首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Aggregation of the high affinity receptor for IgE (Fc epsilon RI) on the surface of mast cells results in the rapid hydrolysis of membrane inositol phospholipids by phospholipase C (PLC). Although at least seven isoenzymes of PLC have been characterized in different mammalian cells, the isoenzyme involved in Fc epsilon RI-mediated signal transduction and the mechanism of its activation have not been demonstrated. We now report that PLC-gamma 1 is translocated to the membrane of mast cells after aggregation of Fc epsilon RI. Activation of rat basophilic leukemia cells, a rat mast cell line, with oligomeric IgE resulted in an increase in PLC activity in washed membrane preparations in a cell free assay containing exogenous [3H]phosphatidylinositol (PI). The increase in PLC activity has the same dose-response to oligomeric IgE as receptor mediated hydrolysis of inositol lipids (PI hydrolysis) in intact cells. Analysis by Western blot probed with anti-PLC-gamma 1 antibody revealed that there is a three- to fourfold increase in PLC-gamma 1 in membranes from activated cells. The increase in PLC activity is augmented a further 20% by the addition of orthovanadate to the incubation medium suggesting that a tyrosine phosphatase is involved in the down-regulation of this phenomenon. These findings demonstrate translocation of PLC-gamma 1 to the membrane following activation of a receptor which does not contain intrinsic tyrosine kinase activity. Activation of PLC-gamma 1 by this pathway may account for Fc epsilon RI-mediated PI hydrolysis.  相似文献   

3.
In mast cells, cross-linking the high-affinity IgE receptor (Fc(epsilon)RI) initiates the Lyn-mediated phosphorylation of receptor ITAMs, forming phospho-ITAM binding sites for Syk. Previous immunogold labeling of membrane sheets showed that resting Fc(epsilon)RI colocalize loosely with Lyn, whereas cross-linked Fc(epsilon)RI redistribute into specialized domains (osmiophilic patches) that exclude Lyn, accumulate Syk, and are often bordered by coated pits. Here, the distribution of Fc(epsilon)RI beta is mapped relative to linker for activation of T cells (LAT), Grb2-binding protein 2 (Gab2), two PLCgamma isoforms, and the p85 subunit of phosphatidylinositol 3-kinase (PI3-kinase), all implicated in the remodeling of membrane inositol phospholipids. Before activation, PLCgamma1 and Gab2 are not strongly membrane associated, LAT occurs in small membrane clusters separate from receptor, and PLCgamma2, that coprecipitates with LAT, occurs in clusters and along cytoskeletal cables. After activation, PLCgamma2, Gab2, and a portion of p85 colocalize with Fc(epsilon)RI beta in osmiophilic patches. LAT clusters enlarge within 30 s of receptor activation, forming elongated complexes that can intersect osmiophilic patches without mixing. PLCgamma1 and another portion of p85 associate preferentially with activated LAT. Supporting multiple distributions of PI3-kinase, Fc(epsilon)RI cross-linking increases PI3-kinase activity in anti-LAT, anti-Fc(epsilon)RIbeta, and anti-Gab2 immune complexes. We propose that activated mast cells propagate signals from primary domains organized around Fc(epsilon)RIbeta and from secondary domains, including one organized around LAT.  相似文献   

