首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Earthworms are important soil metabionts indicative of N enrichment in pastures. A rotational pasture in central Nova Scotia was tested for earthworms using chemical extraction followed by excavation and hand sorting in 28 paired micro plots placed in areas with low versus high proportion of the N indicator plant species dandelion (Taraxacum officinale). Species richness was low with five earthworm species of the Lumbricidae recovered in the following order of abundance: Lumbricus rubellus, Lumbricus terrestris, Aporrectodea turgida, Aporrectodea tuberculata, and Aporrectodea trapezoides. All species occurred at high constancy except the rare A. trapezoides. The inventory revealed spatial differentiation of earthworm abundance and community structure at the field level. High proportion of dandelion reduced pasture sward biomass while abundance of L. rubellus and A. tuberculata significantly (p < 0.05) increased with a concomitant increase in epigeic earthworm dominance at the expense of the anecic L. terrestris. Thus, low cost and non-destructive floristic surveys of N indicators, such as dandelion, allow for concordant inferences about the environmental impact of intensive cow pasture on earthworms and ecosystem function. High earthworm counts may run contrary to the notion of ecological integrity depending on specific earthworm abundances. Reduced earthworm benefits due to any de-intensification of rotational pasture must be assessed against increased risks of N-leaching in intensive pastures with high proportion of dandelion.  相似文献   

2.
During a study on the breeding rate of the earthworms Lumbricus rubellus and Eisenia foetida, nematodes identified as Rhabditis terricola were found consistently in large numbers in earthworm cocoons that failed to hatch after an adequate incubation period. This nematode species, which was previously known as a saprophyte, was found to invade earthworm cocoons and reproduce within, causing extensive productivity losses in earthworm cultures. In this study, R. terricola was effectively eradicated from earthworm cultures by rinsing the earthworms in tap water and transferring them repeatedly to sterile bedding.  相似文献   

3.
Tiunov AV  Scheu S 《Oecologia》2004,138(1):83-90
Activity of soil decomposer microorganisms is generally limited by carbon availability, but factors controlling saprophagous soil animals remain largely unknown. In contrast to microorganisms, animals are unable to exploit mineral nutrient pools. Therefore, it has been suggested that soil animals, and earthworms in particular, are limited by the availability of nitrogen. In contrast to this view, a strong increase in density and biomass of endogeic earthworms in response to labile organic carbon addition has been documented in field experiments. The hypothesis that the growth of endogeic earthworms is primarily limited by carbon availability was tested in a laboratory experiment lasting for 10 weeks. In addition, it was investigated whether the effects of earthworms on microbial activity and nutrient mineralization depend on the availability of carbon resources. We manipulated food availability to the endogeic earthworm species Octolasion tyrtaeum by using two soils with different organic matter content, providing access to different amounts of soil, and adding labile organic carbon (glucose) enriched in 13C.Glucose addition strongly increased the growth of O. tyrtaeum. From 8 to 17% of the total C in earthworm tissue was assimilated from the glucose added. Soil microbial biomass was not strongly affected by the addition of glucose, though basal respiration was significantly increased and up to 50% of the carbon added as glucose was incorporated into soil organic matter. The impact of earthworms on the mineralization and leaching of nitrogen depended on C availability. As expected, in C-limited soil, the presence of earthworms strongly increased nitrogen leaching. However, when C availability was increased by the addition of glucose, this pattern was reversed, i.e. the presence of O. tyrtaeum decreased nitrogen leaching and its availability to soil microflora. We conclude that irrespective of the total carbon content of soils, O. tyrtaeum was primarily limited by carbon, and that increased carbon availability allowed earthworms to be more effective in mobilizing N. The presence of earthworms increases C limitation of soil microorganisms, due to increased availability of N and P in earthworm casts or a direct depletion of easily available carbon resources by earthworms.  相似文献   

