首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the present study, we evaluated the autocrine modulatory effect of insulin on glucose metabolism and glucose-induced insulin secretion in islets isolated from hamsters with insulin resistance (IR) induced by administration of a sucrose-rich diet (SRD) during 5 weeks. We used an approach of two metabolic pathways (glucose oxidation and utilization) based on the measurement of 14CO2 and 3H2O production from D-[U-14C]-glucose and D-[5-(3)H]-glucose, respectively, in isolated islets incubated with 3.3 and 16.7 mM glucose alone, or with 5 or 15 mU/ml insulin, anti-insulin guinea-pig serum (1:500), 25 microM nifedipine, or 150 nM wortmannin. Insulin release was measured by radioimmunoassay in islets incubated with 3.3 or 16.7 mM glucose, with or without 75, 150, and 300 nM wortmannin. Results showed that the stimulatory effect of insulin upon 14CO2 and 3H2O production in control islets was not observed in SRD islets. Addition of anti-insulin serum, nifedipine or wortmannin to the medium with 16.7 mM glucose decreased 14CO2 and 3H2O production in control but not in SRD islets. Whereas wortmannin did not decrease insulin release induced by 16.7 mM glucose in SRD hamsters, it did in controls. We can conclude that the autocrine stimulatory effect of insulin upon glucose metabolism observed in normal islets is attenuated or even absent in islets from IR animals. Such decreased islet sensitivity to insulin did not prevent the compensatory secretion of insulin from maintaining glucose homeostasis, suggesting that, at least in this model, the islets can put forward alternative mechanisms to overcome such defect.  相似文献   

2.
To determine the role of phosphatidylinositol 3-kinase (PI3-kinase) in the regulation of insulin secretion, we examined the effect of wortmannin, a PI3-kinase inhibitor, on insulin secretion using the isolated perfused rat pancreas and freshly isolated islets. In the perfused pancreas, 10(-8) M wortmannin significantly enhanced the insulin secretion induced by the combination of 8.3 mM glucose and 10(-5) M forskolin. In isolated islets, cyclic AMP (cAMP) content was significantly increased by wortmannin in the presence of 3.3 mM, 8.3 mM, and 16.7 mM glucose with or without forskolin. In the presence of 16.7 mM glucose with or without forskolin, wortmannin promoted insulin secretion significantly. On the other hand, in the presence of 8.3 mM glucose with forskolin, wortmannin augmented insulin secretion significantly; although wortmannin tended to promote insulin secretion in the presence of glucose alone, it was not significant. To determine if wortmannin increases cAMP content by promoting cAMP production or by inhibiting cAMP reduction, we examined the effects of wortmannin on 10(-4) M 3-isobutyl-1-methylxantine (IBMX)-induced insulin secretion and cAMP content. In contrast to the effect on forskolin-induced secretion, wortmannin had no effect on IBMX-induced insulin secretion or cAMP content. Moreover, wortmannin had no effect on nonhydrolyzable cAMP analog-induced insulin secretion in the perfusion study. These data indicate that wortmannin induces insulin secretion by inhibiting phosphodiesterase to increase cAMP content, and suggest that PI3-kinase inhibits insulin secretion by activating phosphodiesterase to reduce cAMP content.  相似文献   

3.
The effect of bombesin on insulin release from isolated pancreatic islets of rats was examined in vitro. Bombesin, at the doses ranging from 10 ng/ml to 1 microgram/ml, significantly inhibited 16.7 mM glucose-induced insulin release, while bombesin had no inhibitory effect on insulin release at 8.3 mM and 3.3 mM glucose. Moreover, bombesin also suppressed insulin release elicited by 10 mM arginine at the doses of 100 ng/ml and 1 microgram/ml. These results indicate that bombesin has a direct inhibitory action on insulin release.  相似文献   

