首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The purpose of this research work was to formulate and characterize self-micro emulsifying drug delivery system containing exemestane. The solubility of exemestane was determined in various vehicles. Pseudo ternary phase diagram was used to evaluate the micro-emulsification existence area. SMEDDS formulations were tested for micro-emulsifying properties, and the resultant formulations loaded with exemestane (ME1, ME2, ME3, ME4 and ME5) were investigated for clarity, phase separation, globule size and shape, zeta potential, effect of various diluents and dilutions, thermodynamic and thermal stability. From the results it is concluded that increase in droplet size is proportional to the concentration of oil in SMEDDS formulation. Minor difference in the droplet size and zeta potential was observed by varying the diluents (deionized water and 0.1 N HCl) and dilutions (1:10, 1:50 and 1:100). Formulations, which were found to be thermodynamically stable (ME1, ME2, ME3 and ME4), were subjected to stability studies as per International Conference on Harmonization (ICH) guidelines. No significant variations were observed in the formulations over a period of 3 months at accelerated and long-term conditions. TEM photographs of microemulsions formulations further conformed the spherical shape of globules. Among the various SMEDDS formulations, ME4 offer the advantages of good clarity systems at high oil content and thus offer good solubilization of exemestane. Thus this study indicates that the SMEDDS can be used as a potential drug carrier for dissolution enhancement of exemestane and other lipophilic drug(s).  相似文献   

2.
Limited aqueous solubility of exemestane leads to high variability in absorption after oral administration. To improve the solubility and bioavailability of exemestane, the self-microemulsifying drug delivery system (SMEDDS) was developed. SMEDDS comprises of isotropic mixture of natural or synthetic oil, surfactant, and cosurfactant, which, upon dilution with aqueous media, spontaneously form fine o/w microemulsion with less than 100 nm in droplet size. Solubility of exemestane were determined in various vehicles. Ternary phase diagrams were plotted to identify the efficient self-emulsification region. Dilution studies, droplet size, and zeta potential of the formulations were investigated. The release of exemestane from SMEDDS capsules was studied using USP dissolution apparatus in different dissolution media and compared the release of exemestane from a conventional tablet. Oral pharmacokinetic study was performed in female Wistar rats (n = 8) at the dose of 30 mg kg−1. The absorption of exemestane from SMEDDS form resulted in about 2.9-fold increase in bioavailability compared with the suspension. Our studies illustrated the potential use of SMEDDS for the delivery of hydrophobic compounds, such as exemestane by the oral route.Key words: bioavailability enhancement, exemestane, microemulsion, SMEDDS  相似文献   

3.
Tacrolimus (FK506) is a widely used immunosuppressant for preventing allograft rejection and the treatment of atopic dermatitis. FK506 necessitates therapeutic drug monitoring because of inter- and intrapatient variability and the lack of correlation between the administered dose and the blood concentration. Previous immunoassay-based methods required a relatively long assay time and troublesome liquid-handling procedures. In the present study, we aimed to establish a rapid monitoring method for FK506 determination by using a poly(dimethylsiloxane) (PDMS)-based microfluidic device. Polystyrene beads were coated with mouse anti-FK506 antibody and placed in the flow channel. As a competitive assay, sample solution was allowed to react in the flow channel. After the addition of the fluorogenic substrate, the fluorescent signal was observed under a microscope. As a result, the developed assay allowed a short detection time of approximately 15 min per each sample and a high sensitivity even by using only a single bead. The feasibility of performing a competitive assay using a PDMS-based antibody chip gives promising results over the existing immunoassay-based methods.  相似文献   

4.
The ability of self-emulsifying drug delivery systems (SEDDS) to improve solubility, dissolution rate and bioavailability of a poorly water-soluble calcium channel blocker, nimodipine (NM) was evaluated in the present investigation. Solubility of NM in various oils, surfactants and cosurfactants was determined. The influence of the ratio of oil to surfactant + cosurfactant, pH of aqueous phase on mean globule size of resulting emulsions was studied by means of photon correlation spectroscopy. The NM loaded SEDDS selected for the in vitro and in vivo studies exhibited globule size less than 180 nm. In vitro dissolution studies indicated that NM loaded SEDDS could release complete amount of NM irrespective of the pH of the dissolution media. Pharmacokinetics of NM suspension, NM oily solution, NM micellar solution and NM SEDDS were evaluated and compared in rabbits. Relative bioavailability of NM in SEDDS was significantly higher than all the other formulations. NM loaded SEDDS were subjected to various conditions of storage as per ICH guidelines for 3 months. NM SEDDS successfully withstood the stability testing.  相似文献   