4.
Schmidt  Olaf  Curry  James P. 《Plant and Soil》1999,214(1-2):187-198
The effects of earthworms (Lumbricidae) on plant biomass production and N allocation in model intercropping systems of winter wheat and white clover were evaluated in two pot experiments. Wheat and wheat-clover mixtures were grown in a low-organic loam soil, earthworms were added at densities comparable to field population densities and the experiments were terminated 48 and 17 d after earthworm introductions. In both experiments, earthworms significantly increased the biomass and N uptake of wheat while they had generally no effects on clover. As a result, earthworm activity increased the proportion of wheat biomass in the total plant biomass of the mixture. Nitrogen budgets of the experiment lasting 48 d indicated that additional N in the system made available by earthworm activity was primarily taken up by the wheat. Earthworms also affected intra-plant N allocation in wheat which had significantly higher shoot:root N ratios when earthworms were present. When clover was labelled with 15N in the experiment which lasted 17 d, endogeic earthworms significantly reduced the amounts of 15N excess transferred from living or decomposing clover roots to accompanying wheat plants. Earthworms assimilated small quantities of 15N tracer from decomposing clover roots but not from living clover roots. The results of these model experiments suggest that earthworms can affect the balance between intercropped cereals and legumes by altering intra- and inter-plant N allocation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

5.
Hale CM  Frelich LE  Reich PB  Pastor J 《Oecologia》2008,155(3):509-518
A greenhouse mesocosm experiment, representing earthworm-free North American Acer-dominated forest floor and soil conditions, was used to examine the individual and combined effects of initial invasion by three European earthworm species (Dendrobaena octaedra, Lumbricus rubellus and Lumbricus terrestris) on the forest floor and upper soil horizons, N and P availability, and the mortality and biomass of four native understory plant species (Acer saccharum, Aquilegia canadensis, Aralia racemosa, and Carex pensylvanica). All the three earthworm species combined caused larger impacts on most variables measured than any single earthworm species. These included loss of O horizon mass, decreased thickness of the O horizon and increased thickness of the A horizon, and higher availability of N and P. The latter finding differs from field reports where nutrients were less available after invasion, and probably represents an initial transient increase in nutrient supply as earthworms consume and incorporate the O horizon into the A horizon. Earthworms also increased mortality of plants and decreased total mesocosm plant biomass, but here the impact of all the three earthworm species was no greater than that of L. terrestris and/or L. rubellus alone. This study corroborates field studies that European earthworm invasions alter North American forest ecosystem processes by initiating a cascade of impacts on plant community composition and soil properties.  相似文献   

6.
We analyzed soil organic matter distribution and soil solution chemistry in plots with and without earthworms at two sugar maple (Acer saccharum)–dominated forests in New York State, USA, with differing land-use histories to assess the influence of earthworm invasion on the retention or loss of soil carbon (C) and nitrogen (N) in northern temperate forests. Our objectives were to assess the influence of exotic earthworm invasion on (a) the amount and depth distribution of soil C and N, (b) soil 13C and 15N, and (c) soil solution chemistry and leaching of C and N in forests with different land-use histories. At a relatively undisturbed forest site (Arnot Forest), earthworms eliminated the thick forest floor, decreased soil C storage in the upper 12 cm by 28%, and reduced soil C:N ratios from 19.2 to 15.3. At a previously cultivated forest site with little forest floor (Tompkins Farm), earthworms did not influence the storage of soil C or N or soil C:N ratios. Earthworms altered the stable isotopic signature of soil at Arnot Forest but not at Tompkins Farm; the alteration of stable isotopes indicated that earthworms significantly increased the loss of forest floor C but not N from the soil profile at Arnot Forest. Nitrate (NO3) concentrations in tension and zero-tension lysimeters were much greater at Tompkins Farm than Arnot Forest, and earthworms increased NO3 leaching at Tompkins Farm. The results suggest that the effect of earthworm invasion on the distribution, retention, and solution chemistry of soil C and N in northern temperate forests may depend on the initial quantity and quality of soil organic matter at invaded sites.  相似文献   

7.
The important role of soil carbon (C) in the global C cycle has stimulated interest in better understanding the mechanisms regulating soil C storage and its stabilization. Exotic earthworm invasion of northern forest soils in North America can affect soil C pools, and we examined their effects on these mechanisms by adding 13C labeled leaf litter to adjacent northern hardwood forests with and without earthworms. Two types of labeled litter were produced, one with the 13C more concentrated in structural (S) components and the other in non-structural (NS) components, to evaluate the role of biochemical differences in soil C stabilization. Earthworm invasions have reduced soil C storage in the upper 20 cm of the soil profile by 37 %, mostly by eliminating surface organic horizons. Despite rapid mixing of litter into mineral soil and its incorporation into aggregates, mineral soil C has not increased in the presence of earthworms. Incorporation of litter C into soil and microbial biomass was not affected by biochemical differences between S versus NS labeled litter although NS litter C was assimilated more readily into earthworm biomass and S litter C into fungal hyphae. Apparently, the net effect of earthworm mixing of litter and forest floor C into mineral soil, plus stabilization of that C in aggregates, is counterbalanced by earthworm bioturbation and possible priming effects. Our results support recent arguments that biochemical recalcitrance is not a major contributor to the stabilization of soil C.  相似文献   