4.
The high affinity receptor for IgG (Fc gamma RI, CD64) is expressed on human mast cells, where it is up-regulated by IFN-gamma and, thus, may allow mast cells to be recruited through IgG-dependent mechanisms in IFN-gamma-rich tissue inflammation. However, the mediators produced by human mast cells after aggregation of Fc gamma RI are incompletely described, and it is unknown whether these mediators are distinct from those produced after activation of human mast cells via Fc epsilon RI. Thus, we investigated the release of histamine and arachidonic acid metabolites and examined the chemokine and cytokine mRNA profiles of IFN-gamma-treated cultured human mast cells after Fc gamma RI or Fc epsilon RI aggregation. Aggregation of Fc gamma RI resulted in histamine release and PGD(2) and LTC(4) generation. These responses were qualitatively indistinguishable from responses stimulated via Fc epsilon RI. Aggregation of Fc epsilon RI or Fc gamma RI led to an induction or accumulation of 22 cytokine and chemokine mRNAs. Among them, seven cytokines (TNF-alpha, IL-1beta, IL-5, IL-6, IL-13, IL-1R antagonist, and GM-CSF) were significantly up-regulated via aggregation of Fc gamma RI compared with Fc epsilon RI. TNF-alpha mRNA data were confirmed by quantitative RT-PCR and ELISA. Furthermore, we confirmed histamine and TNF-alpha data using IFN-gamma-treated purified human lung mast cells. Thus, aggregation of Fc gamma RI on mast cells led to up-regulation and/or release of three important classes of mediators: biogenic amines, lipid mediators, and cytokines. Some cytokines, such as TNF-alpha, were released and generated to a greater degree after Fc gamma RI aggregation, suggesting that selected biologic responses of mast cells may be preferentially generated through Fc gamma RI in an IFN-gamma-rich environment.  相似文献   

5.
Human mast cells and basophils that express the high-affinity immunoglobulin E (IgE) receptor, Fc epsilon receptor 1 (Fc epsilon RI), have key roles in allergic diseases. Fc epsilon RI cross-linking stimulates the release of allergic mediators. Mast cells and basophils co-express Fc gamma RIIb, a low affinity receptor containing an immunoreceptor tyrosine-based inhibitory motif and whose co-aggregation with Fc epsilon RI can block Fc epsilon RI-mediated reactivity. Here we designed, expressed and tested the human basophil and mast-cell inhibitory function of a novel chimeric fusion protein, whose structure is gamma Hinge-CH gamma 2-CH gamma 3-15aa linker-CH epsilon 2-CH epsilon 3-CH epsilon 4. This Fc gamma Fc epsilon fusion protein was expressed as the predicted 140-kappa D dimer that reacted with anti-human epsilon- and gamma-chain specific antibodies. Fc gamma Fc epsilon bound to both human Fc epsilon RI and Fc gamma RII. It also showed dose- and time-dependent inhibition of antigen-driven IgE-mediated histamine release from fresh human basophils sensitized with IgE directed against NIP (4-hydroxy-3-iodo-5-nitrophenylacetyl). This was associated with altered Syk signaling. The fusion protein also showed increased inhibition of human anti-NP (4-hydroxy-3-nitrophenylacetyl) and anti-dansyl IgE-mediated passive cutaneous anaphylaxis in transgenic mice expressing human Fc epsilon RI alpha. Our results show that this chimeric protein is able to form complexes with both Fc epsilon RI and Fc gamma RII, and inhibit mast-cell and basophil function. This approach, using a Fc gamma Fc epsilon fusion protein to co-aggregate Fc epsilon RI with a receptor containing an immunoreceptor tyrosine-based inhibition motif, has therapeutic potential in IgE- and Fc epsilon RI-mediated diseases.  相似文献   

6.
The adapter SLP-76 plays an essential role in Fc epsilon RI signaling, since SLP-76(-/-) bone marrow-derived mast cells (BMMC) fail to degranulate and release interleukin-6 (IL-6) following Fc epsilon RI ligation. To define the role of SLP-76 domains and motifs in Fc epsilon RI signaling, SLP-76(-/-) BMMC were retrovirally transduced with SLP-76 and SLP-76 mutants. The SLP-76 N-terminal and Gads binding domains, but not the SH2 domain, were critical for Fc epsilon RI-mediated degranulation and IL-6 secretion, whereas all three domains are essential for T-cell proliferation following T-cell receptor (TCR) ligation. Unexpectedly, the three tyrosine residues in SLP-76 critical for TCR signaling, Y112, Y128, and Y145, were not essential for IL-6 secretion, but were required for degranulation and mitogen-activated protein kinase activation. Furthermore, a Y112/128F SLP-76 mutant, but not a Y145F mutant, strongly reconstituted mast cell degranulation, suggesting a critical role for Y145 in Fc epsilon RI-mediated exocytosis. These results point to important differences in the function of SLP-76 between T cells and mast cells.  相似文献   