5.
AJS is the code name of an untitled novel medicative compound synthesized by the Tasly Holding Group Company (Tianjin, China) based on the structure of cinnamamide, which is one of the Biopharmaceutics Classification System (BCS) class II drugs. The drug has better antidepressant effect, achieved by acting on the 5-hydroxytryptamine receptor. However, the therapeutic effects of the drug are compromised due to its poor water solubility and lower bioavailability. Herein, a self-microemulsifying drug delivery system (SMEDDS) was developed to improve its solubility and oral bioavailability. AJS-SMEDDS formulation was optimized in terms of drug solubility in the excipients, droplet size, stability, and drug precipitation using a pseudo-ternary diagram. The pharmacokinetic study was performed in rats, and the drug concentration in plasma samples was assayed using the high-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC-MS/MS) method. The optimized formulation for SMEDDS has a composition of castor oil 24.5%, Labrasol 28.6%, Cremphor EL 40.8%, and Transcutol HP 2.7% (co-surfactant). No drug precipitation or phase separation was observed from the optimized formulation after 3 months of storing at 25°C. The droplet size of microemulsion formed by the optimized formulation was 26.08 ± 1.68 nm, and the zeta potential was −2.76 mV. The oral bioavailability of AJS-SMEDDS was increased by 3.4- and 35.9-fold, respectively, compared with the solid dispersion and cyclodextrin inclusion; meanwhile, the Cmax of AJS-SMEDDS was about 2- and 40-fold as great as the two controls, respectively. In summary, the present SMEDDS enhanced oral bioavailability of AJS and was a promising strategy to orally deliver the drug.KEY WORDS: bioavailability, HPLC-MS/MS, self-microemulsifying drug delivery system, solubilization, stability  相似文献   

6.
7.
This study aims to formulate and evaluate bioavailability of a self-nanoemulsified drug delivery system (SNEDDS) of a poorly water-soluble herbal active component oleanolic acid (OA) for oral delivery. Solubility of OA under different systems was determined for excipient selection purpose. Four formulations, where OA was fixed at the concentration of 20 mg/g, were prepared utilizing Sefsol 218 as oil phase, Cremophor EL and Labrasol as primary surfactants, and Transcutol P as cosurfactant. Pseudo-ternary phase diagrams were constructed to identify self-emulsification regions for the rational design of SNEDDS formulations. Sefsol 218 was found to provide the highest solubility among all medium-chained oils screened. Efficient self-emulsification was observed for the systems composing of Cremophor EL and Labrasol. The surfactant to cosurfactant ratio greatly affected the droplet size of the nanoemulsion. Based on the outcomes in dissolution profiles, stability data, and particle size profiles, three optimized formulations were selected: Sefsol 218/Cremophor EL/Labrasol (50:25:25, w/w), Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:20:20:10, w/w), and Sefsol 218/Cremophor EL/Labrasol/Transcutol P (50:17.5:17.5:15, w/w). Based on the conventional dissolution method, a remarkable increase in dissolution was observed for the SNEDDS when compared with the commercial tablet. The oral absorption of OA from SNEDDS showed a 2.4-fold increase in relative bioavailability compared with that of the tablet (p < 0.05), and an increased mean retention time of OA in rat plasma was also observed compared with that of the tablet (p < 0.01). These results suggest the potential use of SNEDDS to improve dissolution and oral bioavailability for poorly water-soluble triterpenoids such as OA.  相似文献   