4.
探讨L-丙氨酸刺激小鼠胰岛分泌胰岛素的剂量和葡萄糖依赖性。雌性6~10周NMRI小鼠,苯巴比妥腹腔麻醉,应用胶原酶技术消化胰腺分离胰岛,置于RPMI1640培养皿中在37℃培养箱(5%CO2,95%空气)过夜培养。次日在Krebs-Ringer缓冲液中37℃水浴培养箱预培养30 min,分别把单个胰岛小心放入100 L含有不同浓度葡萄糖和不同浓度L-丙氨酸的改良Krebs-Ringer缓冲液37℃水浴培养箱培养60 min,留取50 L上清液进行胰岛素测定。结果:L-丙氨酸在0.1~20mmol.L-1范围促进了葡萄糖刺激的小鼠胰岛的胰岛素分泌,随剂量增大而增强,在低浓度葡萄糖存在的条件下,10 mmol.L-1L-丙氨酸不能刺激小鼠胰岛的胰岛素分泌,在6.7 mmol.L-1及以上葡萄糖存在的条件下,L-丙氨酸能增加葡萄糖诱导的小鼠胰岛分泌胰岛素。本研究显示L-丙氨酸能增加葡萄糖诱导的小鼠胰岛分泌胰岛素,此作用依赖于一定水平葡萄糖的存在。  相似文献   

5.
The effect of glucose on the metabolism of phospholipids in pancreatic islets was studied with three radioactive phospholipid precursors, [32P]orthophosphate, [3H]myoinositol, and [3H]arachidonic acid, to determine the conditions necessary for studying the breakdown of prelabeled phospholipids. Islets were incubated in the presence of a radioactive precursor for 60 or 90 min and in the presence of either 3.3 or 16.7 mM glucose to prelabel phospholipids. To study the breakdown of prelabeled phospholipid, the unincorporated precursor was removed and the islets were reincubated for 15 or 20 min under conditions that either did or did not stimulate insulin release. Prelabeling in the presence of a noninsulinotropic concentration of glucose (3.3 mM) supported the incorporation of precursors into almost all islet phospholipids studied. Prelabeling in an insulinotropic concentration of glucose (16.7 mM) increased the incorporation of precursors into a number of phospholipids even more; and reincubation in 16.7 mM glucose caused a rapid loss of radioactivity from specific phospholipids (phosphatidylinositol and/or phosphatidylcholine, depending on the precursor). This breakdown was observed only when islets had been prelabeled in 16.7 mM glucose. The amount of radioactivity lost from phospholipid corresponded roughly to the additional amount incorporated during the prelabeling in the high concentration of glucose. Radioactivity in phospholipids in islets prelabeled in 3.3 mM glucose or in nonsecretagogue metabolic fuels, such as malate plus pyruvate, did not decrease when the islets were subsequently exposed to 16.7 mM glucose, nor did it decrease in 3.3 mM glucose when these islets had been prelabeled in 16.7 mM glucose. Glyceraldehyde, an insulin secretagogue, but not galactose or L-glucose which are not insulin secretagogues, stimulated phospholipid breakdown in islets that had been prelabeled in 16.7 mM glucose. Depriving islets of extracellular calcium, a condition that inhibits insulin release, inhibited phospholipid breakdown. The results suggest that pancreatic islets contain a glucose-responsive and a glucose-unresponsive phospholipid pool. The glucose-responsive pool becomes labeled and undergoes rapid turnover only under stimulatory conditions and may play a role in the stimulus-secretion coupling of insulin release.  相似文献   

6.
In pancreatic islet homogenates incubated in the presence of a high glucose concentration (40 mM), the beta-anomer of D-glucose is phosphorylated at a higher rate than the alpha-anomer, whether in the absence or presence of exogenous glucose 6-phosphate. However, in intact islets also exposed to 40 mM D-glucose, the production of 3H2O from D-[5-3H] glucose, the oxidation of D-[U-14C] glucose and the glucose-induced increment in either lactate production or 45Ca net uptake, as well as the release of insulin from isolated perfused pancreases, are not higher with beta- than alpha-D-glucose. It is concluded that the rate of glucose utilization by islet cells is not regulated solely by the activity of hexokinase and/or glucokinase.  相似文献   