8.
Human activities have recently caused severe destruction of Sphagnum wetlands in subtropical high-mountain regions, calling for urgent efforts to restore Sphagnum wetlands. Through a greenhouse experiment in western Hubei, China, we studied the effects of different substrate types (peat and mountain soil) and different levels of nitrogen (N) (0, 2, 4, 6, 10 g m?2 year?1) and phosphorus (P) (0, 0.2, 0.5, 1, 2 g m?2 year?1) on the growth of Sphagnum palustre, which was evaluated by four growth indicators: length growth, number of capitula, coverage change and biomass. We aimed to determine the optimal nutrient conditions for S. palustre growth, which would contribute to the rapid colonization and restoration of Sphagnum wetlands. The results showed that the different substrates significantly influenced S. palustre growth. Compared with those of peat, the acidic properties of the local yellow brown soil in the subtropical high-mountain regions were more favorable for S. palustre growth. As N addition increased, the four growth indicators responded inconsistently to the different substrates. While the number of capitula markedly increased, the other three indicators significantly decreased in the mountain soil or exhibited no definitive changes in the peat. The addition of P markedly promoted S. palustre growth in both substrates. However, a threshold for P fertilization existed; the highest productivity occurred at P additions of 0.2 and 0.5 g m?2 year?1 in the peat and mountain soil, respectively. The N and P contents in the capitula increased in parallel as the N and P fertilization rates increased, suggesting that these nutrients were absorbed proportionately and were used during the growth of S. palustre.  相似文献   

9.
Human management practices and large detritivores such as earthworms incorporate plant litter into the soil, thereby forming a heterogeneous soil environment from which plant roots extract nutrients. In a greenhouse experiment we investigated effects of earthworms and spatial distribution of 15N-labelled grass litter on plants of different functional groups [Lolium perenne (grass), Plantago lanceolata (forb), Trifolium repens (legume)]. Earthworms enhanced shoot and root growth in L. perenne and P. lanceolata and N uptake from organic litter and soil in all plant species. Litter concentrated in a patch (compared with litter mixed homogeneously into the soil) increased shoot biomass and 15N uptake from the litter in L. perenne and enhanced root proliferation in P. lanceolata when earthworms were present. Growth of clover (T. repens) was rather independent of the presence of earthworms and organic litter distribution: nevertheless, clover took up more nitrogen in the presence of earthworms and exploited more 15N from the added litter than the other plant species. The magnitude of the effects of earthworms and organic litter distribution differed between the plant species, indicating different responses of plants with contrasting root morphology. Aphid (Myzus persicae) reproduction was reduced on P. lanceolata in the presence of earthworms. We suggest that earthworm activity may indirectly alter plant chemistry and hence defence mechanisms against herbivores.  相似文献   

10.
The ‘New Zealand flatworm’, Arthurdendyus triangulatus, is a native of the South Island of New Zealand, which has established in the UK, Ireland and the Faroe Islands. In its introduced range, it is a predator of lumbricid earthworms. To assess the impact of A. triangulatus on earthworm species, flatworm distributions were manipulated into ‘high’, control and ‘low’ densities within a replicated field experiment. Earthworm biomass in the ‘high’ flatworm density treatment was significantly lower than the control or ‘low’ treatments. This was due to a reduction in the anecic species Lumbricus terrestris and, to a lesser extent, Aporrectodea longa. There was little evidence of negative effects on other earthworm species, with even a weakly positive relationship between flatworm density and epigeic biomass. Principal components analysis showed a clear separation of anecic species from A. triangulatus, but the epigeic species Lumbricus festivus and Lumbricus rubellus grouped with A. triangulatus, suggesting that they could be benefitting from reduced intraguild competition. Flatworm densities of 0.8 per m2, comparable to natural infestations in grassland, were predicted to give a reduction in total earthworm biomass of c. 20 %. The bulk of this was comprised of a reduction in anecic species biomass. In particular, it is considered that A. triangulatus poses a serious risk to L. terrestris populations, with implications for soil functioning and indigenous earthworm-feeding wildlife.  相似文献   