8.
有机肥中可溶性有机碳、氮含量及其特性   总被引:6,自引:0,他引:6  
测定了7种不同种类、不同腐熟程度有机肥中可溶性有机氮(SON)和可溶性有机碳(SOC)的含量,结果表明:有机肥的水和0.01mol/LCaCl2溶液提取液中SON含量分别平均为105.2mg/L和91.6mg/L;每千克干样平均含SON分别为1188mg和1037mg;SON占可溶性总氮(TSN)和全氮(TN)的比例分别在70.5%~74.7%和4.3%~4.9%之间。水和0.01mol/LCaCl2溶液提取液中SOC含量分别平均为695mg/L和622mg/L;每千克干样平均含SOC分别为7873mg和7054mg;SOC占有机肥有机碳(TOC)比例分别平均为2.1%和1.9%;SOC/SON平均分别为6.7和6.9。SON与SOC间的相关性较高,SON与NO3^--N含量呈现负相关关系。有机肥料中的可溶性氮素绝大部分以SON形式存在,如此高的SON和SOC含量可能会成为氮、碳养分流失和环境污染的潜在来源。  相似文献   

9.
Pioglitazone (PGL) is an effective insulin sensitizer, however, side effects such as accumulation of subcutaneous fat, edema, and weight gain as well as poor oral bioavailability limit its therapeutic potential for oral delivery. Recent studies have shown that combination of both, PGL and fish oil significantly reduce fasting plasma glucose, improve insulin resistance, and mitigate pioglitazone-induced subcutaneous fat accumulation and weight gain. Nevertheless, developing an effective oral drug delivery system for administration of both medications have not been explored yet. Thus, this study aimed to develop a self-micro emulsifying drug delivery system (SMEDDS) for the simultaneous oral administration of PGL and fish oil. SMEDDS was developed using concentrated fish oil,Tween® 80, and Transcutol HP and optimized by central composite design (CCD). The reconstituted, optimized PGL-SMEDDS exhibited a globule size of 142 nm, a PDI of 0.232, and a zeta potential of −20.9 mV. The in-vitro drug release study of the PGL-SMEDDS showed a first-order model kinetic release and demonstrated remarkable 15-fold enhancement compared to PGL suspension. Additionally, following oral administration in fasting albino Wistar rats, PGL-SMEDDS exhibited 3.4-fold and 1.4-fold enhancements in the AUC0–24h compared to PGL suspension and PGL marketed product. The accelerated stability testing showed that the optimized SMEDDS formulation was stable over a three-month storage period. Taken together, our findings demonstrate that the developed fish oil-based SMEDDS for PGL could serve as effective nanoplatforms for the oral delivery of PGL, warranting future studies to explore its synergistic therapeutic potential in rats.  相似文献   

10.
Summary The regiospecific glucosylation of FK 506 and immunomycin (FR 900520) at the 24-hydroxy position was performed using resting cells ofBacillus subtilis ATCC 55060. 24-Glucopyranosyl FK 506 and 24-glucopyranosyl immunomycin were isolated by methylene chloride extraction and purification using reverse phase HPLC. The metabolite structures were established using spectroscopic techniques including MS and NMR. The glucose conjugate was further confirmed by chemical degradation. Enzymatic glucosylation was demonstrated using cell-free extracts derived fromBacillus subtilis ATCC 55060. The 24-glucosyltransferase, which appears UDP-glucose dependent, was solubilized from cell membranes by treatment with 0.1% Nonidet P-40 detergent. The optimal conditions for assay of the enzyme have been determined.  相似文献   

11.
Abstract The Mip ('macrophage infectivity potentiator') protein of Legionella pneumophila has been shown to be an essential virulence factor, exhibiting peptidyl-prolyl cis/trans isomerase (PPIase) activity that can be inhibited by the immunosuppressant FK506. The cloning and sequencing of mip genes from three different L. pneumophila strains revealed a single amino acid substitution which did not affect the isomerase property of the enzyme. Mip proteins isolated from two wild-type L. pneumophila strains and from two corresponding Escherichia coli K-12 recombinant clones derived from these strains exhibited identical enzymatic properties and the precursor proteins are processed at identical cleavage sites. The mature Mip proteins exist in an oligomeric form. Site-directed mutagenesis demonstrated that a substitution of an Asp residue at position 142 by a Leu residue affects PPIase activity of Mip.  相似文献   