7.
In pancreatic islets of adult (three month) and old (24 month) rats the effect of glucose on glucose oxidation, pyridine nucleotides, glutathione and insulin secretion was studied. DNA content was similar in both groups of animals; however, islets of old rats exhibited 30% less insulin content. While glucose-induced (16.7 mM) insulin secretion in islets of old rats was approximately 50% less than in islets of adults, no significant difference was observed in the insulin releasing effect of theophylline (1 mM). Although islet production of 14CO2 in the presence of 16.7 mM glucose increased equally in both groups, elevation of glucose failed to increase the percentage of total glucose oxidation via the pentose phosphate shunt in islets of old rats. Elevation of glucose increased the NADPH/NADP and the NADH/NAD ratio in both groups of islets in a similar manner. The effect of glucose on the GSH/GSSG ratio revealed a dose-related increase in the islets of adult rats, whereas islets of old rats did not respond to elevation of glucose. Our data seem to indicate that the lower secretory response of islets of old rats is related to the failure of glucose to increase the GSH/GSSG ratio. In contrast the insulin release induced by theophylline does not appear to depend on islet thiols.  相似文献   

8.
The influence of down-regulation of protein kinase C on glucose-induced insulin secretion was studied. A 22-24 h exposure of mouse pancreatic islets to the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA; 0.16 microM) in RPMI 1640 culture medium (8.3 mM-glucose, 0.43 mM-Ca2+) abolished TPA (0.16 microM)-induced insulin secretion and led to a potentiation of phase 1 and a decrease in phase 2 of glucose-induced insulin secretion. Thus, although the total insulin release during 40 min of perfusion with glucose (16.7 mM) (45-85 min) was unaffected, the percentage released during phase 1 (45-55 min) was increased from 12.9 +/- 1.5 (4)% in controls to 35.8 +/- 3.9 (4)% in TPA-treated islets (P less than 0.01), and the percentage released during phase 2 (65-85 min) was decreased from 63.2 +/- 3.9 (4)% to 35.3 +/- 1.4 (4)% (P less than 0.005). In contrast, TPA exposure in TCM 199 medium (5.5 mM-glucose, 1.26 mM-Ca2+) caused a total abolition of both phases 1 and 2 of glucose-induced secretion. However, inclusion of the alpha 2-adrenergic agonists adrenaline (10 microM) or clonidine (10 microM), or lowering of the Ca2+ concentration in TCM 199 during down-regulation, preserved and potentiated phase 1 of glucose-induced secretion. Furthermore, perifusion of islets in the presence of staurosporine (1 microM), an inhibitor of protein kinase C, potentiated phase 1 and inhibited phase 2 of glucose-induced secretion. In addition, down-regulation of protein kinase C potentiated phase 1 and inhibited phase 2 of carbamoylcholine (100 microM)-induced insulin secretion at 3.3 mM-glucose, and abolished the potentiating effect of carbamoylcholine (100 microM) at 16.7 mM-glucose. These results substantiate a role for protein kinase C in insulin secretion, and suggest that protein kinase C inhibits phase 1 and stimulates phase 2 of both glucose-induced and carbamoylcholine-induced insulin secretion.  相似文献   