7.
Biologically relevant activation of human mast cells through Fc receptors is believed to occur primarily through the high-affinity IgE receptor Fc epsilon RI. However, the demonstration in animal models that allergic reactions do not necessarily require Ag-specific IgE, nor the presence of a functional IgE receptor, and the clinical occurrence of some allergic reactions in situations where Ag-specific IgE appears to be lacking, led us to examine the hypothesis that human mast cells might express the high-affinity IgG receptor Fc gamma RI and in turn be activated through aggregation of this receptor. We thus first determined by RT-PCR that resting human mast cells exhibit minimal message for Fc gamma RI. We next found that IFN-gamma up-regulated the expression of Fc gamma RI. This was confirmed by flow cytometry, where Fc gamma RI expression on human mast cells was increased from approximately 2 to 44% by IFN-gamma exposure. Fc epsilon RI, Fc gamma RII, and Fc gamma RIII expression was not affected. Scatchard plots were consisted with these data where the average binding sites for monomeric IgG1 (Ka = 4-5 x 108 M-1) increased from approximately 2,400 to 12,100-17,300 per cell. Aggregation of Fc gamma RI on human mast cells, and only after IFN-gamma exposure, led to significant degranulation as evidenced by histamine release (24.5 +/- 4.4%): and up-regulation of mRNA expression for specific cytokines including TNF-alpha, GM-CSF, IL-3 and IL-13. These findings thus suggest another mechanism by which human mast cells may be recruited into the inflammatory processes associated with some immunologic and infectious diseases.  相似文献   

8.
Antigen-mediated aggregation of the high-affinity receptor for immunoglobulin E, Fc epsilon RI, results in the activation of multiple signaling pathways, leading to the release of mediators of the allergic response. One of the earliest responses to receptor stimulation is the tyrosine phosphorylation of the beta and gamma subunits of Fc epsilon RI and the association of the tyrosine kinase Syk with the phosphorylated receptor. This association is mediated by the SH2 domains of Syk and is believed to be critical for activating signaling pathways resulting in mediator release. To examine the importance of the interaction of Syk with Fc epsilon RI in signaling events following receptor activation, we introduced a protein containing the SH2 domains of Syk into streptolysin O-permeabilized RBL-2H3 cells. The Syk SH2 domains completely inhibited degranulation and leukotriene production following receptor aggregation, and they blocked the increase in protein tyrosine phosphorylation observed after receptor activation. Inhibition was specific for Fc epsilon RI-mediated signaling, since degranulation of cells activated by alternative stimuli was not blocked by the Syk SH2 domains. A protein containing a point mutation in the carboxy-terminal SH2 domain which abolishes phosphotyrosine binding was not inhibitory. In addition, inhibition of degranulation was reversed by pretreatment of the SH2 domains with a tyrosine phosphorylated peptide corresponding to the tyrosine-based activation motif found in the gamma subunit of Fc epsilon RI, the nonphosphorylated peptide had no effect. The association of Syk with the tyrosine-phosphorylated gamma subunit of the activated receptor was blocked by the Syk SH2 domains, and deregulation in cells activated by clustering of Syk directly without Fc epsilon RI aggregation was not affected by the Syk SH2 domains. These results demonstrate that the association of Syk with the activated Fc epsilon RI is critical for both early and late events following receptor activation and confirm the key role Syk plays in signaling through the high-affinity IgE receptor.  相似文献   