12.
高强度聚焦超声能够以一种非侵入性的方式有效地穿透身体内部组织,聚焦在深层组织中一个很小的空间区域内,产生很强的声能,这些能量被组织吸收引起局部温度的升高。当温度到达热敏脂质体的相变温度时,磷脂烷基链构象的会发生改变,导致脂质体的通透性增强,从而能够促进药物的释放。因此,高强度聚焦超声可以被用作外源刺激控制体内特定位置热敏脂质体的药物释放。本文对高强度聚焦超声在药物控制释放领域的应用及进展进行综述。  相似文献   

13.
目的:以S-SEDDS替代液态自乳化制剂中的表面活性剂制备非诺贝特固体自乳化制剂。方法:比较了固体自乳化制剂与市售产品、液体自乳化制剂的体外溶出情况及体内生物利用度。结果:表明本研究的固体自乳化制剂用水分散后平均粒径为820.2±26.5(nm);溶出度试验结果显示,30min累积溶出度达到80%以上,本研究制备的非诺贝特固体自乳化制剂AUC(0-24)为22.7±8.2 mgoL-1oh与SEDDS的AUC(0-24)(24.9±7.6mgoL-1oh)没有显著性差异(P>0.05),与市售微粉化胶囊(13.8±10.5mgoL-1oh)相比能够显著提高药物的生物利用度(P<0.05)。结论:S-SEDDS有液体自乳化给药系统的效果。  相似文献   

14.
15.
Due to its extreme lipophilicity, the oral delivery of cinnarizine (CN) encounters several problems such as poor aqueous solubility and pH-dependent dissolution, which result in low and erratic bioavailability. The current study aims to design self-nanoemulsifying drug delivery systems (SNEDDS) of CN that circumvent such obstacles. Equilibrium solubility of CN was determined in a range of anhydrous and diluted lipid-based formulations. Dynamic dispersion tests were carried out to investigate the efficiency of drug release and magnitude of precipitation that could occur upon aqueous dilution. Droplet sizes of selected formulations, upon (1:1,000) aqueous dilution, were presented. The optimal formulations were enrolled in subsequent dissolution studies. The results showed that increasing lipid chain length and surfactant lipophilicity raised the formulation solvent capacity, while adding co-solvents provoked a negative influence. The inclusion of mixed glycerides and/or hydrophilic surfactants improved the drug release efficiency. Generally, no significant precipitation was observed upon aqueous dilution of the formulations. Five formulations were optimal in terms of their superior self-emulsifying efficiency, drug solubility, dispersion characteristics, and lower droplet size. Furthermore, the optimal formulations showed superior dissolution profile compared to the marketed (Stugeron®) tablet. Most importantly, they could resist the intensive precipitation observed with the marketed tablet upon shifting from acidic to alkaline media. However, SNEDDS containing medium-chain mixed glycerides showed the highest drug release rate and provide great potential to enhance the oral CN delivery. Accordingly, the lipid portion seems to be the most vital component in designing CN self-nanoemulsifying systems.  相似文献   

16.
Although heparan sulfate (HS) is widely implicated in numerous physiological and pathological processes, the biological function of nucleus HS remains underexplored, largely due to its complex structure and high hydrophilic property. To supplement these efforts, ideal vehicles are drawing attention as they combine attractive features including lipid solubility for penetrating cell membrane, high affinity binding to its target receptor, metabolic stability, and no cellular actions resulting in toxicity. Herein, we develop a convenient and promising strategy to prepare HS-FK506 conjugates for membrane transport and entry into nucleus, where click chemistry takes easily place between the exocyclic allyl group of a clinic drug FK506 and thiol as a handle incorporated into HS analogues. HS derivatives for constructing the conjugates were synthesized using a cutting-edge chemoenzymatic method. Meantime, [35S] labeled 3′-phosphoadenosine 5′-phosphosulfate (PAP35S) and [14C] glucuronic acid (Glc A) were adopted to label HS-FK506 conjugates, respectively, to evaluate their efficiency of nucleus entry, as a result, 14C Glc A was sensitive, effective and reliable whereas PAP35S gave rise to a mixture of labeled compounds, hampering the understanding of structure-function relationship of nucleus HS. Compared with the corresponding HS, the amount of HS-FK506 conjugates to translocate into nucleus from radioactive assay experiments sharply increased, e.g. tridecasaccharide-FK506 1d increased by approximate 10 folds, offering a simple and robust platform for enabling hydrophilic compounds including carbohydrates to translocate into nucleus and shedding light on their biological functions.  相似文献   

