首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nucleotide sequences were determined for the 5'-oligonucleotides obtained by complete pancreatic RNase digestion (P25) and complete T1 RNase digestion (T27) of U-2 RNA. Complete digestion of oligonucleotide P25 with snake venom phosphodiesterase produced pm3 2,2,7G, pAm, pUm, and pCp in approximately equimolar ratios. Partial digestion of these oligonucleotides with snake venom phosphodiesterase produced -Um-C-Gp and pAm-Um, indicating the sequence of the 3'-terminal portion of the 5'-oligonucleotide is pAm-Um-C-Gp. The 5'-terminal oligonucleotide did not contain a 5'-phosphate and no free nucleoside was released from the 5' end by venom phosphodiesterase digestion. Since free pm3 2,2,7G was released by digestion with nucleotide pyrophosphatase and limited digestion with snake venom phosphodiesterase, this nucleotide is apparently linked to pAm in a pyrophosphate linkage. Mass spectrometry and thin layer chromatography in borate systems showed the ribose of m3 2, 2, 7G contains no 2'O-methyl residue. Moreover, the finding that the ribose of m3 2, 2, 7G was oxidized by NaIO4 and reduced by KB3H4 in intact U-2 RNA rules out other linkages involving the 2' and 3' positions. Accordingly, it is concluded that the structure of the 5'-terminal pentanucleotide of U-2 RNA is(see article).  相似文献   

2.
Alkaline nucleotide pyrophosphatase was isolated from the Pichia guilliermondii Wickerham ATCC 9058 cell-free extracts. The enzyme was 740-fold purified by saturation of ammonium sulphate, gel-chromatography on Sephadex G-150 and ion-exchange chromatography on DEAE-cellulose. Nucleotide pyrophosphatase is the most active at pH 8.3 and 49 degrees C. The enzyme catalyzes the hydrolysis of FAD, NAD+, NADH, NADPH, GTP. The Km value for FAD is 2.4 x 10(-4) M and for NAD+--5.7 x 10(-6) M. The hydrolysis of FAD was inhibited by NAD+, NADP+, ATP, AMP, GTP, PPi and Pi. The Ki for NAD+, AMP and Na4P2O7 was 1.7 x 10(-4) M, 1.1 x 10(-4) M and 5 x 10(-5) M, respectively. Metal chelating compounds, 8-oxyquinoline, o-phenanthroline and EDTA, inhibited completely the enzyme activity. The EDTA effect was irreversible. The molecular weight of the enzyme determined by gel-filtration on Sephadex G-150 and thin-layer gel-filtration chromatography was 78000 dalton. Protein-bound FAD of glucose oxidase is not hydrolyzed by the alkaline nucleotide pyrophosphatase. The enzyme is stable at 2 degrees C in 0.01 M tris-HCl-buffer (pH 7.5).  相似文献   

3.
4.
Acid nucleotide pyrophosphatase was isolated from the cell-free extracts of Pichia guilliermondii Wickerham ATCC 9058. The enzyme was 25-fold purified by saturation with ammonium sulphate, gel-filtration on Sephadex G-150 column and ion-exchange chromatography on DEAE-Sephadex A-50 column. The pH optimum was 5.9, temperature optimum--45 degrees C. The enzyme catalyzed the hydrolysis of FAD, NAD+ and NADH, displaying the highest activity with NAD+. The Km, values for FAD, NAD+ and NADH were 1.3 x 10(-5) and 2.9 x 10(-4) M, respectively. The hydrolysis of FAD was inhibited by AMP, ATP, GTP, NAD+ and NADP+. The K1 for AMP was 6.6 x 10(-5) M, for ATP--2.0 X 10(-5) M, for GTP--2.3 X 10(-6) M, for NAD+--1.7 X 10(-4) M. The molecular weight of the enzyme was 136 000 as estimated by gel-filtration on Sephadex G-150 and 142 000 as estimated by thin-layer gel-filtration chromatography on Sephadex G-200 (superfine). Protein-bound FAD of glucose oxidase was not hydrolyzed by acid nucleotide pyrophosphatase. The enzyme was stable at 2 degrees C in 0.05 M tris-maleate buffer, pH 6.2. Alkaline nucleotide pyrophosphatase hydrolyzing FAD was also detected in the cells of P. guilliermondii.  相似文献   