9.
We studied the effect of a specific-competitive inhibitor of the sucrose taste response, p-nitrophenyl-D-glucopyranoside (PNP-Glu) on insulin release and phosphoinositide metabolism in rat pancreatic islets. The alpha-anomer, but not the beta-anomer, of PNP-Glu at a concentration of 5 mM inhibited insulin release induced by 10 mM glucose. Islets were labeled by exposure for 2 h to 10 uCi of myo-[2-3H] inositol solution supplemented with 2.8 mM glucose. Forty islets were then incubated in the presence of 10 mM LiCl, 1 mM inositol and 10 mM glucose with or without the anomers of PNP-Glu. [3H] radioactivity in the incubation medium remained significantly greater in the presence of the alpha-anomer of PNP-Glu than in the presence of glucose alone after 5- and 20-min incubation. The inositol monophosphate levels in the islets incubated with glucose alone were increased more than in the islets with alpha-anomer. The beta-anomer of PNP-Glu did not change either glucose-induced insulin release or phosphoinositide breakdown. A patch-clamp study revealed that neither anomer affected the glucose-dependent ATP-sensitive K(+)-channels. These results indicate that the anomeric preference for glucose in insulin release in the pancreatic islets is closely associated with phosphoinositide breakdown.  相似文献   

10.
This study was designed in an attempt to elucidate a mechanism of somatostatin inhibition of glucose-induced Ca+ uptake by rat pancreatic islets. Rat pancreatic islets were perifused with Krebs-Ringer bicarbonate (KRB) buffer containing 16.7 mM of glucose with somatostatin (2 micrograms/ml) or/and diltiazem HCl (2 x 10(-5) M). Somatostatin inhibited preferentially the early phase of glucose-induced insulin release, whereas diltiazem HCl inhibited the late one. And the concomitant presence of the submaximal concentration of somatostatin (2 micrograms/ml) and diltiazem HCl (2 x 10(-5 M) provided the completely additive inhibition of glucose-induced insulin release. Rat pancreatic islets were incubated with KRB buffer supplemented with 16.7 mM of glucose and 45CaCl2 (10 muCi/ml) for 5--60 min and the biphasic 45Ca uptake by pancreatic islets was obtained. Somatostatin (500 ng/ml-4 micrograms/ml) gave the suppressive effect on the early phase of glucose-induced 45Ca uptake, but the higher concentration (2 micrograms/ml) of somatostatin did not impair the late phase of 45Ca uptake by pancreatic islets. On the other hand, diltiazem HCl did suppress the late phase of glucose-induced 45Ca uptake dose-dependently, but did not suppress the early phase (2 x 10(-5) M). These data indicate that somatostatin suppresses the early phase of glucose-induced Ca2+ uptake preferentially to the late one and has a different action mechanism from Ca antagonist on glucose-induced insulin release.  相似文献   

11.
目的:探讨L-亮氨酸对克隆的胰岛β细胞株INS-1E细胞分泌胰岛素的刺激作用及其葡萄糖依赖性。方法:INS-1E细胞经传代培养2 d后,在Krebs-Ringer缓冲液中37℃培养箱预培养30 min,再用含有不同浓度葡萄糖和不同浓度L-亮氨酸的改良Krebs-Ringer缓冲液培养60 min,然后留取上清液进行胰岛素测定。结果:L-亮氨酸在0.1~10 mmol.L-1范围不增加16.7mmol.L-1葡萄糖刺激的INS-1E细胞的胰岛素分泌,仅20 mmol.L-1的L-亮氨酸促进葡萄糖诱导的胰岛素分泌;10 mmol.L-1L-亮氨酸在1.1、3.3、6.7 mmol.L-1葡萄糖存在的情况下促进INS-1E细胞的胰岛素分泌,而在11.1、16.7、25 mmol.L-1葡萄糖存在的情况下无促进胰岛素分泌的作用。结论:本研究显示在无刺激胰岛素分泌的葡萄糖浓度条件下,10 mmol.L-1L-亮氨酸即显示了刺激INS-1E细胞分泌胰岛素的作用,在较高葡萄糖的条件下,10 mmol.L-1L-亮氨酸的作用减弱或消失。  相似文献   

