首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While in fungi iron transport via hydroxamate siderophores has been amply proven, iron transport via enterobactin is largely unknown. Enterobactin is a catecholate-type siderophore produced by several enterobacterial genera grown in severe iron deprivation. By using the KanMX disruption module in vector pUG6 in a fet3 background of Saccharomyces cerevisiae we were able to disrupt the gene YOL158c Sce of the major facilitator super family (MFS) which has been previously described as a gene encoding a membrane transporter of unknown function. Contrary to the parental strain, the disruptant was unable to utilize ferric enterobactin in growth promotion tests and in transport assays using 55Fe-enterobactin. All other siderophore transport properties remained unaffected. The results are evidence that in S. cerevisiae the YOL158c Sce gene of the major facilitator super family, now designated ENB1, encodes a transporter protein (Enb1p), which specifically recognizes and transports enterobactin.  相似文献   

2.
Nitrosomonas europaea has a single three-gene operon (nitABC) encoding an iron ABC transporter system (NitABC). Phylogenetic analysis clustered the subunit NitB with Fe3+-ABC transporter permease components from other organisms. The N. europaea strain deficient in nitB (nitB::kan) grew well in either Fe-replete or Fe-limited media and in Fe-limited medium containing the catecholate-type siderophore, enterobactin or the citrate-based dihydroxamate-type siderophore, aerobactin. However, the nitB::kan mutant strain was unable to grow in Fe-limited media containing either the hydroxamate-type siderophores, ferrioxamine and ferrichrome or the mixed-chelating type siderophore, pyoverdine. Exposure of N. europaea cells to a ferrichrome analog coupled to the fluorescent moiety naphthalic diimide (Fhu-NI) led to increase in fluorescence in the wild type but not in nitB::kan mutant cells. Spheroplasts prepared from N. europaea wild type exposed to Fhu-NI analog retained the fluorescence, while spheroplasts of the nitB::kan mutant were not fluorescent. NitABC transports intact Fe3+-ferrichrome complex into the cytoplasm and is an atypical ABC type iron transporter for Fe3+ bound to ferrioxamine, ferrichrome or pyoverdine siderophores into the cytoplasm. The mechanisms to transport iron in either the Fe3+ or Fe2+ forms or Fe3+ associated with enterobactin or aerobactin siderophores into the cell across the cytoplasmic membrane are as yet undetermined.  相似文献   

3.
The siderophores of Bacillus anthracis are critical for the pathogen’s proliferation and may be necessary for its virulence. Bacillus anthracis str. Sterne cells were cultured in iron free media and the siderophores produced were isolated and purified using a combination of XAD-2 resin, reverse-phase FPLC, and size exclusion chromatography. A combination of 1H and 13C NMR spectroscopy, UV spectroscopy and ESI-MS/MS fragmentation were used to identify the primary siderophore as petrobactin, a catecholate species containing unusual 3,4-dihydroxybenzoate moieties, previously only identified in extracts of Marinobacter hydrocarbonoclasticus. A secondary siderophore was observed and structural analysis of this species is consistent with that reported for bacillibactin, a siderophore observed in many species of bacilli. This is the first structural characterization of a siderophore from B. anthracis, as well as the first characterization of a 3,4-DHB containing catecholate in a pathogen.  相似文献   

4.
In Bradyrhizobium japonicum, iron uptake from ferric siderophores involves selective outer membrane proteins and non-selective periplasmic and cytoplasmic membrane components that accommodate numerous structurally diverse siderophores. Free iron traverses the cytoplasmic membrane through the ferrous (Fe2+) transporter system FeoAB, but the other non-selective components have not been described. Here, we identify fsrB as an iron-regulated gene required for growth on iron chelates of catecholate- and hydroxymate-type siderophores, but not on inorganic iron. Utilization of the non-physiological iron chelator EDDHA as an iron source was also dependent on fsrB. Uptake activities of 55Fe3+ bound to ferrioxamine B, ferrichrome or enterobactin were severely diminished in the fsrB mutant compared with the wild type. Growth of the fsrB or feoB strains on ferrichrome were rescued with plasmid-borne E. coli fhuCDB ferrichrome transport genes, suggesting that FsrB activity occurs in the periplasm rather than the cytoplasm. Whole cells of an fsrB mutant are defective in ferric reductase activity. Both whole cells and spheroplasts catalyzed the demetallation of ferric siderophores that were defective in an fsrB mutant. Collectively, the data support a model whereby FsrB is required for reduction of iron and its dissociation from the siderophore in the periplasm, followed by transport of the ferrous ion into the cytoplasm by FeoAB.  相似文献   

