首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A mouse embryonal carcinoma cell line resistant to the toxic arginine analogue -canavanine has been isolated. Kinetic studies of the transport of arginine in the canavanine-sensitive parental cell indicate that there are two arginine uptake systems which operate at different substrate concentrations. The canavanine-resistant variant shows a reduction in the rate at which it can transport arginine at all substrate concentrations. This is not, however, due to the complete loss of either uptake system. The observation that the rate of arginine transport at high substrate concentrations is reduced in the variant can be explained, at least in part, by an increase in chromosome number and cell volume. This is not true of the reduction in the low substrate concentration uptake system. The observation that the reductions in the two uptake systems can be dissociated in this way provides support for the conclusion, based on the kinetic data from the parental cell, that there are two independent arginine transport systems in this mouse embryonal carcinoma cell line.  相似文献   

2.
3.
The cells of the marine bacterium Ant-300 were found to take up arginine when this substrate was at low concentrations. The cells possessed an uptake system(s) that specifically transported l-arginine. The kinetic parameters for uptake appeared to differ when the cells were exposed to nanomolar and micromolar concentrations of the amino acid. Uptake over this concentration range functioned in the absence of an exogenous energy source, even after the cells had been preincubated in unsupplemented artificial seawater. Respiratory activity appeared to be a more important driving force for arginine uptake than adenosine 5'-triphosphate hydrolysis. The cells also exhibited chemotaxis toward l-arginine. The minimum arginine concentration needed to elicit a chemotactic response was between 10 and 10 M. It is proposed that the capture of arginine by cells of Ant-300 in nutrient-depleted waters, which are typical of the open ocean, proceeds via high-affinity active transport, whereas in substrate-enriched seawater, capture involves chemotaxis and an active transport mechanism with reduced affinity for the substrate.  相似文献   

4.
Effects of trypsin and pronase on D-xylose uptake were studied on isolated frog sartorius muscle. Trypsin and pronase exerted insulin-like effects on the transport of sugar. The acceleration of xylose transport by insulin was reduced by a prior incubation of muscles with trypsin or pronase. The inhibition of insulin effect was not due to destruction of the hormone. Proteases had no effect upon the sugar transport stimulated by DNP or potassium contracture. A conclusion is made of the availability in the frog muscle membrane of some insulin receptor similar to that reported for muscle tissue and fat cells of mammals.  相似文献   

5.
A steady-state level of about 240 nmol/mg (dry wt) occurs during lysine transport in Saccharomyces cerevisiae. No subsequent efflux of the accumulated amino acid was detected. Two transport systems mediate lysine transport, a high-affinity, lysine-specific system and an arginine-lysine system for which lysine exhibits a lower affinity. Preloading with lysine, arginine, glutamic acid, or aspartic acid inhibited lysine transport activity; preloading with glutamine, glycine, methionine, phenylalanine, or valine had little effect; however, preloading with histidine stimulated lysine transport activity. These preloading effects correlated with fluctuations in the intracellular lysine and/or arginine pool: lysine transport activity was inhibited when increases in the lysine and/or arginine pool occurred and was stimulated when decreases in the lysine and/or arginine pool occurred. After addition of lysine to a growing culture, lysine transport activity was inhibited more than threefold in one-third of the doubling time of the culture. These results indicate that the lysine-specific and arginine-lysine transport systems are regulated by feedback inhibition that may be mediated by intracellular lysine and arginine.  相似文献   

