首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
(1) The intracellular pH (pHi) of superfused slices of guinea-pig cerebral cortex was measured in 31P-NMR spectra using the chemical shifts of intracellular inorganic phosphate (Pi) and of 2-deoxyglucose 6-phosphate (DOG6P). The pHi was found to be 7.30 +/- 0.04 (SD, n = 15) in bicarbonate-buffered medium and 7.20 +/- 0.05 (n = 10, P < 0.001) in bicarbonate-free HEPES buffer of the same pH (7.4). (2) Decreases in pHe below 7.05 resulted in pHi falling to similar values, with a decrease in the energy state. There was no change in intracellular lactate as assessed by 1H-NMR. (3) The tissues showed an ability to buffer higher pH: increasing pHe to 8.0 had no effect on pHi, PCr or lactate. (4) In order to characterize possible mechanisms of pH regulation in the tissue, the recovery from acid insult was investigated under various conditions. Initially pHi was decreased to 6.44 +/- 0.15 (n = 15) by exposure to media containing 6 mM bicarbonate gassed with O2/CO2, 80:20 (pHe 6.4). When this medium was replaced by normal bicarbonate buffer (pH 7.4) there was full recovery of pHi to 7.31 +/- 0.05 (n = 15), whereas replacing the buffer with HEPES resulted in incomplete recovery of pHi to 6.88 +/- 0.15 (n = 15, P < 0.001). (5) In the presence of the carbonic anhydrase inhibitor, acetazolamide (1 mM), or the sodium/proton exchange inhibitor, amiloride (1 mM), there was an incomplete return of pHi to the control value (pHi 6.90 +/- 0.20, n = 5, P < 0.001).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
The course of intracellular pH (pHi) was followed in superfused (36 degrees C) single glomus (type I) cells of the freshly dissociated adult rat carotid body. The cells had been loaded with the pH-sensitive fluorescent dye 2',7'-(2-carboxyethyl)-5 (and -6)-carboxyfluorescein. The high K(+)-nigericin method was used for calibration. The pHi of the glomus cell at pHo 7.40, without CO2, was 7.23 +/- 0.02 (n = 70); in 5% CO2/25 mM HCO3-, pHi was 7.18 +/- 0.08 (n = 9). The pHi was very sensitive to changes in pHo. Without CO2, delta pHi/delta pHo was 0.85 (pHo 6.20-8.00; 32 cells), while in CO2/HCO3- this ratio was 0.82 irrespective of whether pHo (6.80-7.40; 14 cells) was changed at constant PCO2 or at constant [HCO3-]o. The great pHi sensitivity of the glomus cell to pHo is matched only by that of the human red cell. An active Na+/H+ exchanger (apparent Km = 58 +/- 6 mM) is present in glomus cells: Na+ removal or addition of the amiloride derivative 5-(N,N-hexamethylene)-amiloride induced pHi to fall by as much as 0.9. The membrane of these cells also contains a K+/H+ exchanger. Raising [K+]o from 4.7 to 25, 50, or 140 mM reversibly raised pHi by 0.2, 0.3, and 0.6, respectively. Rb+ had no effect, but in corresponding concentrations of Tl+ alkalinization was much faster than in K+. Reducing [K+]o to 1.5 mM lowered pHi by 0.1. These pHi changes were shown not to be due to changes in membrane voltage, and were even more striking in the absence of Na+. Intrinsic buffering power (amount of strong base required to produce, in the nominal absence of CO2, a small pHi rise) increased from 3 to approximately 21 mM as pHi was lowered, but remained nearly unchanged below pHi 6.60. The fitted expression assumed the presence of one "equivalent" intracellular buffer (pK 6.41, 41 mM). The exceptional pHi sensitivity to pHo suggests that the pHi of the glomus cell is a link in the chemoreceptor's response to external acidity.  相似文献   

3.
Intracellular pH was measured with the pH-sensitive fluorescent probe BCECF in spinal cord neurones cultured from rat embryos. At an external pH of 7.3, the average steady-state pHi was 7.18 +/- 0.03 (SEM, n = 97) and 7.02 +/- 0.01 (n = 221) in HEPES-buffered and in bicarbonate-buffered medium, respectively. In both external media, pHi was strongly dependent on external pH (pHe). In HEPES-buffered medium, pHi recovery following an acid load induced by transient application of ammonium required external Na+ and was inhibited by amiloride, indicating the presence of a Na+/H+ exchange. Na(+)- and HCO3(-)-dependent, DIDS-sensitive alkalinizing mechanisms also contributed to pHi regulation in CO2/bicarbonate-buffered medium. The presence of an electrogenic Na(+)-HCO3- cotransporter was confirmed by the alkalinizing effect of KCl application. The fact that pHi is lower in CO2/bicarbonate- than in HEPES-buffered medium and the alkalinization observed upon suppression of external Cl- suggest that the acidifying Cl-/HCO3- transporter plays an important role in defining pHi.  相似文献   