5.
Iron acquisition by iron‐limited cyanobacteria is typically considered to be mediated mainly by siderophores, iron‐chelating molecules released by iron‐limited cyanobacteria into the environment. In this set of experiments, iron uptake by iron‐limited cells of the cyanobacterium Anabaena flos‐aquae (L.) Bory was investigated in cells resuspended in siderophore‐free medium. Removal of siderophores decreased iron‐uptake rates by ~60% compared to siderophore‐replete conditions; however, substantial rates of iron uptake remained. In the absence of siderophores, Fe(III) uptake was much more rapid from a weaker synthetic chelator [N‐(2‐hydroxyethyl)ethylenediamine‐N,N′,N′‐triacetic acid (HEDTA); log Kcond = 28.64 for Fe(III)HEDTA(OH)?] than from a very strong chelator [N,N′‐bis(2‐hydroxybenzyl)‐ethylenediamine‐N,N′‐diacetic acid (HBED); log Kcond = 31.40 for Fe(III)HBED?], and increasing chelator:Fe(III) ratios decreased the Fe(III)‐uptake rate; these results were evident in both short‐term (4 h; absence of siderophores) and long‐term (116 h; presence of siderophores) experiments. However, free (nonchelated) Fe(III) provided the most rapid iron uptake in siderophore‐free conditions. The results of the short‐term experiments are consistent with an Fe(III)‐binding/uptake mechanism associated with the cyanobacterial outer membrane that operates independently of extracellular siderophores. Iron uptake was inhibited by temperature‐shock treatments of the cells and by metabolically compromising the cells with diphenyleneiodonium; this finding indicates that the process is dependent on active metabolism to operate and is not simply a passive Fe(III)‐binding mechanism. Overall, these results point to an important, siderophore‐independent iron‐acquisition mechanism by iron‐limited cyanobacterial cells.  相似文献   

6.

Background

Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood. However, there is growing evidence suggesting that siderophores may have other physiological roles besides their involvement in iron acquisition.

Methods and Principal Findings

Here we provide the first report that pyochelin displays antibiotic activity against some bacterial strains. Observation of differential sensitivity to pyochelin against a panel of bacteria provided the first indications that catecholate siderophores, produced by some bacteria, may have roles other than iron acquisition. A pattern emerged where only those strains able to make catecholate-type siderophores were resistant to pyochelin. We were able to associate pyochelin resistance to catecholate production by showing that pyochelin-resistant Escherichia coli became sensitive when biosynthesis of its catecholate siderophore enterobactin was impaired. As expected, supplementation with enterobactin conferred pyochelin resistance to the entE mutant. We observed that pyochelin-induced growth inhibition was independent of iron availability and was prevented by addition of the reducing agent ascorbic acid or by anaerobic incubation. Addition of pyochelin to E. coli increased the levels of reactive oxygen species (ROS) while addition of ascorbic acid or enterobactin reduced them. In contrast, addition of the carboxylate-type siderophore, citrate, did not prevent pyochelin-induced ROS increases and their associated toxicity.

Conclusions

We have shown that the catecholate siderophore enterobactin protects E. coli against the toxic effects of pyochelin by reducing ROS. Thus, it appears that catecholate siderophores can behave as protectors of oxidative stress. These results support the idea that siderophores can have physiological roles aside from those in iron acquisition.  相似文献   

7.
8.
Iron is essential for Escherichia coli growth and survival in the host and the external environment, but its availability is generally low due to the poor solubility of its ferric form in aqueous environments and the presence of iron-withholding proteins in the host. Most E. coli can increase access to iron by excreting siderophores such as enterobactin, which have a very strong affinity for Fe3+. A smaller proportion of isolates can generate up to 3 additional siderophores linked with pathogenesis; aerobactin, salmochelin, and yersiniabactin. However, non-pathogenic E. coli are also able to synthesise these virulence-associated siderophores. This raises questions about their role in the ecology of E. coli, beyond virulence, and whether specific siderophores might be linked with persistence in the external environment. Under the assumption that selection favours phenotypes that confer a fitness advantage, we compared siderophore production and gene distribution in E. coli isolated either from agricultural plants or the faeces of healthy mammals. This population-level comparison has revealed that under iron limiting growth conditions plant-associated isolates produced lower amounts of siderophores than faecal isolates. Additionally, multiplex PCR showed that environmental isolates were less likely to contain loci associated with aerobactin and yersiniabactin synthesis. Although aerobactin was linked with strong siderophore excretion, a significant difference in production was still observed between plant and faecal isolates when the analysis was restricted to strains only able to synthesise enterobactin. This finding suggests that the regulatory response to iron limitation may be an important trait associated with adaptation to the non-host environment. Our findings are consistent with the hypothesis that the ability to produce multiple siderophores facilitates E. coli gut colonisation and plays an important role in E. coli commensalism.  相似文献   