12.
Perifused isolated rat islets were used to show that biotin plus 16.5 mM glucose evoked more insulin secretion than 16.5 mM glucose alone. Whether or not this reinforcement of glucose-induced insulin secretion by biotin is unique was studied by using perifused islets stimulated with 16.5 mM glucose plus 100 microM of one of various components of the vitamin B group. No effect of any of these vitamins was found on glucose-induced insulin secretion. These results indicate that biotin is unique among the members of the vitamin B group in enhancing glucose-induced insulin secretion. Static incubation experiments showed that biotin did not potentiate insulin release when the islets were incubated with an experimental solution containing either no or 2.8 mM glucose. The addition of biotin to 27.7 mM glucose, which is the maximal concentration for stimulating insulin release, did not significantly enhance the effect of the glucose on insulin release (although it did at 16.5 mM glucose). These findings indicate that biotin, by itself, does not stimulate insulin secretion, and does not enhance glucose-induced insulin secretion beyond the ability of glucose itself to stimulate insulin secretion.  相似文献   

13.
The biosynthesis of insulin in the islets of Langerhans is strongly controlled at the translational level by glucose. We have used a variety of experimental approaches in efforts to dissect the mechanisms underlying the stimulatory effect of glucose. To assess its effects on rates of peptide-chain elongation, isolated rat islets were labelled with [3H]leucine at different glucose concentrations in the presence or absence of low concentrations of cycloheximide. Under these conditions, at glucose concentrations up to 5.6 mM, endogenous insulin mRNA did not become rate-limiting for the synthesis of insulin, whereas stimulation of non-insulin protein synthesis was abolished by cycloheximide at all glucose concentrations, indicating either that insulin synthesis is selectively regulated at the level of elongation at glucose concentrations up to 5.6 mM, or that at these concentrations inactive insulin mRNA is transferred to an actively translating pool. Glucose-induced changes in the intracellular distribution of insulin mRNA in cultured islets were assessed by subcellular fractionation and blot-hybridization using insulin cDNA probes. At glucose concentrations above 3.3 mM, cytoplasmic insulin mRNA was increasingly transferred to fractions co-sedimenting with ribosomes, and relatively more of the ribosome-associated insulin mRNA became membrane-associated, consistent with effects of glucose above 3.3 mM on both the initiation of insulin mRNA and SRP (signal recognition particle)-mediated transfer of cytosolic nascent preproinsulin to the endoplasmic reticulum. When freshly isolated islets were homogenized and incubated with 125I-Tyr-tRNA, run-off incorporation of 125I into preproinsulin was increased by prior incubation of the islets at 16.7 mM-glucose. The addition of purified SRP receptor increased the run-off incorporation of [125I]iodotyrosine into preproinsulin, especially when the islets had been preincubated at 16.7 mM-glucose. These findings taken together suggest that glucose may stimulate elongation rates of nascent preproinsulin at concentrations up to 5.6 mM, stimulates initiation of protein synthesis involving both insulin and non-insulin mRNA at concentrations above 3.3 mM, and increases the transfer of initiated insulin mRNA molecules from the cytoplasm to microsomal membranes by an SRP-mediated mechanism that involves the modification of interactions between SRP and its receptor.  相似文献   

14.
Time course of the changes in insulin release and cyclic AMP levels in isolated rat islets incubated in media containing 5 or 16.7 mM of glucose were followed. The higher glucose concentration caused a slight but significant increase of cyclic AMP levels after 10 min incubation, but not 5 min incubation, whereas the stimulation of insulin release by 16.7 mM of glucose was apparent in both incubation times. Theophylline increased cyclic AMP levels markedly but did not stimulate insulin release when the glucose concentration was 5 mM. A slight augmentation by theophylline of insulin release was observed in the incubation medium containing 16.7 mM glucose. All these findings suggest that the elevation of cyclic AMP in islets may not play a role for the initiation of the insulin release induced by glucose, though it may act to modulate the glucose effect.  相似文献   