4.
Changes in the content of high-energy phosphates, intracellular pH (pHi) and the ratio of MgATP to total ATP ([MgATP]/[ATP]t) resulting from continuous stimulation with acetylcholine (10(-9) to 10(-4) M) were measured by 31P-NMR spectroscopy in the isolated, perfused rabbit mandibular gland at 37 degrees C. With 10(-9) to 10(-7) M acetylcholine, no significant changes in these parameters were observed. On stimulation with 10(-6) M acetylcholine, the optimal concentration for sustained secretion, the content of ATP decreased by 28 +/- 10% (mean +/- S.E.; n = 8) of its control value. pHi decreased initially by approx. 0.05 pH unit, then showed an alkalinization of 0.09 +/- 0.02 pH unit (n = 8). With 10(-5) and 10(-4) M acetylcholine, changes in ATP and pHi were similar to those induced by 10(-6) M acetylcholine: the total content of high-energy phosphates remained at approx. 70% of the control value and no decrease in [MgATP]/[ATP]t was observed. As possible causes of the reduced secretory rate observed with higher concentrations of acetylcholine (10(-5) to 10(-3) M), we can exclude depletion of high-energy phosphates, inhibition of metabolism caused by intracellular acidosis, and inhibition of ATP usage caused by a decrease in MgATP availability.  相似文献   

5.
Intracellular pH (pHi), measured with H+-selective microelectrodes, in quiescent frog sartorius muscle fibres was 7.29 +/- 0.09 (n = 13). Frog muscle fibres were superfused with a modified Ringer solution containing 30 mM HEPES buffer, at extracellular pH (pHo) 7.35. Intracellular pH decreased to 6.45 +/- 0.14 (n = 13) following replacement of 30 mM NaCl with sodium lactate (30 mM MES, pHo 6.20). Intracellular pH recovery, upon removal of external lactic acid, depended on the buffer concentration of the modified Ringer solution. The measured values of the pHi recovery rates was 0.06 +/- 0.01 delta pHi/min (n = 5) in 3 mM HEPES and was 0.18 +/- 0.06 delta pHi/min (n = 13) in 30 mM HEPES, pHo 7.35. The Na+-H+ exchange inhibitor amiloride (2 mM) slightly reduced pHi recovery rate. The results indicate that the net proton efflux from lactic acidotic frog skeletal muscle is mainly by lactic acid efflux and is limited by the transmembrane pH gradient which, in turn, depends on the extracellular buffer capacity in the diffusion limited space around the muscle fibres.  相似文献   

6.
The early Na+/H+ exchanger-mediated alkalinization of intracellular pH (pHi) was analyzed in peripheral blood T cells from 23 bone marrow transplantation (BMT) recipients (17 allogeneic and 6 autologous) and a group of 13 healthy controls, in response to stimulation of protein kinase C (PKC) with a phorbol ester. In parallel we evaluated the proliferative response of peripheral blood T cells to an anti-CD3 mAb in the presence of either IL-2 or PMA. The pHi increase (delta pHi) observed in control samples ranged from 0.14 to 0.23 pH units (X +/- SD = 0.17 +/- 0.03). In 10 allogeneic and four autologous BMT recipients the delta pHi was under the lower limit of the control range (range: 0.01 to 0.09, X +/- SD = 0.05 +/- 0.02), whereas the remaining nine cases responded similarly to control samples (range: 0.14 to 0.24, X +/- SD = 0.17 +/- 0.04). The response of the Na+/H+ antiporter to a PKC-independent osmotic stimulation appeared to be normal, thus indicating that the intrinsic Na+/H+ exchanger activity was unaltered. The anti-CD3 induced proliferative response of the group of samples displaying a suboptimal delta pHi, was significantly lower (p less than 0.01) than that detected in control samples. T cell proliferation in samples from BMT recipients displaying a normal delta pHi was undistinguishable from the control group (p greater than 0.05). Our results provide the first evidence for a defective early metabolic event, closely related to PKC activity, in T cells from BMT recipients displaying a low proliferative response to T cell mitogens.  相似文献   

7.
This study aimed at establishing the role of calmodulin in regulating pHi of human platelets under acid loads and in stimulated states. The response of human platelets to thrombin was an initial drop of pHi followed by a recovery with a significant increase above the pre-stimulation level in control experiments and a recovery to initial values in platelets maintained in the presence of 19 mmol/l TFP (trifluoperazine = 2 trifluoromethyl-10 [3'-(1 methyl-4-piperazinyl) propyl] phenothiazine). The change in pHi after 8 min was 0.130 +/- 0.030 in the control and 0.001 +/- 0.011 pH units in TFP (P < 0.05). The initial velocity of recovery from an acid load was reduced to 56.7 +/- 6% of the control (n = 6, P < 0.05) with 50 mumol/l W7 (N-(6 aminohexyl)-5-chloro-l-naphthalene sulphonamide), and to 29.7 +/- 4.3% of the control (n = 8, P < 0.05) with 19 mumol/l TFP. The initial velocity of recovery was significantly greater in recalcified platelets than in the preparations kept in the nominal absence of extracellular calcium (1.08 +/- 0.12 vs 0.66 +/- 0.12 pH units per min, P < 0.05). Lower concentration of TFP had an inhibitory effect only in the presence of calcium. The velocities of recovery reached similar values at higher TFP concentration. The significant interaction between Ca2+ and TFP concentrations indicates that the Ca-calmodulin complex, rather than an unspecified direct action of TFP, is responsible for the modulation of the Na+/H+ exchanger. These findings indicate that calcium-calmodulin participates in both the recovery of pH after an acid load and the increase of pHi in stimulated states of human platelets.  相似文献   