11.
Previous studies indicated that dispersal of S. carpocapsae may be enhanced in soil with earthworms. The objective of this research was to determine and compare the effects of earthworms on dispersal of other Steinernema spp. Vertical dispersal of Steinernema carpocapsae, S. feltiae, and S. glaseri was tested in soil columns in the presence and absence of earthworms (Lumbricus terrestris). Dispersal was evaluated by a bioassay and by direct extraction of nematodes from soil. Upward dispersal of S. carpocapsae and S. feltiae increased in the presence of earthworms, whereas upward dispersal of S. glaseri was not affected by earthworms. No significant differences were detected in downward dispersal of S. carpocapsae and S. feltiae in soil with earthworms compared to soil without earthworms. Downward dispersal of S. glaseri, however, was greater in soil without earthworms relative to soil with earthworms. In soil void of earthworms, dispersal of S. glaseri was greatest followed by dispersal of S. carpocapsae. The presence of earthworm burrows in soil did not influence nematode dispersal. Nematodes were recovered from the surface, interior, and casts of earthworms. Therefore, nematodes may have a phoretic association with earthworms.  相似文献   

12.
Elevated levels of inorganic nitrogen (N) deposition and earthworm invasion have the potential to alter N dynamics in eastern North American temperate forests. A regional comparison was conducted across 21 sugar maple (Acer saccharum Marsh) stands in southern Ontario, where forest floor C:N ratios ranged from 17 to 38 showed that, similar to many other studies, rates of potential net mineralization and nitrification increased below a forest floor C:N ratio threshold of approximately 25 and that nitrification rates are positively correlated with foliar N concentration. However, detailed measurements at four representative stands, receiving between 9.8 and 19 kg N ha?1 y?1 in throughfall, showed that foliar N levels were highest at the site with the lowest N deposition. The primary difference amongst these sites was the presence of invasive earthworms. Specifically, sites without earthworms had significantly higher forest floor N with a lower C:N ratio than the sites with earthworms. There was no significant difference in the rate of sugar maple litter decomposition or chemistry amongst the sites assessed after 540 days using fine (2-mm mesh) litter bags, suggesting that differences in forest floor N levels were most likely due to consumption of litter by large earthworm species and that the lower C:N ratio of the forest floor in sites without earthworms is brought about primarily by a much longer residence time. This work supports the conclusions that forest floor N concentration (or C:N ratio) has a very strong control on N dynamics in forests, but shows that the presence of earthworms can have an impact on forest floor C:N ratio and hence N dynamics that is greater than current levels of atmospheric inorganic N deposition in temperate forests of Ontario.  相似文献   

13.
Earthworms (Aporrectodea caliginosa, Lumbricus rubellus, and Octolasion lacteum) obtained from nitrous oxide (N2O)-emitting garden soils emitted 0.14 to 0.87 nmol of N2O h−1 g (fresh weight)−1 under in vivo conditions. L. rubellus obtained from N2O-emitting forest soil also emitted N2O, which confirmed previous observations (G. R. Karsten and H. L. Drake, Appl. Environ. Microbiol. 63:1878–1882, 1997). In contrast, commercially obtained Lumbricus terrestris did not emit N2O; however, such worms emitted N2O when they were fed (i.e., preincubated in) garden soils. A. caliginosa, L. rubellus, and O. lacteum substantially increased the rates of N2O emission of garden soil columns and microcosms. Extrapolation of the data to in situ conditions indicated that N2O emission by earthworms accounted for approximately 33% of the N2O emitted by garden soils. In vivo emission of N2O by earthworms obtained from both garden and forest soils was greatly stimulated when worms were moistened with sterile solutions of nitrate or nitrite; in contrast, ammonium did not stimulate in vivo emission of N2O. In the presence of nitrate, acetylene increased the N2O emission rates of earthworms; in contrast, in the presence of nitrite, acetylene had little or no effect on emission of N2O. In vivo emission of N2O decreased by 80% when earthworms were preincubated in soil supplemented with streptomycin and tetracycline. On a fresh weight basis, the rates of N2O emission of dissected earthworm gut sections were substantially higher than the rates of N2O emission of dissected worms lacking gut sections, indicating that N2O production occurred in the gut rather than on the worm surface. In contrast to living earthworms and gut sections that produced N2O under oxic conditions (i.e., in the presence of air), fresh casts (feces) from N2O-emitting earthworms produced N2O only under anoxic conditions. Collectively, these results indicate that gut-associated denitrifying bacteria are responsible for the in vivo emission of N2O by earthworms and contribute to the N2O that is emitted from certain terrestrial ecosystems.  相似文献   