6.
We have measured the uptake of arginine into vacuolar membrane vesicles from Neurospora crassa. Arginine transport was found to be dependent on ATP hydrolysis, Mg2+, time, and vesicle protein with transported arginine remaining unmodified after entry into the vesicles. The Mg2+ concentration required for optimal arginine transport varied with the ATP concentration so that maximal transport occurred when the MgATP2- concentration was at a maximum and the concentrations of free ATP and Mg2+ were at a minimum. Arginine transport exhibited Michaelis-Menten kinetics when the arginine concentration was varied (Km = 0.4 mM). In contrast, arginine transport did not follow Michaelis-Menten kinetics when the MgATP2-concentration was varied (S0.5 = 0.12 mM). There was no inhibition of arginine transport when glutamine, ornithine, or lysine were included in the assay mixture. In contrast, arginine transport was inhibited 43% when D-arginine was present at a concentration 16-fold higher than that of L-arginine. Measurements of the internal vesicle volume established that arginine is concentrated 14-fold relative to the external concentration. Arginine transport was inhibited by dicyclohexylcarbodiimide, carbonyl cyanide m-chlorophenyl-hydrazone, and potassium nitrate (an inhibitor of vacuolar ATPase activity). Inhibitors of the plasma membrane or mitochondrial ATPase such as sodium vanadate or sodium azide did not affect arginine transport activity. In addition, arginine transport had a nucleoside triphosphate specificity similar to that of the vacuolar ATPase. These results suggest that arginine transport is dependent on vacuolar ATPase activity and an intact proton channel and proton gradient.  相似文献   

7.
Characterization of arginine transport in Helicobacter pylori   总被引:1,自引:0,他引:1  
Mendz GL  Burns BP 《Helicobacter》2003,8(4):245-251
Background. The amino acid L‐arginine is an essential requirement for growth of Helicobacter pylori. Several physiological roles of this amino acid have been identified in the bacterium, but very little is known about the transport of L‐arginine and of other amino acids into H. pylori. Methods. Radioactive tracer techniques using L‐(U‐14C) arginine and the centrifugation through oil method were employed to measure the kinetic parameters, temperature dependence, substrate specificity, and effects of analogues and inhibitors on L‐arginine transport. Results. The transport of arginine at millimolar concentrations was saturable with a Km of 2.4 ± 0.3 mM and Vmax of 1.3 ± 0.2 pmole min?1 (µl cell water)?1 or 31 ± 3 nmole per minute (mg protein)?1 at 20°C, depended on temperature between 4 and 40°C, and was susceptible to inhibitors. These characteristics suggested the presence of one or more arginine carriers. The substrate specificity of the transport system was studied by measuring the effects of L‐arginine analogues and amino acids on the rates of transport of L‐arginine. The absence of inhibition in competition experiments with L‐lysine and L‐ornithine indicated that the transport system was not of the Lysine‐Arginine‐Ornithine or Arginine‐Ornithine types. The presence of different monovalent cations did not affect the transport rates. Several properties of L‐arginine transport were elucidated by investigating the effects of potential inhibitors. Conclusions. The results provided evidence that the transport of L‐arginine into H. pylori cells was carrier‐mediated transport with the driving force supplied by the chemical gradient of the amino acid.  相似文献   

8.
Uptake of phosphate by Streptococcus lactis ML3 proceeds in the absence of a proton motive force, but requires the synthesis of ATP by either arginine or lactose metabolism. The appearance of free Pi internally in arginine-metabolizing cells corresponded quantitatively with the disappearance of extracellular phosphate. Phosphate transport was essentially unidirectional, and phosphate concentration gradients of up to 10(5) could be established. Substrate specificity studies of the transport system indicated no preference for either mono- or divalent phosphate anion. The activity of the phosphate transport system was affected by the intracellular Pi concentration by a feedback inhibition mechanism. Uncouplers and ionophores which dissipate the pH gradient across the cytoplasmic membrane inhibited phosphate transport at acidic but not at alkaline pH values, indicating that transport activity is regulated by the internal proton concentration. Phosphate uptake driven by arginine metabolism increased with the intracellular pH with a pKa of 7.3. Differences in transport activity with arginine and lactose as energy sources are discussed.  相似文献   