9.
The gamma subunit of the high affinity IgE receptor, Fc epsilon RI, is a member of a family of proteins which form disulfide-linked dimers. This family also includes the zeta- and eta-chains of the T cell receptor. Engagement of Fc epsilon RI activates src-related protein tyrosine kinases in basophils and mast cells. However, the role of individual subunits of Fc epsilon RI in this activation is still not known. In an effort to determine the function of Fc epsilon RI-gamma, we used chimeric proteins containing the extracellular and transmembrane domains of the alpha chain of the human interleukin 2 receptor (Tac) and the cytoplasmic domains of either T cell receptor-zeta or Fc epsilon RI-gamma. We show that while cross-linking of the Tac chimeras in the rat basophilic leukemia cell line RBL-2H3 resulted in the tyrosine phosphorylation of a subset of proteins and a portion of the degranulation normally observed after Fc epsilon RI-mediated stimulation, no detectable activation of p56lyn or pp60c-src was observed. In contrast, an apparent transient deactivation of these two kinases was observed after Tac chimera cross-linking. These observations suggest that Fc epsilon RI-gamma is responsible for some, but not all, of the signaling that occurs after engagement of its receptor, and that other receptor subunits may also play important roles in this signaling process.  相似文献   

10.
The low-affinity receptor for IgG, Fc gamma RIIB, is expressed widely in the immune system and functions to attenuate Ag-induced immune responses. In mast cells, coaggregation of Fc gamma RIIB with the high-affinity IgE receptor, Fc epsilon RI, leads to inhibition of Ag-induced degranulation and cytokine production. Fc gamma RIIB inhibitory activity requires a conserved motif within the Fc gamma RIIB cytoplasmic domain termed the immunoreceptor tyrosine-based inhibition motif. When coaggregated with an activating receptor (e.g., Fc epsilon RI, B cell Ag receptor), Fc gamma RIIB is rapidly phosphorylated on tyrosine and recruits the SH2 domain-containing inositol 5-phosphatase (SHIP). However, the mechanisms by which SHIP mediates Fc gamma RIIB inhibitory function in mast cells remain poorly defined. In this report we demonstrate that Fc gamma RIIB coaggregation with Fc epsilon RI stimulates enhanced SHIP tyrosine phosphorylation and association with Shc and p62(dok). Concurrently, enhanced p62(dok) tyrosine phosphorylation and association with RasGAP are observed, suggesting that SHIP may mediate Fc gamma RIIB inhibitory function in mast cells via recruitment of p62(dok) and RasGAP. Supporting this hypothesis, recruitment of p62(dok) to Fc epsilon RI is sufficient to inhibit Fc epsilon RI-induced calcium mobilization and extracellular signal-regulated kinase 1/2 activation. Interestingly, both the amino-terminal pleckstrin homology and phosphotyrosine binding domains and the carboxyl-terminal proline/tyrosine-rich region of p62(dok) can mediate inhibition, suggesting activation of parallel downstream signaling pathways that converge at extracellular signal-regulated kinase 1/2 activation. Finally, studies using gene-ablated mice indicate that p62(dok) is dispensable for Fc gamma RIIB inhibitory signaling in mast cells. Taken together, these data suggest a role for p62(dok) as a mediator of Fc gamma RIIB inhibition of Fc epsilon RI signal transduction in mast cells.  相似文献   

11.
Characterization of defects in a variant subline of RBL mast cells has revealed a biochemical event proximal to IgE receptor (Fc epsilon RI)-stimulated tyrosine phosphorylation that is required for multiple functional responses. This cell line, designated B6A4C1, is deficient in both Fc epsilon RI-mediated degranulation and biosynthesis of several lipid raft components. Agents that bypass receptor-mediated Ca(2+) influx stimulate strong degranulation responses in these variant cells. Cross-linking of IgE-Fc epsilon RI on these cells stimulates robust tyrosine phosphorylation but fails to mobilize a sustained Ca(2+) response. Fc epsilon RI-mediated inositol phosphate production is not detectable in these cells, and failure of adenosine receptors to mobilize Ca(2+) suggests a general deficiency in stimulated phospholipase C activity. Antigen stimulation of phospholipases A(2) and D is also defective. Infection of B6A4C1 cells with vaccinia virus constructs expressing constitutively active Rho family members Cdc42 and Rac restores antigen-stimulated degranulation, and active Cdc42 (but not active Rac) restores ganglioside and GPI expression. The results support the hypothesis that activation of Cdc42 and/or Rac is critical for Fc epsilon RI-mediated signaling that leads to Ca(2+) mobilization and degranulation. Furthermore, they suggest that Cdc42 plays an important role in the biosynthesis and expression of certain components of lipid rafts.  相似文献   