5.
The major 5'-termini of human adenovirus type 2 early gene block 4 mRNA were sequenced. Poly(A+) polyribosomal RNA was isolated from Ad2 early infected cells, the 5'-terminal m7GPPP removed and the 5'-OH of the penultimate 2'-0-methylated nucleotide labeled with [gamma-32P]ATP using polynucleotide kinase. Ad2 E4 mRNA was purified by hybridization to the Ad2 EcoRI-C fragment and was digested with RNase T1. The resulting oligonucleotides were resolved by two dimensional paper electrophoresis-homochromatography. Four major and 3-4 minor 5'-terminal sequences were identified and characterized. The sequence of the 5'-terminal structures of the major four termini are: (1) m7GpppUmU(m)UUACACUGp, (2) m7GpppUmU(m)UACACUGp, (3) m7GpppUmU(m)ACACUGp, and (4) m7Gppp(m6)AmC(m)ACUGp. These major 5'-terminal sequences were aligned with nucleotide 325, 326, 327, and 329 from the righthand end of the known Ad2 DNA sequence (1) in the region mapped as the 5'-terminus of E4 mRNA by electron microscopy (2,3) and S1 nuclease-gel (4) mapping. Two potential ribosomal binding sites and an initiator codon were found at 40 to 65 nucleotides and about 80 nucleotides, respectively, from these heterogenous 5'-termini. Ad2 E4 major mRNA species appear to be unique since mRNA molecules initiate at a pyrimidine, perhaps by RNA polymerase stuttering, or they are products of an unusual type of RNA processing.  相似文献   

6.
K Friderici  M Kaehler  F Rottman 《Biochemistry》1976,15(24):5234-5241
Methylation patterns of Novikoff cytoplasmic mRNA were determined as a function of labeling time with L-[methyl-3H]methionine. The 5'-terminal m7G could be released from whole mRNA by treatment with nucleotide pyrophosphatase. Subsequent alkaline phosphatase treatment of this mRNA, followed by KOH digestion, yielded N'mpNp and N'mpNp from cap 1 (m7GpppN'mpN) and cap 2 (m7GpppN'mpN'mpN), respectively. Our results indicate that the relative amounts of labeled cap structures do change with time and that the amount of internal N6-methyladenosine decreases, relative to 5'-cap structures, as the cytoplasmic mRNAs age and the average size decreases. The formation of cap-2 structures by the addition of second 2'-O-methyl group at position N'm appears to be cytoplasmic event. Thus, after very short labeling times, greater than 80% of the labeled methyl groups in cap 2 are found in this position. These results, along with earlier data obtained on L-cell heterogeneous nuclear RNA methylation, are consistent with a model in which the nucleus is the cellular site of three mRNA methylation events producing 5'-terminal m7G, the first 2'-O-methylnucleoside (N'm) found in cap-1 structures and internal N6-methyladenosine. Subsequently, these nuclear methylations are followed by the cytoplasmic methylation at N'm. Analysis of the methynucleoside composition of cap-1 structures, along with comparable "core" structures (m7GpppN'm) generated from cap-2 by removal of N'm, indicates that at any single labeling time the methylnucleoside composition of a given cap-1 and the cap-2 "core" structure is remarkably similar. On the other hand, comparisons of the methylnucleoside composition of the cap structures at different labeling times indicate an increase in Cm in the first 2'-O-methylnucleoside (N'm) with time.  相似文献   

7.
Aichi virus is a member of the family Picornaviridae. It has already been shown that three stem-loop structures (SL-A, SL-B, and SL-C, from the 5' end) formed at the 5' end of the genome are critical elements for viral RNA replication. In this study, we further characterized the 5'-terminal cis-acting replication elements. We found that an additional structural element, a pseudoknot structure, is formed through base-pairing interaction between the loop segment of SL-B (nucleotides [nt] 57 to 60) and a sequence downstream of SL-C (nt 112 to 115) and showed that the formation of this pseudoknot is critical for viral RNA replication. Mapping of the 5'-terminal sequence of the Aichi virus genome required for RNA replication using a series of Aichi virus-encephalomyocarditis virus chimera replicons indicated that the 5'-end 115 nucleotides including the pseudoknot structure are the minimum requirement for RNA replication. Using the cell-free translation-replication system, we examined the abilities of viral RNAs with a lethal mutation in the 5'-terminal structural elements to synthesize negative- and positive-strand RNAs. The results showed that the formation of three stem-loops and the pseudoknot structure at the 5' end of the genome is required for negative-strand RNA synthesis. In addition, specific nucleotide sequences in the stem of SL-A or its complementary sequences at the 3' end of the negative-strand were shown to be critical for the initiation of positive-strand RNA synthesis but not for that of negative-strand synthesis. Thus, the 5' end of the Aichi virus genome encodes elements important for not only negative-strand synthesis but also positive-strand synthesis.  相似文献   