14.
Earthworms are globally distributed and perform essential roles for soil health and microbial structure. We have investigated the effect of an anthropogenic contamination gradient on the bacterial community of the keystone ecological species Lumbricus rubellus through utilizing 16S rRNA pyrosequencing for the first time to establish the microbiome of the host and surrounding soil. The earthworm‐associated microbiome differs from the surrounding environment which appears to be a result of both filtering and stimulation likely linked to the altered environment associated with the gut micro‐habitat (neutral pH, anoxia and increased carbon substrates). We identified a core earthworm community comprising Proteobacteria (~50%) and Actinobacteria (~30%), with lower abundances of Bacteroidetes (~6%) and Acidobacteria (~3%). In addition to the known earthworm symbiont (Verminephrobacter sp.), we identified a potential host‐associated Gammaproteobacteria species (Serratia sp.) that was absent from soil yet observed in most earthworms. Although a distinct bacterial community defines these earthworms, clear family‐ and species‐level modification were observed along an arsenic and iron contamination gradient. Several taxa observed in uncontaminated control microbiomes are suppressed by metal/metalloid field exposure, including eradication of the hereto ubiquitously associated Verminephrobacter symbiont, which raises implications to its functional role in the earthworm microbiome.  相似文献   

15.
On alpine pastureland the decline in large-bodied earthworm numbers and biomass after abandonment of management might be the result of a shift from highly palatable grass litter to poorly digestible leaf litter of dwarf shrubs. To test this hypothesis, we analysed nitrogen, phosphorous and total phenolic contents of fresh and aged litter of eight commonly occuring alpine plant species and compared consumption rates of these food sources in a controlled feeding experiment with Lumbricus rubellus (Lumbricidae). Furthermore, we analysed the microbial community structure of aged litter materials to check for a relationship between the microbial characteristics of the different plant litter types and the food choice of earthworms. Plant litters differed significantly in their chemical composition, earthworms, however, showed no preference for any litter species, but generally rejected fresh litter material. Microbial community structures of the litter types were significantly different, but we could find no evidence for selective feeding of L. rubellus. We conclude that L. rubellus is a widespread, adaptable ubiquist, which is able to feed on a variety of food sources differing in quality and palatability, as long as they have been exposed to wheathering.  相似文献   

16.
17.
Present studies on the community characteristics of earthworms revealed the occurrence of 11 species of earthworms in the pineapple (Ananus comosus) and 14 species in the mixed fruit plantations of west Tripura (India). While 9 species of earthworms namely Drawida assamensis, Drawida papillifer papillifer, Drawida nepalensis, Kanchuria sp., Metaphire houlleti, Eutyphoeus gigas, Eutyphoeus scutarius, Eutyphoeus comillahnus and Pontoscolex corethrurus are of common occurrence to both the pineapple and the mixed fruit plantations, two and five earthworm species namely Kanchuria sumerianus, Eutyphoeus sp. and Metaphire posthuma, Perionyx excavatus, Lampito mauritii, Amynthus alexandri, Eutyphoeus gammiei are restricted to the pineapple and the mixed fruit plantations respectively. Earthworms were found mostly within 15 cm depth of soils having temperature 25–25.8 °C, moisture 18.8–22.4 %, water holding capacity 26–31.7 % and organic matter content 2.4–4.0 %. Mean earthworm densities (158 ind. m?2) was significantly higher (p < 0.01, t = 9.67) and biomass (36.67 g m?2) significantly lower (p < 0.01, t = ?5.98) in the pineapple plantation than the mixed fruit plantation (density 93 ind. m?2, biomass 56 g m?2). High density value of earthworms in pineapple plantation is linked with dominance of D. assamensis and high biomass value in mixed fruit plantation was due to the higher relative abundance of larger species like E. gigas, E. scutarius, E. comillahnus and E. gammiei. Compared to the mixed fruit plantation, significantly (p < 0.05) higher index of dominance, lower index of diversity, species richness index and species evenness were recorded in the pineapple plantation.  相似文献   