12.
In bone marrow-derived mast cells (BMMCs), the Kit receptor tyrosine kinase mediates diverse responses including proliferation, survival, chemotaxis, migration, differentiation, and adhesion to extracellular matrix. In connective tissue mast cells, a role for Kit in the secretion of inflammatory mediators has been demonstrated as well. We recently demonstrated a role for phosphatidylinositide-3' (PI 3)-kinase in Kit-ligand (KL)-induced adhesion of BMMCs to fibronectin. Herein, we investigated the mechanism by which Kit mediates enhancement of Fc epsilon RI-mediated degranulation, cytoskeletal rearrangements, and adhesion in BMMCs. Wsh/Wsh BMMCs lacking endogenous Kit expression, were transduced to express normal and mutant Kit receptors containing Tyr-->Phe substitution at residues 719 and 821. Although the normal Kit receptor fully restored KL-induced responses in Wsh/Wsh BMMCs, Kit gamma 719F, which fails to bind and activate PI 3-kinase, failed to potentiate degranulation and is impaired in mediating membrane ruffling and actin assembly. Inhibition of PI 3-kinase with wortmannin or LY294002 also inhibited secretory enhancement and cytoskeletal rearrangements mediated by Kit. In contrast, secretory enhancement and adhesion stimulated directly through protein kinase C (PKC) do not require PI 3-kinase. Calphostin C, an inhibitor of PKC, blocked Kit-mediated adhesion to fibronectin, secretory enhancement, membrane ruffling, and filamentous actin assembly. Although cytochalasin D inhibited Kit-mediated filamentous actin assembly and membrane ruffling, secretory enhancement and adhesion to fibronectin were not affected by this drug. Therefore, Kit-mediated cytoskeletal rearrangements that are dependent on actin polymerization can be uncoupled from the Kit-mediated secretory and adhesive responses. Our results implicate receptor-proximal PI 3-kinase activation and activation of a PKC isoform in Kit-mediated secretory enhancement, adhesion, and cytoskeletal reorganization.  相似文献   

13.
Cross-linking of the IgE receptor (FcεRI) on mast cells plays a critical role in IgE-dependent allergy, including allergic rhinitis, asthma, anaphylaxis, and immediate-type hypersensitivity reactions. Previous studies have demonstrated that the K(+) channel, KCa3.1, plays a critical role in IgE-stimulated Ca(2+) entry and degranulation in both human and mouse mast cells. We now have shown that the class II phosphatidylinositol-3-kinase C2β (PI3KC2β) is necessary for FcεRI-stimulated activation of KCa3.1, Ca(2+) influx, cytokine production, and degranulation of bone marrow-derived mast cells (BMMC). In addition, we found that the E3 ubiquitin ligase, tripartite motif containing protein 27 (TRIM27), negatively regulates FcεRI activation of KCa3.1 and downstream signaling by ubiquitinating and inhibiting PI3KC2β. TRIM27(-/-) mice are also more susceptible in vivo to acute anaphylaxis. These findings identify TRIM27 as an important negative regulator of mast cells in vivo and suggest that PI3KC2β is a potential new pharmacologic target to treat IgE-mediated disease.  相似文献   