8.
The universally conserved 3'-terminal CCA sequence of tRNA interacts with large ribosomal subunit RNA during translation. The functional importance of the interaction between the 3'-terminal nucleotide of tRNA and the ribosome was studied in vitro using mutant in vitro transcribed tRNA(Val) A76G. Val-tRNA(CCG) does not support polypeptide synthesis on poly(GUA) as a message. However, in a co-translation system, where Val-tRNA(CCG) represented only a small fraction of total Val-tRNA, the mutant tRNA is able to transfer valine into a polypeptide chain, albeit at a reduced level. The A76G mutation does not affect binding of Val- or NAcVal-tRNA(CCG) to the A- or P-sites as shown by efficient peptide bond formation, although the donor activity of the mutant NAcVal-tRNA(CCG) in the peptidyl transfer reaction is slightly reduced compared with wild-type NAcVal-tRNA. Translocation of 3'-CCG-tRNA from the P- to the E-site is not significantly influenced. However, the A76G mutation drastically inhibits translocation of peptidyl-tRNA G(76) from the ribosomal A-site to the P-site, which apparently explains its failure to support cell-free protein synthesis. Our results indicate that the identity of the 3'-terminal nucleotide of tRNA is critical for tRNA movement in the ribosome.  相似文献   

9.
10.
Eubacterium species V.P.I. 12708 has inducible bile acid 7-dehydroxylase activity that can use either 7 alpha or 7 beta bile acids as substrates. Cell extracts prepared from bacteria grown in the presence of cholic acid catalyzed the rapid conversion of free bile acids into a highly polar bile acid metabolite (HPBA). This conjugation activity co-eluted with bile acid 7-dehydroxylase activity on high performance gel filtration chromatography (GFC). The HPBA was purified by a combination of high performance GFC and reverse-phase high performance liquid chromatography (HPLC). The intact HPBA eluted earlier from reverse-phase HPLC than deoxycholyl-CoA and had a Mr of 1102 by Bio-Gel P-2 (GFC). The HPBA had an absorption peak at 255 nm and was sensitive to treatment with phosphodiesterase I or nucleotide pyrophosphatase. The HPBA has a free phosphate as shown by an increase in elution volume on reverse-phase HPLC following treatment with alkaline phosphatase. Treatment of the purified HPBA with nucleotide pyrophosphate plus alkaline phosphatase yielded adenosine, whereas, treatment with nucleotide pyrophosphatase alone generated 5',3'-ADP. A bile acid metabolite was also generated by nucleotide pyrophosphatase treatment. The bile acid metabolite had different chromatographic properties (HPLC and TLC) than the corresponding free bile acid. Gas liquid chromatography-mass spectrometry showed the bile acid metabolite to be 12 alpha-hydroxy-3-oxo-4-cholenoic acid. We hypothesize that the HPBA is an intermediate in 7-dehydroxylation and consists of this compound linked at the C-24 with an anhydride bond to the beta phosphate (5') of ADP-3'-phosphate. These results suggest a novel mechanism of bile acid 7 alpha/7 beta-dehydroxylation in Eubacterium sp. V.P.I. 12708.  相似文献   

11.
12.
Antibodies specific for 7-methylguanosine (m7G) were evaluated for their ability to inhibit the translation of chorion mRNA in a wheat germ, cell-free amino acid incorporating system. Results obtained with antibody concentrations of 0.5--1.5 microM revealed dose-dependent inhibition of [3H]-labeled amino acid incorporation into acid-insoluble radioactivity. Inhibition of translation was attributed to the interaction of anti-m7G antibodies with the 5' termini of chorion mRNAs on the basis that (a) anti-m7G antibodies coupled to Sepharose (anti-m7G-Sepharose) immunospecifically retained 5'-terminal cap structures of chorion mRNAs, i.e., m7G (5')ppp(5')Nm, (b) significant inhibition of translation required a 2-h preincubation of anti-m7G antibodies with mRNA, and (c) similar preincubation periods with anti-m7G antibodies in the presence of the competing nucleoside hapten (m7G) obviated the inhibitory effect of the antibody. The nature of the anti-m7G antibody-mRNA complex was examined by digesting chorion mRNA with nuclease P1 before (predigested) and after (postdigested) immunospecific adsorption to anti-m7G-Sepharose adsorbent. Whereas predigested preparations yielded a single cap structure of the type m7G(5')ppp(5')N, the predominating cap in the postdigested sample was m7G(5')ppp(5')NpNpN. These latter data revealed that the nucleotide sequence adjacent to the cap was not significantly masked by the antibody and suggest the utility of anti-m7G antibody as a site-specific probe.  相似文献   