9.
Summary Several strains of the enterobacterial groupErwinia herbicola (Enterobacter agglomerans) were screened for siderophore production. After 3 days of growth in a low-iron medium, all strains studied produced hydroxamate siderophores. The retention values of the main siderophore during thin-layer chromatography on silica gel plates and on HPLC reversed-phase columns were identical with those of an authentic sample of ferrioxamine E (norcardamine). Gas-chromatographic analysis of the HI hydrolyzate yielded succinic acid and 1,5-diaminopentane in equimolar amounts; fast-atom-bombardment (FAB) mass spectroscopy showed a molecular mass of 653 Da. Iron from55Fe-labelled ferrioxamine E was well taken up by iron-starved cells ofE. herbicola (K m=0.1 M,V max=8 pmol mg–1 min–1). However, besides ferrioxamine E (100%), several exogenous siderophores such as enterobactin (94.5%), ferric citrate (78.5%), coprogen (63.5%) and ferrichrome (17.5%) served as siderophores, suggesting the presence of multiple siderophore receptors in the outer membrane ofE. herbicola.  相似文献   

10.
Vibrio cholerae, the causative agent of cholera, has an absolute requirement for iron. It transports the catechol siderophores vibriobactin, which it synthesizes and secretes, and enterobactin. These siderophores are transported across the inner membrane by one of two periplasmic binding protein-dependent ABC transporters, VctPDGC or ViuPDGC. We show here that one of these inner membrane transport systems, VctPDGC, also promotes iron acquisition in the absence of siderophores. Plasmids carrying the vctPDGC genes stimulated growth in both rich and minimal media of a Shigella flexneri mutant that produces no siderophores. vctPDGC also stimulated the growth of an Escherichia coli enterobactin biosynthetic mutant in low iron medium, and this effect did not require feoB, tonB or aroB. A tyrosine to phenylalanine substitution in the periplasmic binding protein VctP did not alter enterobactin transport, but eliminated growth stimulation in the absence of a siderophore. These data suggest that the VctPDGC system has the capacity to transport both catechol siderophores and a siderophore-free iron ligand. We also show that VctPDGC is the previously unidentified siderophore-independent iron transporter in V. cholerae, and this appears to complete the list of iron transport systems in V. cholerae.  相似文献   

11.
[背景] 铁是细菌生长的基本元素,而三价铁在自然水环境中几乎无法溶解。细菌已经进化出产生各种铁载体的能力,以促进铁的吸收。对于链霉菌,其特有的铁载体是去铁胺,同时它们也可以产生其他结构的铁载体,如ceolichelin、白霉素、肠杆菌素(enterobactin)和griseobactin。[目的] 揭示链霉菌中铁载体生物合成基因簇(Biosynthetic Gene Clusters,BGCs)的分布特点和基因簇特征,并探索其所合成铁载体的化合物结构。[方法] 利用生物信息学工具系统地分析308个具有全基因组序列信息的链霉菌中的铁载体生物合成基因簇,并用色谱和波谱方法分离和表征肠杆菌素相关天然产物。[结果] 发现Streptomyces albofaciens JCM 4342和其他少数菌株同时含有一个缺少2,3-二羟基苯甲酸(2,3-DHB)生物合成基因的孤立的肠杆菌素生物合成基因簇和另外一个推测可合成griseobactin的基因簇。从S.albofaciens JCM 4342发酵液中鉴定出4个肠杆菌素衍生的天然产物,包括链状2,3-二羟基苯甲酸酯-l-丝氨酸(2,3-DHBS)的三聚体和二聚体以及它们的脱水产物。[结论] 2个基因簇间存在一种特别的协同生物合成机制。推测是griseobactin基因簇负责合成2,3-DHB,而孤立的肠杆菌素基因簇编码的生物合成酶可夺取该底物,进而完成上述4种肠杆菌素衍生天然产物的生物合成。  相似文献   