14.
We have investigated the effects of wortmannin, an inhibitor of phosphatidylinositol 3-kinase (PI 3-kinase), on antigen-mediated signaling in the RBL-2H3 mast cell model. In RBL-2H3 cells, the cross-linking of high affinity IgE receptors (Fc epsilon R1) activates at least two cytoplasmic protein tyrosine kinases, Lyn and Syk, and stimulates secretion, membrane ruffling, spreading, pinocytosis, and the formation of actin plaques implicated in increased cell-substrate adhesion. In addition, Fc epsilon R1 cross-linking activates PI 3-kinase. It was previously shown that wortmannin causes a dose-dependent inhibition of PI 3-kinase activity and also inhibits antigen-stimulated degranulation. We report that the antigen-induced synthesis of inositol(1,4,5)P3 is also markedly inhibited by wortmannin. Consistent with evidence in other cell systems implicating phosphatidylinositol(3,4,5)P3 in ruffling, pretreatment of RBL-2H3 cells with wortmannin inhibits membrane ruffling and fluid pinocytosis in response to Fc epsilon R1 cross-linking. However, wortmannin does not inhibit antigen-induced actin polymerization, receptor internalization, or the actin-dependent processes of spreading and adhesion plaque formation that follow antigen stimulation in adherent cells. Wortmannin also fails to inhibit either of the Fc epsilon R1-coupled tyrosine kinases, Lyn or Syk, or the activation of mitogen-activated protein kinase as measured by in vitro kinase assays. Strikingly, there is substantial in vitro serine/threonine kinase activity in immunoprecipitates prepared from Fc epsilon R1-activated cells using antisera to the p85 subunit of PI 3-kinase. This activity is inhibited by pretreatment of the cells with wortmannin or by the direct addition of wortmannin to the kinase assay, suggesting that PI 3-kinase itself is capable of acting as a protein kinase. We conclude that Fc epsilon R1 cross-linking activates both lipid and protein kinase activities of PI 3-kinase and that inhibiting these activities with wortmannin results in the selective block of a subset of Fc epsilon R1-mediated signaling responses.  相似文献   

15.
The high affinity receptor for IgE (Fc epsilon RI) is present on mast cells and basophils, and the aggregation of IgE-occupied receptors by Ag is responsible for the release of allergic mediators. The Fc epsilon RI is composed of at least three different subunits, alpha, beta, and gamma, with the alpha subunit binding IgE. The series of biochemical events linking receptor aggregation to the release of mediators has not been fully delineated. As a step towards understanding these processes, and for the development of functional cell lines, we have transfected the human Fc epsilon RI alpha subunit into the rat mast cell line RBL 2H3. These human Fc epsilon RI alpha-transfected cell lines have been characterized with respect to the association of the human alpha subunit with endogenous rat beta and gamma subunits and the ability of aggregated Fc epsilon RI alpha subunits to mediate a variety of biochemical events. The signal transduction events monitored include phosphoinositide hydrolysis, Ca2+ mobilization, tyrosine phosphorylation, histamine release, and arachidonic acid metabolism. In all cases, the events mediated by aggregating human Fc epsilon RI alpha subunits were indistinguishable from those produced via the rat Fc epsilon RI alpha. These results demonstrate that the human Fc epsilon RI alpha subunit can functionally substitute for the rat Fc epsilon RI alpha subunit during signal transduction. The availability of this cell line will provide a means of evaluating potential Fc epsilon RI antagonists.  相似文献   

