferative activity. Our observations should be useful in basic and clinical hES cell research.  相似文献   

2.
New nonimmortalized fibroblast-like cell lines SC5-MSC and SC3a-MSC, FetMSC, FRSN were obtained from human embryonic stem cells (ESC), bone marrow of a 5-6-days embryo and foreskin of a 3-years-old boy, respectively. All the lines are successfully used as the feeder at human ESC cultivation. It is determined that the average cell population doublings time varies from 25.5 h for ISC5-MSC to 38.8 h for SC3a-MSC. Active proliferation of all the lines is also shown by the corresponding growth curves. Numerical and structural karyotypic analysis showed that these lines had normal karyotype: 46,XX (SC5-MSC and SC3a-MSC) and 46,XY (FetMSC and FRSN). To determine the status of the lines, their cell surface markers were analyzed by flow cytometry. This analysis revealed the presence of surface antigens CD44, CD73, CD90, CD105 and HLA-ABC, characteristic of human MSC, and the absence of CD34 and HLA-DR. Different lines were found to express CD117(c-kit) to a different level. Immunofluorescence and flow cytometry analysis did not detect TRA-1-60 and Oct-4, characteristic of human embryonic stem cells, and revealed interlinear variations in the level of SSEA, which did not depend on the cell origin. It is not clear yet whether these interlinear variations affect functional MSC status. In all the lines, immunofluorescence analysis showed the presence of the markers of early differentiation in the derivates of three germ layers which may allow MSC to be useful, in corresponding microenvironments, for reparation of tissue injures. Adipogenic and osteogenic differentiatiation of all cell lines has been shown.  相似文献   

3.
The novel human embryonic stem cell (hESC) subline SC6-FF was derived from SC6 cells in an allogenic feeder-free culture system. Key components of the feeder-free culture system were extracellular matrix proteins and conditioned medium from the mesenchymal stem cell line SC5-MSC. These conditions are allogenic for SC6-FF cells. SC6-FF subline underwent more than one hundred cell population doublings and retained a normal diploid karyotype; 46, XX. The average population doubling time was 23.7 ± 0.8 h, similar to that of the parent SC6 line. The presence of undifferentiated hESC markers (alkaline phosphatase activity, Oct-4, SSEA-4, and TRA-1-60) was verified by histochemistry and immunofluorescence. Cells were distinguished from parental cells in size and morphology as a result of spontaneous differentiation. These cells exhibited the ability to differentiate into derivates of three germ layers by expressing common markers of the ectoderm (alpha-fetoprotein), mesoderm (a-actinin) and endoderm (a-fetoprotein) cells. We could conclude that characteristics of the novel feeder-free SC6-FF subline correspond to the status of human embryonic stem cells.  相似文献   

4.
Efficient derivation of new human embryonic stem cell lines   总被引:3,自引:0,他引:3  
Human embryonic stem (hES) cells, unlike most cells derived from adult or fetal human tissues, represent a potentially unlimited source of various cell types for basic clinical research. To meet the increased demand for characterized hES cell lines, we established and characterized nine new lines obtained from frozen-thawed pronucleus-stage embryos. In addition, we improved the derivation efficiency from inner cell masses (to 47.4%) and optimized culture conditions for undifferentiated hES cells. After these cell lines had been maintained for over a year in vitro, they were characterized comprehensively for expression of markers of undifferentiated hES cells, karyotype, and in vitro/in vivo differentiation capacity. All of the cell lines were pluripotent, and one cell line was trisomic for chromosome 3. Improved culture techniques for hES cells should make them a good source for diverse applications in regenerative medicine, but further investigation is needed of their basic biology.  相似文献   

5.
Human embryonic stem cells are pluripotent cells capable of extensive self-renewal and differentiation to all cells of the embryo proper. Here, we describe the derivation and characterization of three Sydney IVF human embryonic stem cell lines not already reported elsewhere, designated SIVF001, SIVF002, and SIVF014. The cell lines display typical compact colony morphology of embryonic stem cells, have stable growth rates over more than 40 passages and are cytogenetically normal. Furthermore, the cell lines express pluripotency markers including Nanog, Oct4, SSEA3 and Tra-1-81, and are capable of generating teratoma cells derived from each of the three germ layers in immunodeficient mice. These experiments show that the cell lines constitute pluripotent stem cell lines.  相似文献   

6.
7.
8.