9.
Escherichia coli K-12 possesses two active transport systems for arginine, two for ornithine, and two for lysine. In each case there is a low- and a high-affinity transport system. They have been characterized kinetically and by response to competitive inhibition by arginine, lysine, ornithine and other structurally related amino acids. Competitors inhibit the high-affinity systems of the three amino acids, whereas the low-affinity systems are not inhibited. On the basis of kinetic evidence and competition studies, it is concluded that there is a common high-affinity transport system for arginine, ornithine, and lysine, and three low-affinity specific ones. Repression studies have shown that arginine and ornithine repress each other's specific transport systems in addition to the repression of their own specific systems, whereas lysine represses its own specific transport system. The common transport system was found to be repressible only by lysine. A mutant was studied in which the uptake of arginine, ornithine, and lysine is reduced. The mutation was found to affect both the common and the specific transport systems.  相似文献   

10.
Diabetes-induced increase in oxidative stress is postulated as playing a significant role in the development of retinopathy. The retinal pigment epithelium (RPE) which forms part of the retinal blood barrier has been reported to be affected in diabetes. Besides functioning as a neurotransmitter, the radical nitric oxide (NO) can act as a cytotoxic agent. NO is synthesized by nitric oxide synthase (NOS) that oxidizes arginine to citrulline producing NO. Given that intracellular concentration of arginine depends mainly on its transport, we studied arginine transport in RPE and retina from normal and streptozotocin-induced diabetic rats. Retina and RPE take up arginine by a saturable system with an apparent KM of 70–80 μM. Tissue incubation in the presence of insulin or high glucose concentrations significantly increased arginine transport in RPE but not in retina from control rats. Similarly, arginine uptake was enhanced in RPE, but not in the retina from streptozotocin-induced diabetic rats. However, NO content was two-fold higher in diabetic retina and RPE compared to that in the control rats. Such findings may suggest that diabetes induced an increase in NO levels in RPE, which may have brought about alterations in its functioning and in turn manifestations of diabetic retinopathy. Special issue article in honor of Dr. Ricardo Tapia.  相似文献   

11.
The transport of arginine-14C by exponentially growing cellsof Saccharomyces cerevisiae (ATCC 9763) was studied in the presenceof various amino acids, ammonium and urea. Arginine transportwas inhibited when the cells were preincubated with these compoundsfor 1 hr. Little or no inhibition of transport occurred whenthe preincubation period was omitted. Kinetics studies revealedthat arginine was transported by two distinct systems havinghigh and low affinities for this amino acid. At given arginineconcentrations the high affinity system was capable of transportingarginine molecules at approximately seventy times the rate ofthe low affinity system. The general requirements for arginine transport revealed energyand temperature dependencies in addition to sensitivity to anumber of metabolic inhibitors. Transfer of cells to N-freemedium was accompanied by increased rates of transport. Thisincrease was shown for the uptake of ten different amino acids.For L-arginine, this increase was prevented by addition of cycloheximide. Analyses of amino acid pools, after various experimental treatments,failed to reveal any consistent correlation between transportrates and the concentrations of individual amino acids or ammonium. It is concluded that arginine transport of S. cerevisiae isregulated by inhibition and repression. In this respect theavailability of ammonium would appear to be of prime importancein the development of transport activity. (Received December 5, 1975; )  相似文献   

12.
To study the hemagglutinin of Fusobacterium nucleatum, methods were sought to solubilize and purify this component. When cells of F. nucleatum were ruptured by passage through a French press, the fragments lost virtually all ability to agglutinate human erythrocytes. Extraction of the fragments with 2% Triton X-100 for 30 min at 22 degrees C restored hemagglutinating activity (HA). Hemagglutination by these fragments could be inhibited by arginine, as can hemagglutination by intact bacteria. Treatment of active cell wall fragments with pronase and 2% Triton X-100-EDTA at 37 degrees C or with pronase and 0.1% Triton X-100-EDTA at pH 10.0 allowed recovery of solubilized HA. The former HA was inhibited by arginine (arg+) whereas the latter was not (arg-). Fractionation of the arg+ extract by preparative isoelectric focusing showed that HA was recovered from the gel sections having a pH between 4.5 and 5.5. Hemagglutination by this preparation was still arg+. Chromatography of this hemagglutinin on DEAE-Sephadex increased the specific activity to high levels with a loss of inhibition by arginine. A fraction from the DEAE-Sephadex column containing 10,700 HA units per mg of protein was analyzed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Solubilization at 22 degrees C before electrophoresis revealed three Coomassie blue-staining bands which migrated with apparent molecular weights of about 21,000, 38,000 and 60,000. When the same DEAE fraction was boiled in sodium dodecyl sulfate, electrophoresis revealed only one band with an apparent molecular weight of 21,000.  相似文献   