12.
Iron acquisition is a complex, multicomponent process critical for most organisms' survival and virulence. Small iron chelating molecules, siderophores, mediate transport as key components of common pathways for iron assimilation in many microorganisms. The chemistry and biology of the extraordinary tight and specific metal binding siderophores is of general interest in terms of host/guest chemistry and is a potential target toward the development of therapeutic treatments for microbial virulence. The siderophore pathway of the moderate thermophile, Thermobifida fusca, is an excellent model system to study the process in Gram‐positive bacteria. Here we describe the structure and characterization of the siderophore periplasmic binding protein, FscJ from the fuscachelin gene cluster of T. fusca. The structure shows a di‐domain arrangement connected with a long α‐helix hinge. Several X‐ray structures detail ligand‐free conformational changes at different pH values, illustrating complex interdomain flexibility of the siderophore receptors. We demonstrated that FscJ has a unique recognition mechanism and details the binding interaction with ferric‐fuscachelin A through ITC and docking analysis. The presented work provides a structural basis for the complex molecular mechanisms of siderophore recognition and transportation. Proteins 2016; 84:118–128. © 2015 Wiley Periodicals, Inc.  相似文献   

13.
Mycobacterium tuberculosis, the causative agent of human tuberculosis, synthesizes and secretes siderophores in order to compete for iron (an essential micronutrient). Successful iron acquisition allows M. tuberculosis to survive and proliferate under the iron-deficient conditions encountered in the host. To examine structural determinants important for iron siderophore transport in this pathogen, the citrate-based siderophores petrobactin, acinetoferrin and various acinetoferrin homologs were synthesized and used as iron transport probes. Mutant strains of M. tuberculosis deficient in native siderophore synthesis or transport were utilized to better understand the mechanisms involved in iron delivery via the synthetic siderophores. Acinetoferrin and its derivatives, especially those containing a cyclic imide group, were able to deliver iron or gallium into M. tuberculosis which promoted or inhibited, respectively, the growth of this pathogen. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Iron is essential for the survival of almost all bacteria. Vibrio cholerae acquires iron through the secretion of a catecholate siderophore called vibriobactin. At present, how vibriobactin chelates ferric ion remains controversial. In addition, the mechanisms underlying the recognition of ferric vibriobactin by the siderophore transport system and its delivery into the cytoplasm specifically have not been clarified. In this study, we report the high-resolution structures of the ferric vibriobactin periplasmic binding protein ViuP and its complex with ferric vibriobactin. The holo-ViuP structure reveals that ferric vibriobactin does not adopt the same iron coordination as that of other catecholate siderophores such as enterobactin. The three catechol moieties donate five, rather than six, oxygen atoms as iron ligands. The sixth iron ligand is provided by a nitrogen atom from the second oxazoline ring. This kind of iron coordination results in the protrusion of the second catechol moiety and renders the electrostatic surface potential of ferric vibriobactin less negatively polarized compared with ferric enterobactin. To accommodate ferric vibriobactin, ViuP has a deeper subpocket to hold the protrusion of the second catechol group. This structural characteristic has not been observed in other catecholate siderophore-binding proteins. Biochemical data show that siderocalin, which is part of the mammalian innate immune system, cannot efficiently sequester ferric vibriobactin in vitro, although it can capture many catecholate siderophores with high efficiency. Our findings suggest that the unique iron coordination found in ferric vibriobactin may be utilized by some pathogenic bacteria to evade the siderocalin-mediated innate immune response of mammals.  相似文献   

15.
16.
Bacterial pathogens are frequently distinguished by the presence of acquired genes associated with iron acquisition. The presence of specific siderophore receptor genes, however, does not reliably predict activity of the complex protein assemblies involved in synthesis and transport of these secondary metabolites. Here, we have developed a novel quantitative metabolomic approach based on stable isotope dilution to compare the complement of siderophores produced by Escherichia coli strains associated with intestinal colonization or urinary tract disease. Because uropathogenic E. coli are believed to reside in the gut microbiome prior to infection, we compared siderophore production between urinary and rectal isolates within individual patients with recurrent UTI. While all strains produced enterobactin, strong preferential expression of the siderophores yersiniabactin and salmochelin was observed among urinary strains. Conventional PCR genotyping of siderophore receptors was often insensitive to these differences. A linearized enterobactin siderophore was also identified as a product of strains with an active salmochelin gene cluster. These findings argue that qualitative and quantitative epi-genetic optimization occurs in the E. coli secondary metabolome among human uropathogens. Because the virulence-associated biosynthetic pathways are distinct from those associated with rectal colonization, these results suggest strategies for virulence-targeted therapies.  相似文献   