Background  

Individual differences between human embryonic stem cell (hESC) lines are poorly understood. Here, we describe the derivation of five hESC lines (called FES 21, 22, 29, 30 and 61) from frozen-thawed human embryos and compare their individual differentiation characteristic.  相似文献   

9.
10.
Melichar H  Li O  Ross J  Haber H  Cado D  Nolla H  Robey EA  Winoto A 《PloS one》2011,6(5):e19854
Directed differentiation of human embryonic stem cells (hESCs) into any desired cell type has been hailed as a therapeutic promise to cure many human diseases. However, substantial roadblocks still exist for in vitro differentiation of hESCs into distinct cell types, including T lymphocytes. Here we examined the hematopoietic differentiation potential of six different hESC lines. We compare their ability to develop into CD34(+) or CD34(+)CD45(+) hematopoietic precursor populations under several differentiation conditions. Comparison of lymphoid potential of hESC derived- and fetal tissue derived-hematopoietic precursors was also made. We found diverse hematopoietic potential between hESC lines depending on the culture or passage conditions. In contrast to fetal-derived hematopoietic precursors, none of the CD34(+) precursors differentiated from hESCs were able to develop further into T cells. These data underscore the difficulties in the current strategy of hESC forward differentiation and highlight distinct differences between CD34(+) hematopoietic precursors generated in vitro versus in vivo.  相似文献   

11.
12.
Human embryonic stem cells (hESC) are undifferentiated cells derived from an early embryo that can grow in vitro indefinitely, while retaining their capability to differentiate into specialized somatic cell types. Over the last decade there has been great interest in derivation and culture of these cells, as they can potentially provide a supply of readily available differentiated cells and tissues of all types to be used for therapeutic purposes in cell transplantation in humans, as well as for other medical uses such as drug discovery. The source of hESC lines is usually excess human embryos from in vitro fertilization treatments, although novel ways of producing hESCs have been suggested recently. The actual methods of hESC derivation have not changed greatly since the first report by Thomson et al. in 1998 . However, the main emphasis over the last several years has been in finding defined conditions for derivation and culture of hESCs, because to enable the clinical use of hESC for cell transplantation, the use of animal derived biological components is no longer acceptable. For basic research, the aim is to replace even human derived materials with completely defined systems. In this paper we describe methods utilized in our laboratory for hESC derivation and describe two studies conducted in an attempt to improve derivation efficiency and to enable research outcomes to be achieved using fewer embryos.  相似文献   

13.
14.
Human pluripotent embryonic stem cells (hESC) have great promise for research into human developmental biology and the development of cell therapies for the treatment of diseases. To meet the increased demand for characterized hESC lines, we present the derivation and characterization of five hESC lines on mouse embryonic fibroblast cells. Our stem cell lines are characterized by morphology, long-term expansion, and expression profiles of a number of specific markers, including TRA-1-60, TRA-1-81, alkaline phosphatase, connexin 43, OCT-4, NANOG, CXCR4, NODAL, LEFTY2, THY-1, TDGF1, PAX6, FOXD3, SOX2, EPHA2, FGF4, TAL1, AC133 and REX-1. The pluripotency of the cell line was confirmed by spontaneous differentiation under in vitro conditions. Whereas all of the cell lines expressed all the characteristics of undifferentiated pluripotent hESC, two of the cell lines carried a triploid karyotype.  相似文献   