15.
The incorporation of glucose into glycogen was determined in pancreatic islets isolated from normal rats and incubated with glucose (5 or 20 mM) and compounds known to affect glycogen metabolism in other tissues. Incubation of pancreatic islets with glucose (20 mM) induced a marked increase in radioactive glycogen. Exposure to epinephrine in the presence of glucose (20 mM) slightly increased incorporation of glucose into glycogen. In contrast the incorporation of glucose into glycogen was not affected when isolated islets were exposed to glucagon or insulin, whereas anti-insulin serum in the incubation medium decreased radioactive glycogen formation.  相似文献   

16.
Exogenous arachidonic acid does not stimulate insulin release in Ca++-containing medium, but a potent effect was unmasked by extracellular Ca++ depletion. This secretion met several criteria of exocytotic release. It did not require the oxygenation of arachidonate or its esterification into islet membranes, but was potentiated by the presence of 16.7 mM glucose such that 33 microM arachidonate could reverse the inhibitory effects of extracellular Ca++ removal on glucose-induced insulin secretion. Arachidonic acid alone stimulated a rise in intracellular Ca++ concentrations in dispersed islet cells (measured by the fura-2 technique) equal to that induced by 16.7 mM glucose in normal medium. Arachidonic acid may be a critical coupling signal in normal islets.  相似文献   

17.
This study was undertaken to investigate the long-term effects of different substrates, in particular glucose, on the regulation of islet RNA metabolism and the relationship of this regulation to the metabolism and insulin production of the islet B-cell. For this purpose collagenase-isolated mouse islets were used either in the fresh state or after culture for 2 or 5 days in RPMI 1640 plus 10% calf serum supplemented with various test compounds. Islets cultured with 16.7 mM glucose contained more RNA than those cultured with 3.3 mM glucose. Culture of islets in glucose at low concentrations inhibited glucose-stimulated RNA synthesis and this inhibitory effect was reversed by prolonged exposure to high glucose concentrations. Culture with 10 mM leucine and 3.3 mM glucose or with 10 mM 2-ketoisocaproate and 3.3 mM glucose increased the total RNA content of islets as compared to that of islets cultured with 3.3 mM glucose alone. Islets cultured with 5 mM theophylline maintained a high RNA content in the presence of 3.3 mM glucose. Theophylline also increased the islet RNA content when added together with 16.7 mM glucose, as compared to 16.7 mM glucose alone. Theophylline probably exerted this effect by decreasing the rate of RNA degradation. Changes in islet RNA metabolism showed a close correlation to changes in islet total protein biosynthesis, whereas islet (pro)insulin biosynthesis and insulin release exhibited different glucose-dependency patterns. The response of islet oxygen uptake to glucose was similar to that of islet RNA and protein biosynthesis. It is concluded that the RNA content of the pancreatic islets is controlled at the levels of both synthesis and degradation. Glucose stimulates the RNA synthesis and inhibits its degradation. Moreover, the results suggest that regulation of RNA synthesis may be mediated through islet metabolic fluxes and the cAMP system.  相似文献   

18.
Heat shock protein (hsp), including hsp70, has been reported to restore the glucose-induced insulin release suppressed by nitric oxide (NO). However, the mechanism underlying this recovery remains unclear. In the present study, we examine the effects, in rat islets, of heat shock on insulin secretion inhibited by a small amount of NO and also on glucose metabolism, the crucial factor in insulin release. Exposure to a higher dose (15 U/ml) of interleukin-1beta (IL-1beta) abolished the insulin release by stimulation of glucose or KCl in both control and heat shocked islets. In rat islets exposed to a lower dose (1.5 U/ml) of IL-1beta, insulin secretion in response to glucose, but not to glyceraldehydes (GA), ketoisocaproate (KIC), or KCl, was selectively impaired, concomitantly with lower ATP concentrations in the presence of 16.7 mM glucose, while such suppression of insulin secretion and ATP content was not observed in heat shock-treated islets. NO production in islets exposed to 1.5 U/ml IL-1beta was significantly, but only partly, decreased by heat shock treatment. The glucose utilization rate measurement using [5-3H]-glucose and [2-3H]-glucose and the glucokinase activity in vitro were reduced in islets treated with 1.5 U/ml IL-1beta. In heat shock-treated islets, glucose utilization and glucokinase activity were not affected by 1.5 U/ml IL-1beta. These data suggest that heat shock restores glucose-induced insulin release inhibited by NO by maintaining glucokinase activity and the glucose utilization rate in islets in addition to reducing endogenous NO production.  相似文献   