16.
Aggregation of the high affinity receptor for IgE (Fc epsilon RI) on mast cells by a polyvalent Ag leads to hydrolysis of phosphoinositides (PI) catalyzed by phospholipase C (PI-PLC). To understand this phenomenon in molecular terms, it is important to obtain active, cell-free preparations. In extensive preliminary studies, we could not demonstrate Fc epsilon RI-mediated activation of PI-PLC in plasma membranes prepared by conventional methods from rat basophilic leukemia cells. We now report a stepwise approach involving preparation of cytoplasts from such cells and then hypotonic lysis of the cytoplasts to obtain active membrane vesicles. These membranes, best described as "ghosts," appear to reseal after losing greater than 90% of their soluble, cytoplasmic components and contain receptors that when aggregated, activate PI-PLC to hydrolyze endogenous phospholipids. Per unit of plasma membrane, the ghosts retain approximately 25% of Fc epsilon RI-mediated stimulation of PI-PLC relative to the cells. This activity requires ATP, magnesium, phosphoenolpyruvate, and, to a limited degree, calcium. Although an adequate amount of phosphatidylinositol biphosphate is present, the predicted spike of (1,4,5)-inositol trisphosphate is not seen, and the predominant inositol phosphate isomer is (1,4)-inositol bisphosphate. This is the first report of Fc epsilon RI-mediated activation of PI-PLC in a cytoplasm-depleted system that demonstrates activation of endogenous enzyme acting on endogenous substrate. In addition, it is the first such report for any receptor of the Ig superfamily.  相似文献   

17.
Although mast cells accumulate within the mucosal epithelial layer of patients with allergic rhinitis and bronchial asthma, the responsible chemotactic factors are undefined. We investigated whether mast cells sensitized with Ag-specific IgE migrate toward the Ag. MC/9 mast cells sensitized with anti-DNP IgE migrated toward DNP-conjugated human serum albumin. This migration was directional, and the degree was stronger than that induced by stem cell factor. IL-3 and stem cell factor-dependent cultured mast cells derived from mouse bone marrow also migrated toward the Ag. Subsequent migration mediated by the Fc(epsilon)RI was significantly inhibited by incubating the cells with Y-27632, a Rho-associated coiled-coil-forming protein kinase inhibitor, or with SB203580, a p38 mitogen-activated protein kinase (MAPK) inhibitor. Both p38 MAPK and MAPK-activated protein kinase (MAPKAPK)2 were activated following Fc(epsilon)RI aggregation, and activation of MAPKAPK2 was almost completely inhibited by 10 microM SB203580. Wortmannin or a low concentration of SB203580 partially inhibited MAPKAPK2, but did not block mast cell migration. In contrast, Y-27632 did not affect the activation of MAPKAPK2. These results indicate that Ag works not only as a stimulant for allergic mediators from IgE-sensitized mast cells, but also as a chemotactic factor for mast cells. Both p38 MAPK activation and Rho-dependent activation of Rho-associated coiled-coil-forming protein kinase may be required for Fc(epsilon)RI-mediated cell migration.  相似文献   

18.
19.
IgE-sensitized rat basophilic leukemia (RBL)-2H3 mast cells have been shown to migrate towards antigen. In the present study we tried to identify the mechanism by which antigen causes mast cell migration. Antigen caused migration of RBL-2H3 cells at the concentration ranges of 1000-fold lower than those required for degranulation and the dose response was biphasic. This suggests that mast cells can detect very low concentration gradients of antigen (pg/ml ranges), which initiate migration until they degranulate near the origin of antigen, of which concentration is in the ng/ml ranges. Similar phenomenon was observed in human mast cells (HMCs) derived from CD34+ progenitors. As one mechanism of mast cell migration, we tested the involvement of sphingosine 1-phosphate (S1P). FcεRI-mediated cell migration was dependent on the production of S1P but independent of a S1P receptor or its signaling pathways as determined with S1P receptor antagonist VPC23019 and Gi protein inhibitor pertussis toxin (PTX). This indicated that the site of action of S1P produced by antigen stimulation was intracellular. However, S1P-induced mast cell migration was dependent on S1P receptor activation and inhibited by both VPC23019 and PTX. Cell migration towards antigen or extracellular S1P was dependent on the activation of the phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways, while only migration towards antigen was inhibited by the inhibitors of sphingosine kinase and phospholipase C (PLC) and intracellular calcium chelator BAPTA. In summary, our data suggest that the high affinity receptor for IgE (FcεRI)-mediated mast cell migration is dependent on the production of S1P but independent of S1P receptors. Cell migration mediated by either FcεRI or S1P receptors involves activation of both PI3K and MAPK.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号