15.
Human embryonic stem cell (hESC) lines can be established from the preimplantation embryos. Due to their ability to differentiate into all three embryonic layers, hESC are of significant interest as a renewable source of cell material for different applications, especially for cell replacement therapy. Since the establishment of the first hESC lines in 1998, several studies have described the derivation and culture of new hESC lines using various derivation methods and culture conditions. Our group has currently established eight new hESC lines of which three of the latest ones are described in a more detailed way in this report. The described lines have been established using mechanical derivation methods for surplus bad quality embryos and culture conditions containing human foreskin fibroblast feeder cells and serum-free culture medium. All the new lines have a normal karyotype and typical hESC characteristics analyzed in vitro. The described hESC lines are available for research purposes upon request (www.regea.fi).  相似文献   

16.
人胚胎干细胞建系和鉴定   总被引:1,自引:0,他引:1  
孙博文 《生命科学》2003,15(4):207-210
人胚胎干细胞是一种取自人囊胚内细胞团且具有形成所有三个胚层细胞能力的全能细胞。建立一个理想的人胚胎干细胞培养系统是研究和利用这种具有巨大潜力细胞的首要条件。本文讨论了目前建立的人胚胎干细胞培养系统,阐述了其有利的和不利的一面,并着重讨论其体外培养方法和鉴定策略。  相似文献   

17.
Human embryonic stem cells (hESC), which are derived from the inner cell mass (ICM) of blastocyst stage embryos, are of great importance because of their unpredictable two unique features: their differentiation ability into all types of cells derived from three germ layers and their potentially unlimited capacity of self renewing with stable karyotype. These distinguished properties make hESC very promising cell source for regenerative medicine, tissue replacement therapies, and drug screening studies as well as genomics. However, due to the several technical problems, such as risk of teratoma formation, immune response, and unknown genetic pathways for lineage specific differentiation, and ethical drawbacks of their using in clinical treatments, hESC researches are still waiting to advance beyond to animal trials and drug studies. During the last decade, more than 300 new hESC lines have been derived and published by researchers worldwide. However, despite their similar well-known unique properties, recent studies reported that hESC lines have very individual properties and are differed from each other with regards to their differentiation ability and gene expression profiles. Therefore, all hESC lines should be characterized in detail and then registered in a stem cell bank for generating global database. In this report, the characteristic of hESC lines, which were established in Istanbul Memorial Hospital between 2003 and 2005, and derivation methods were described in detail to inform researchers and to facilitate new prospective cooperative studies.  相似文献   

18.
Cheng L 《Cell research》2008,18(2):215-217
Two papers [1, 2] published in a recent issue of Cell Research describe the derivation of pluripotent human embryonic stem (hES)-like cell lines from parthenogeneic blastocysts.  相似文献   

19.
Skottman H  Dilber MS  Hovatta O 《FEBS letters》2006,580(12):2875-2878
The pluripotent nature of human embryonic stem cells (hESC) has attracted great interest in using them as a source of cells or tissue in cell therapy. However, in order to be used in regenerative medicine, the pluripotent hESC lines should be established and propagated according to good manufacturing practice quality requirements. The cultures should be animal substance free in order to exclude the risk of infections and immunogenity. They should also be genetically and epigenetically normal. The detailed molecular mechanisms of their pluripotency are still not defined. Using human feeder cells, a medium containing only human proteins, the mechanical isolation of the inner cell mass and mechanical passaging of hESC, is a safe option until a functional defined medium containing physiological concentrations of regulatory factors is available.  相似文献   

20.
Human embryonic stem cell and embryonic germ cell lines   总被引:33,自引:0,他引:33  
Undifferentiated human embryonic stem (ES) cells and embryonic germ (EG) cells can be cultured indefinitely and yet maintain the potential to form many or all of the differentiated cells in the body. Human ES and EG cells provide an exciting new model for understanding the differentiation and function of human tissue, offer new strategies for drug discovery and testing, and promise new therapies based on the transplantation of ES and EG cell-derived tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号