19.
Objective: The metabolism of arachidonic acid (AA) has been shown to be altered in severe insulin resistance that is present in obese (fa/fa) Zucker rats. We examined the effects and mechanism of action of AA on basal and glucose‐stimulated insulin secretion in pancreatic islets isolated from obese (fa/fa) Zucker rats and their homozygous lean (Fa/Fa) littermates. Research Methods and Procedures: Islets were isolated from 10‐ to 12‐week‐old rats and incubated for 45 minutes in glucose concentrations ranging from 3.3 to 16.7 mM with or without inhibitors of the cyclooxygenase or lipoxygenase pathways. Medium insulin concentrations were measured by radioimmunoassay, and islet production of the 12‐lipoxygenase metabolite, 12‐hydroxyeicosatetraenoic acid (12‐HETE), was measured by enzyme immunoassay. Results: In islets from lean animals, AA stimulated insulin secretion at submaximally stimulatory glucose levels (< 11.1 mM) but not at 16.7 mM glucose. In contrast, in islets derived from obese rats, AA potentiated insulin secretion at all glucose concentrations. AA‐induced insulin secretion was augmented in islets from obese compared with lean rats at high concentrations of AA in the presence of 3.3 mM glucose. Furthermore, the inhibitor of 12‐lipoxygenase, esculetin (0.5 μM), inhibited AA‐stimulated insulin secretion in islets from obese but not lean rats. Finally, the islet production of the 12‐HETE was markedly enhanced in islets from obese rats, both in response to 16.7 mM glucose and to AA. Discussion: The insulin secretory response to AA is augmented in islets from obese Zucker rats by a mechanism related to enhanced activity of the 12‐lipoxygenase pathway. Therefore, augmented action of AA may be a mechanism underlying the adaptation of insulin secretion to the increased demand caused by insulin resistance in these animals.  相似文献   

20.
Neuropeptide W (NPW) is a regulatory peptide that acts via two subtypes of G protein-coupled receptors, GPR7 and GPR8. Evidence has been provided that NPW is involved in the central regulation of energy homeostasis and feeding behavior. In this study, we examined the effects of NPW on insulin release and localization of NPW in the rat pancreas. NPW (10-100 nM) significantly increased insulin release in the presence of 8.3 mM, but not 2.8 mM, glucose in the isolated rat islets. By fura-2 microfluorometry, NPW (1-100 nM) concentration-dependently increased cytosolic Ca(2+) concentration ([Ca(2+)](i)) at 8.3 mM glucose in rat single beta-cells. The NPW-induced [Ca(2+)](i) increase was abolished under external Ca(2+)-free conditions and by an L-type Ca(2+) channel blocker nifedipine (10 microM). RT-PCR analysis revealed that mRNA for NPW was expressed in the rat pancreas and hypothalamus. Double immunohistochemical analysis showed that NPW-immunoreactivity was found in islets and co-localized with insulin-containing beta-cells, but not glucagon-containing alpha-cells and somatostatin-containing delta-cells. These results suggest that NPW could serve as a local modulator of glucose-induced insulin release in rat islets. NPW directly activates beta-cells to enhance Ca(2+) influx through voltage-dependent L-type Ca(2+) channels and potentiates glucose-induced insulin release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号