17.
The FK506-binding proteins (FKBPs) belong to the peptidyl prolyl cis-trans isomerase (PPIase) family, and catalyse the rotation of the peptide bond preceding a proline. They are conserved in organisms from bacteria to man. In order to understand the function of plant FKBP isoforms, we have produced transgenic wheat plants overexpressing each of the two wheat FKBPs: wFKBP73 (which is expressed in young vegetative and reproductive tissues under normal growth conditions) and wFKBP77 (which is induced by heat stress). Transgenic lines overexpressing wFKBP77 at 25°C showed major morphological abnormalities, specifically relating to height, leaf shape, spike morphology and sterility. In these plants, the levels of hsp90 mRNA were over two fold higher than in controls, indicating a common regulatory pathway shared between wFKBP77 and Hsp90. Transgenic lines overexpressing wFKBP73 showed normal vegetative morphology, but the grain weight and composition was altered, corresponding to changes in amylase activity during seed development.  相似文献   

18.
《Phytomedicine》2014,21(5):766-772
We recently reported that Wuzhi tablet (WZ), a preparation of the ethanol extract of Wuweizi (Schisandra sphenanthera), had significant effects on blood concentrations of Tacrolimus (FK506) in renal transplant recipients and rats. The active lignans in WZ are schisandrin A, schisandrin B, schisandrin C, schisandrol A, schisandrol B, schisantherin A, and schisantherin B. Until now, whether the pharmacokinetics of these lignans in WZ would be affected by FK506 remained unknown. Therefore, this study aimed to investigate whether and how FK506 affected pharmacokinetics of lignans in WZ in rats and the potential roles of CYP3A and P-gp. After a single oral co-administration of FK506 and WZ, the blood concentration of lignans in WZ was decreased by FK506; furthermore, the AUC of schisantherin A, schisandrin A, schisandrol A and schisandrol B was only 64.5%, 47.2%, 55.1% and 57.4% of that of WZ alone group, respectively. Transport study in Caco-2 cells showed that these lignans were not substrates of P-gp, suggesting decreased blood concentration of lignans by FK506 was not via P-gp pathway. Metabolism study in the human recombinant CYP 3A showed that these lignans had higher affinity to CYP3A than that of FK506, and thus had a stronger CYP3A-mediated metabolism. It was concluded that the blood concentrations of these lignans were decreased and their CYP3A-mediated metabolisms were increased in the presence of FK506 since these lignans had higher affinity to CYP3A.  相似文献   

19.
Respiratory disease studies typically involve the use of murine models as surrogate systems. However, there are significant physiologic differences between the murine and human respiratory systems, especially in their upper respiratory tracts (URT). In some models, these differences in the murine nasal cavity can have a significant impact on disease progression and presentation in the lower respiratory tract (LRT) when using intranasal instillation techniques, potentially limiting the usefulness of the mouse model to study these diseases. For these reasons, it would be advantageous to develop a technique to instill bacteria directly into the mouse lungs in order to study LRT disease in the absence of involvement of the URT. We have termed this lung specific delivery technique intubation-mediated intratracheal (IMIT) instillation. This noninvasive technique minimizes the potential for instillation into the bloodstream, which can occur during more invasive traditional surgical intratracheal infection approaches, and limits the possibility of incidental digestive tract delivery. IMIT is a two-step process in which mice are first intubated, with an intermediate step to ensure correct catheter placement into the trachea, followed by insertion of a blunt needle into the catheter to mediate direct delivery of bacteria into the lung. This approach facilitates a >98% efficacy of delivery into the lungs with excellent distribution of reagent throughout the lung. Thus, IMIT represents a novel approach to study LRT disease and therapeutic delivery directly into the lung, improving upon the ability to use mice as surrogates to study human respiratory disease. Furthermore, the accuracy and reproducibility of this delivery system also makes it amenable to Good Laboratory Practice Standards (GLPS), as well as delivery of a wide range of reagents which require high efficiency delivery to the lung.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号