13.
The effects of treatments with various reagents, such as proteases, group specific protein reagents, detergents, phospholipases, and antibiotics, were examined on the sugar receptor of the fleshfly. Certain group specific protein reagents together with pronase markedly affected its response to sucrose, which suggested important rôles for stimulation of protein components and at least four specific residues, i.e. cysteine, tryptophan, arginine and lysine in the sugar receptor system. The packed receptor components and their renewal mechanism are discussed.  相似文献   

14.
Kinetic parameters for three systems of active histidine uptake by germinated conidia of Neurospora crassa have been measured. Each system appears to follow typical Michaelis-Menten kinetics when studied separately from the other systems. Under the conditions studied, the general amino acid transport system was found to account for the major portion of histidine uptake from low concentrations. Three types of transport mutants with altered growth inhibition patterns were selected in a histidine auxotroph. Growth of one mutant, type bas(a), could be inhibited by the addition of methionine to a histidine-supplemented medium, and another type, neu(a), could be inhibited by the addition of arginine. These mutants were shown to be lacking active histidine uptake by the basic amino acid and neutral amino acid transport systems, respectively. Another type of double mutant (his-3, neu(r)) could be inhibited only by the addition of very high concentrations of methionine in the presence of arginine and histidine, and the mutation appeared to have altered the specificity of the neutral amino acid permease.  相似文献   

15.
16.
Strain SR, a monensin-sensitive, ammonia-producing ruminal bacterium, grew rapidly on arginine and lysine, but only if sodium was present. Arginine transport could be driven by either an electrical potential or a chemical gradient of sodium. Arginine was converted to ornithine, and it appeared that ornithine efflux created a sodium gradient which in turn drove arginine transport. There was a linear decline in arginine transport as pH was decreased from 7.5 to 5.5, and the cells did not grow at a pH less than 6.0. The Eadie-Hofstee plot was biphasic, and arginine could also be taken by a high-capacity diffusion mechanism. Because arginine was a strong inhibitor of lysine transport and lysine was a weak inhibitor of arginine transport, it appeared that both lysine and arginine were taken up by an arginine-lysine carrier which had a preference for arginine. The rate of lysine fermentation was always proportional to the extracellular lysine concentration, and facilitated diffusion was the dominant mechanism of lysine transport. When SR was grown in continuous culture on arginine or lysine, the theoretical maximal growth yield was similar (13 g of cells per mol of ATP), but the apparent maintenance energy requirement for arginine was greater than lysine (9.4 versus 4.4 mmol of ATP per g of cells per h). On the basis of differences in yield and maintenance energy, it appeared that active arginine transport accounted for approximately 40% of the total ATP.  相似文献   