17.
Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.  相似文献   

18.
Actively secreted iron chelating agents termed siderophores play an important role in the virulence and rhizosphere competence of fluorescent pseudomonads, including Pseudomonas aeruginosa which secretes a high affinity siderophore, pyoverdine, and the low affinity siderophore, pyochelin. Uptake of the iron-siderophore complexes is an active process that requires specific outer membrane located receptors, which are dependent of the inner membrane-associated protein TonB and two other inner membrane proteins, ExbB and ExbC. P. aeruginosa is also capable of using a remarkable variety of heterologous siderophores as sources of iron, apparently by expressing their cognate receptors. Illustrative of this feature are the 32 (of which 28 putative) siderophore receptor genes observed in the P. aeruginosa PAO1 genome. However, except for a few (pyoverdine, pyochelin, enterobactin), the vast majority of P. aeruginosa siderophore receptor genes still remain to be characterized. Ten synthetic iron chelators of catecholate type stimulated growth of a pyoverdine/pyochelin deficient P. aeruginosa PAO1 mutant under condition of severe iron limitation. Null mutants of the 32 putative TonB-dependent siderophore receptor encoding genes engineered in the same genetic background were screened for obvious deficiencies in uptake of the synthetic siderophores, but none showed decreased growth stimulation in the presence of the different siderophores. However, a double knock-out mutant of ferrienterobactin receptor encoding gene pfeA (PA 2688) and pirA (PA0931) failed to be stimulated by 4 of the tested synthetic catecholate siderophores whose chemical structures resemble enterobactin. Ferric-enterobactin also failed to stimulate growth of the double pfeA-pirA mutant although, like its synthetic analogues, it stimulated growth of the corresponding single mutants. Hence, we confirmed that pirA represents a second P. aeruginosa ferric-enterobactin receptor. The example of these two enterobactin receptors probably illustrates a more general phenomenon of siderophore receptor redundancy in P. aeruginosa.  相似文献   

19.
Siderophore production and utilization is one of the major strategies deployed by bacteria to get access to iron, a key nutrient for bacterial growth. The biological function of siderophores is to solubilize iron in the bacterial environment and to shuttle it back to the cytoplasm of the microorganisms. This uptake process for Gram-negative species involves TonB-dependent transporters for translocation across the outer membranes. In Escherichia coli and many other Gram-negative bacteria, ABC transporters associated with periplasmic binding proteins import ferrisiderophores across cytoplasmic membranes. Recent data reveal that in some siderophore pathways, this step can also be carried out by proton-motive force-dependent permeases, for example the ferrichrome and ferripyochelin pathways in Pseudomonas aeruginosa. Iron is then released from the siderophores in the bacterial cytoplasm by different enzymatic mechanisms depending on the nature of the siderophore. Another strategy has been reported for the pyoverdine pathway in P. aeruginosa: iron is released from the siderophore in the periplasm and only siderophore-free iron is transported into the cytoplasm by an ABC transporter having two atypical periplasmic binding proteins. This review presents recent findings concerning both ferrisiderophore and siderophore-free iron transport across bacterial cytoplasmic membranes and considers current knowledge about the mechanisms involved in iron release from siderophores.  相似文献   

20.
Utilization of microbial siderophores in iron acquisition by oat   总被引:9,自引:3,他引:6       下载免费PDF全文
Iron uptake by oat (Avena sativa cv Victory) was examined under hydroponic chemical conditions that required direct utilization of microbial siderophores for iron transport. Measurements of iron uptake rates by excised roots from the hydroxamate siderophores, ferrichrome, ferrichrome A, coprogen, ferrioxamine B (FOB), and rhodotorulic acid (RA) showed all five of the siderophores supplied iron, but that FOB and RA were preferentially utilized. FOB-mediated iron uptake increased four-fold when roots were preconditioned to iron stress and involved an active, iron-stress induced transport system that was inhibited by 5 millimolar sodium azide or 0.5 millimolar dinitrophenol. Kinetic studies indicated partial saturation with an apparent Km of 5 micromolar when FOB was supplied at 0.1 to 50 micromolar concentrations. Whole plant experiments confirmed that 5 micromolar FOB was sufficient for plant growth. Siderophore-mediated iron transport was inhibited by Cr-ferrichrome, an analog of ferrated siderophore. Our results confirm the existence of a microbial siderophore iron transport system in oat which functions within the physiological concentrations produced and used by soil microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号