13.
Vesicular stomatitis virus mRNAs with these four types of 5'-termini, (a) m7G5'ppp5'(m)Am, (b) ppp5'(m)Am, (c) m7G5'-ppp5' Am, and (d) G5'ppp5'A, were prepared and their translation and ribosome binding analyzed in wheat germ and reticulocyte cell-free protein synthesis systems. The relative efficiencies of translation of individual vesicular stomatitis virus (VSV) mRNAs having type 2 termini ranged from 23 to 29% of the control (type 1) RNA in the reticulocyte system and 6 to 7% of control RNA in the wheat germ system. A similar difference between the two systems was seen in ribosome-binding experiments in which type 2 RNA formed an 80 S initiation complex with high efficiency (70% of control type 1 RNA) in the reticulocyte system, but with low efficiency (17% of control RNA) in the wheat germ system. Similar differences in the importance of m7G in translation in the two systems were seen when VSV mRNAs synthesized in vitro with type 3 and type 4 termini were analyzed. However, the analysis of type 4 RNA (which was synthesized in vitro in the presence of S-adenosylhomocysteine) was complicated by the presence of abnormally large poly(A) at its 3'-end. Another series of experiments showed that compounds such as 5'pm7G and m7G5'ppp5'Np are potent and specific inhibitors of translation of all types of VSV mRNAs in the wheat germ system (greater than 98% inhibition) but cause less than 20% inhibition of translation in the reticulocyte system. Taken together, all of the results indicate that a 5'-terminal m7G is far more important in translation of VSV mRNAs in the heterologous plant cell-free system than in the reticulocyte lysate system.  相似文献   

14.
15.
16.
The effect of 7-methylguanosine 5'-monophosphate (pm7G) on mRNA translation was examined in the wheat germ and rabbit reticulocyte cell-free systems. Differences between the two cell extracts with respect to inhibition of translation by pm7G can be attributed to different conditions commonly used for in vitro protein synthesis. Inhibition of globin mRNA translation by pm7G is strongly influenced by the concentration of potassium salt and to a lesser extent by incubation temperature. The effectiveness of the inhibitor increases with potassium salt concentration and diminishes with increasing temperature. Translation is inhibited by pm7G at physiological K+ concentration in both cell-free systems in that only the rate of binding of mRNA to ribosomes is affected by the inhibitor, not the extent of binding. Translation of different capped mRNAs is affected differently by pm7G, but this appears to be property of the mRNA rather than the translation system. These results indicate that while the 5'-terminal cap structure may be more important for translation of some mRNA's than others, this structure functions in translation of capped mRNAs in all types of cells.  相似文献   

17.
To elucidate the distribution and function of mRNA in mouse kidney cytoplasm, we compared mRNA isolated from polysomal (greater than 80S) and native postpolysomal (20--80S) ribonucleoproteins with respect to synthesis and lifetime, sequence content, and translational activity. The 20--25% of cytoplasmic mRNA recovered from postpolysomal ribonucleoprotein is similar to polysomal mRNA in size (20--22S), in apparent half-life (11--13 h), in major products of cell-free translation, and in nucleotide complexity (approximately 4 x 10(7) nucleotides). The labeling kinetics of polysomal and postpolysomal mRNA suggest these mRNA populations are in equilibrium. [3H]cDNAs transcribed from polysomal and from postpolysomal poly(A)-containing mRNAs react with template mRNA and with the heterologous mRNA at the same rate (Cot1/2 approximately 6.3 mol.s/L) and to the same extent (95%). Therefore, these mRNAs are equally diverse and homologous and occur at similar relative frequencies. Postpolysomal mRNA directs cell-free protein synthesis at only approximately 30% of the rate of polysomal mRNA and to only 30% of the extent of mRNA from polysomes. Postpolysomal mRNA is approximately 3-fold less sensitive than polysomal mRNA to inhibition of translation by m7GMP, suggesting postpolysomal mRNA contains a greater fraction of molecules deficient in 5'-terminal caps. Postpolysomal mRNA may derive from renal mRNAs that initiate translation inefficiently and thus accumulate as postpolysomal ribonucleoproteins.  相似文献   