17.
Strain SR, a monensin-sensitive, ammonia-producing ruminal bacterium, grew rapidly on arginine and lysine, but only if sodium was present. Arginine transport could be driven by either an electrical potential or a chemical gradient of sodium. Arginine was converted to ornithine, and it appeared that ornithine efflux created a sodium gradient which in turn drove arginine transport. There was a linear decline in arginine transport as pH was decreased from 7.5 to 5.5, and the cells did not grow at a pH less than 6.0. The Eadie-Hofstee plot was biphasic, and arginine could also be taken by a high-capacity diffusion mechanism. Because arginine was a strong inhibitor of lysine transport and lysine was a weak inhibitor of arginine transport, it appeared that both lysine and arginine were taken up by an arginine-lysine carrier which had a preference for arginine. The rate of lysine fermentation was always proportional to the extracellular lysine concentration, and facilitated diffusion was the dominant mechanism of lysine transport. When SR was grown in continuous culture on arginine or lysine, the theoretical maximal growth yield was similar (13 g of cells per mol of ATP), but the apparent maintenance energy requirement for arginine was greater than lysine (9.4 versus 4.4 mmol of ATP per g of cells per h). On the basis of differences in yield and maintenance energy, it appeared that active arginine transport accounted for approximately 40% of the total ATP.  相似文献   

18.
Enzyme treatment of KB cells: the altered effect of diphtheria toxin   总被引:5,自引:0,他引:5  
Treatment of KB cells with trypsin, phospholipase C and pronase at concentrations which did not affect viability or rate of incorporation of amino acids into protein lowered significantly the inhibition of protein synthesis by diphtheria toxin. Chymotrypsin was effective but only at concentrations toxic to the cells. Lipase and neuraminidase had no effect. It is evident that enzyme-sensitive cell surface components with specificity for diphtheria toxin are present on the KB cell.  相似文献   

19.
Summary. The present study was designed to evaluate the relevance of arginine transport in nitric oxide (NO) synthesis in vascular smooth muscle cells. For this purpose, NO synthesis and arginine transport (system B0,+ and y+) were evaluated in cells treated with IL-1β or angiotensin II (Ang II). In addition, the effects of 5 mM lysine and glutamine, competitive inhibitors of systems y+ and B0,+ respectively, were examined. L-arginine transport was estimated with 3H-labelled arginine and NO was determined with the Griess reagent. These studies were done in control conditions, arginine-starved cells, and in cells incubated in media containing 10 mM arginine. Our data indicate that induction of NO biosynthesis by IL-1β depends on external arginine when cells are arginine-depleted for 24 hours. The concentration of arginine producing half maximal activation of NO synthesis in arginine-depleted cells ([arginine]i < 10 μM) was 41.1 ± 18 μM. By contrast, in normal culture conditions, NO synthesis occurred independently of arginine transport. Neither 5 mM lysine or glutamine which abolished arginine transport through systems y+ and B0,+, respectively, reduced nitrite release in cells incubated in normal media. This suggests that the relevance of arginine uptake to NO synthesis depends on the status of intracellular arginine pools. Intracellular arginine concentrations were not affected by the stimulation of NO production using IL-1β or its inhibition using Ang II, but were markedly reduced by arginine starvation for 48 h. Aspartate levels were also reduced by arginine-depletion, but were not affected in cells incubated with 10 mM arginine. By contrast, glutamate levels were reduced in arginine-starved cells and were increased in cells incubated in arginine-supplemented medium. Ornithine levels were markedly increased by arginine supplementation. Altogether, these findings indicate that NO synthesis is normally independent of membrane transport. However in arginine-depleted cells, membrane transport is essential for NO synthesis. It is concluded that arginine transport is required for the long-term maintenance of intracellular arginine pools. Received February 7, 1999; Accepted June 21, 1999  相似文献   

20.
Transport of arginine into mitochondria of Neurospora crassa has been studied. Arginine transport was found to be saturable (Km = 6.5 mM) and to have a pH optimum of pH 7.5. Mitochondrial arginine transport appeared to be facilitated transport rather than active transport because: (i) the arginine concentration within the mitochondrial matrix after transport was similar to that of the reaction medium, and (ii) uncouplers and substrates of oxidative phosphorylation did not affect the transport rate. The basic amino acids ornithine, lysine, and D-arginine inhibited arginine transport. The arginine transport system could be irreversibly blocked by treating mitochondria with the reactive arginine derivative, N-nitrobenzyloxycarbonyl-arginyl diazomethane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号