18.
Nitrogen (N) isotope systematics were investigated at two high-elevation ombrotrophic peat bogs polluted by farming and heavy industry. Our objective was to identify N sources and sinks for isotope mass balance considerations. For the first time, we present a time-series of δ15Ν values of atmospheric input at the same locations as δ15Ν values of living Sphagnum and peat. The mean δ15Ν values systematically increased in the order: input NH4 + (?10.0‰) < input NO3 ? (?7.9‰) < peat porewater (?5.6‰) < Sphagnum (?5.0‰) < shallow peat (?4.2‰) < deep peat (?2.2‰) < runoff (?1.4‰) < porewater N2O (1.4‰). Surprisingly, N of Sphagnum was isotopically heavier than N of the atmospheric input (P < 0.001). If partial incorporation of reactive N from the atmosphere into Sphagnum was isotopically selective, the residual N would have to be isotopically extremely light. Such N, however, was not identified anywhere in the ecosystem. Alternatively, Sphagnum may have contained an admixture of isotopically heavier N. Ambient air contains such N in the form of N215ΝN2 = 0‰). Because high energy is required to break the triple bond, microbial N fixation is likely to proceed only under limited availability of pollutant N. Also for the first time, a δ15Ν comparison is presented between anoxic deeper peat and porewater N2O. Isotopically light N is removed from anoxic substrate by denitrification, whose final product, N2, escapes into the atmosphere. Porewater N2O is an isotopically heavy residuum following partial N2O reduction to N2.  相似文献   

19.
Summary The tissue distribution of Cu, Cd, Pb, Zn, and Ca in the earthworm Lumbricus rubellus living in non-polluted and heavy-metal polluted soils was investigated. Cd, Pb and Zn were primarily accumulated within the posterior alimentary canal. As the whole-worm Pb burden increased, the proportion of the metal accumulated within this tissue fraction increased. A similar pattern was found for Zn. By contrast, 70%–76% of the Cd burden was found in the posterior alimentary canal, irrespective of the whole-worm Cd content. The accumulation of Cd, Pb and Zn primarily in the posterior alimentary canal prevents dissemination of large concentrations of these metals into other earthworm tissues, and may thus represent a dextoxification strategy based on accumulative immobilisation. Cu was distributed fairly evenly in the tissue fractions investigated. There was no evidence of sequestration of this metal. The apparent lack of a detoxification strategy may contribute to the well-known susceptibility of earthworms to low environmental Cu concentrations. Indeed, earthworms from the site of highest soil Cu (Ecton) were markedly smaller than those from the other sites sampled. The highest Ca concentrations were found in the anterior alimentary canal, and were related to calciferous gland activity. A large proportion of Ca was also stored as a physiologically available pool in the posterior alimentary canal. Despite huge variations in soil Ca concentrations, the body wall Ca levels were fairly similar in L. rubellus from all the study sites. Thus, L. rubellus may become physiologically adapted to soils of exceptionally low Ca concentration. The observations are discussed in the context of the merits of analysing specific tissues, rather than whole organisms, for the purpose of monitoring metal bioaccumulation.  相似文献   

20.
Because Upper Midwest temperate forests lack native earthworms, the invasions of European and Asian earthworms can significantly alter soils and understory vegetation. Earthworms’ ability to increase leaf litter decay, alter nutrient cycling by mixing the organic layer with mineral soil, and decrease plant species richness leads to concern about the Asian ‘jumping earthworm’ (Amynthas agrestis and A. tokioensis) species that were recorded in the University of Wisconsin—Madison Arboretum in 2013. In 2015, we found A. agrestis and A. tokioensis in a distinct 8-ha region of a 23-ha hardwood forest surveyed in the Arboretum; by 2016 A. agrestis and A. tokioensis had spread over an additional 7 ha. Plots also contained the European earthworm species Lumbricus terrestris, L. rubellus, and Apporectodea spp., whose distributions decreased from 2015 to 2016. While leaf litter, plant species richness, and tree and shrub seedling abundance were generally reduced in areas with European earthworms, they were typically slightly increased in areas with A. agrestis and A. tokioensis versus those without. Although our results do not show substantial impacts of A. agrestis and A. tokioensis on vegetation in the initial years of invasion, the rapid replacement of European earthworms by A. agrestis and A. tokioensis suggests continued monitoring of these new invasive species is important to better understand their potential to change the Upper Midwest’s forests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号