18.
The double-stranded linear DNA of Bacillus subtilis phage O29 is replicated by a mechanism in which a terminal protein (TP) acts as a primer. The second 3'-terminal nucleotide of the template directs the incorporation of the 5'-terminal nucleotide into the TP, giving rise to the initiation complex TP-dAMP. Elongation then proceeds by a sliding-back mechanism in which the dAMP covalently linked to the TP pairs to the 3'-terminal nucleotide of the template strand to recover full-length DNA. We have studied the sequence requirements for efficient initiation of replication using mutated TP-free double-stranded DNA fragments. Efficient initiation only requires the terminal repetition 5'-AA. The 3'-terminal T, although not used as template, increases the affinity of DNA polymerase for the initiator nucleotide; in addition, although to a minor extent, the third 3'-terminal position also directs the formation of the initiation complex and modulates the initiation rate at the second position. Efficient elongation requires a previous sliding-back, demanding again a repetition of two nucleotides at the 3' end; if the sliding-back is prevented, a residual elongation can proceed directly from the second position or after jumping back from the third to the first position.  相似文献   

19.
A purified enzyme system isolated from vaccinia virus cores has been shown to modify the 5' termini of viral mRNA and synthetic poly(A) and poly(G) to form the structures m7G(5')pppA- and m7G(5')pppG-. The enzyme system has both guanylyltransferase and methyltransferase activities. The GTP:mRNA guanylyltransferase activity incorporates GMP into the 5' terminus via a 5'-5' triphosphate bond. The properties of this reaction are: (a) of the four nucleoside triphosphates only GTP is a donor, (b) mRNA with two phosphates at the 5' terminus is an acceptor while RNA with a single 5'-terminal phosphate is not, (c) Mg2+ is required, (d) the pH optimum is 7.8, (e) PP1 is a strong inhibitor, and (f) the reverse reaction, namely the formation of GTP from PP1 and RNA containing the 5'-terminal structure G(5')pppN-, readily occurs. The S-adenosylmethionine:mRNA(guanine-7-)methyltransferase activity catalyzes the methylation of the 5'-terminal guanosine. This reaction exhibits the following characteristics: (a) mRNA with the 5'-terminal sequences G(5')pppA- and G(5')pppG- are acceptors, (b) only position 7 of the terminal guanosine is methylated; internal or conventional 5'-terminal guanosine residues are not methylated, (c) the reaction is not dependent upon GTP or divalent cations, (d) optimal activity is observed in a broad pH range around neutrality, (e) the reaction is inhibited by S-adenosylhomocysteine. Both the guanylyltransferase and methyltransferase reactions exhibit bisubstrate kinetics and proceed via a sequential mechanism. The reactions may be summarized: (see article).  相似文献   

20.
The 5' and 3'-terminal nucleotide sequences of 17-S rRNA and its immediate precursor 18-S RNA from the yeast Saccharomyces carlsbergensis have been analysed. Identification of the terminal oligonucleotides, as present in Ti ribonuclease digests, was performed by diagonal procedures. The major (molar yield 0.9) 5'-terminal oligonucleotide (molar yield 0.15) with the overall composition pU (U2,C2)G was observed. 18-S precursor RNA was found to contain the same 5'-terminal sequences as 17-S rRNA. However, the 3'-terminal sequences of the two types of RNA appeared to be different. The 17-S rRNA yields the oligonucleotide A-U-C-A-U-U-AOH while at least half of the 18-S RNA molecules contain the sequence U-U-U-C-A-A-U-AOH. In addition 18-S RNA yields several minor 3'-terminal oligonucleotides which appear to be structurally related to the major 3'-terminal sequence. These results demonstrate that the extra nucleotides in 18-S RNA relative to 17-S RNA are located exclusively at the 3'-terminus of the 18-S RNA molecule. The possibility that the 3'-terminal nucleotide sequence of 18-S RNA plays a role in the maturation process is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号