8.
Intracellular pH (pHi) was measured in both unheated and heated cells by the distribution of the weak acid, 5,5-dimethyl-2,4-oxazolidinedione-2-14C (14C-DMO), and by the fluorescence intensity ratio (I530/I630) of the pH sensitive fluorescent dye, 2',7'-bis(carboxyethyl)-5,6-carboxy-fluorescein (BCECF), analyzed by flow cytometry (FCM). BCECF-loaded Chinese hamster ovary (CHO) cells were analyzed by FCM after they had incubated in fresh medium at 37 degrees C for 90 min, during which time a decrease in fluorescence ratio stabilized. After stabilization, the pHi determined for CHO cells by the FCM method at pHe values of 6.0-8.1 agreed-within 0.1 pH units with that determined by the 14C-DMO method. There is a pH gradient across the plasma membrane that is not affected by heat. In CHO cells, the gradient, determined by DMO and FCM, is less or greater than pHe by 0.30 and 0.15 pH units at pHe 7.4 and 6.3, respectively, and in NG108-15 cells, the gradient determined by DMO increases to 0.50 pH units at pHe 6.3. Both cells maintained their pH gradients for at least 4 h after heating, although 99.9% of the cells were reproductively dead (survival of 10(-3)) after heating at 45.5 degrees C either at the normal pHe of 7.4 or at a low pHe of 6.4-6.7.  相似文献   

9.
Cells are more sensitive to heat when they are heated in an acidic environment, and this study confirms (K. G. Hofer and N. F. Mivechi, J. Natl. Cancer Inst., 65, 621, 1980) that intracellular pH (pHi) and not extracellular pH (pHe) is responsible for the sensitization. The relationship between pHe, pHi, and heat survival of cells heated in vitro in various buffers at pHe 6.3-8.0 was investigated. Cells' adaptation to low environmental pH in terms of increases in pHi and heat survival also was investigated. Finally, we studied the relationships among pHe, pHi, and survival from heat for cells heated in sodium-free reconstructed medium. Intracellular pH was measured by the distribution of the weak acid, [2-14C]5,5-dimethyl-2,4-oxazolidinedione. Our results are summarized as follows: (1) CHO cells maintained the same relationship between pHe and pHi in four different media or buffers (McCoy's 5a medium buffered with CO2 and NaHCO3 or 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (Hepes) and 2-(N-morpholino)ethanesulfonic acid (Mes), Krebs-Ringer bicarbonate solution, and Krebs-Ringer phosphate solution) with pHi being 0.05 to 0.20 pH units higher than pHe as it varied from 7.0 to 6.4; furthermore, heat sensitization by acid was the same in medium buffered with NaHCO3 or Hepes and Mes. (2) The low pHe adapted cells multiplied with an increased doubling time of 20.7 +/- 0.7 h and appeared morphologically similar to the unadapted cells. However, the pHi of these cells was 0.15-0.30 pH units higher than that of the unadapted cells when pHe was varied between 7.0 and 6.3. (3) After being heated at 43.5 degrees C for 55 min or at 42.5 degrees C for 150 min at pHe 6.3-7.2, the pHi of the adapted cells increased by 0.2-0.1 pH units. However, heat caused no significant change in the unadapted cells. (4) Heat survival plotted versus pHe was 1000-fold higher for the adapted cells than for the unadapted cells at pHe of 6.3. However, heat survival plotted versus pHi was identical for the two cell types. (5) In sodium-free reconstructed McCoy's 5a medium, pHi was 0.25-0.1 pH units lower than that in the sodium-containing counterpart at pHe 6.3-7.2, and heat sensitization increased accordingly; however, heat survival plotted versus pHi was identical for the two types of media.  相似文献   

10.
The effects of arterial alphastat regulation on brain intracellular pH (pHi) and several phosphate metabolites were assessed in anesthetized rats during hypothermia (28.6 +/- 0.2 degrees C) and normothermia (36.2 +/- 0.2 degrees C) by using 31P high-field (8.5 T) nuclear magnetic resonance (NMR). There were significant differences in pHi and metabolite ratios at the two temperatures under conditions of equal minute ventilation. During hypothermia, the brain pHi was 0.09 U higher, the phosphocreatine-to-inorganic phosphate (PCR/Pi) ratio 49% larger, and Pi-to-ATP 20% lower than at normothermia. These changes were fully reversible on warming the animal. The change in brain pHi/temperature was -0.011U/degrees C (95% confidence interval -0.007 to -0.016). The brain's ability to regulate its pHi and phosphate metabolism during hypercapnic acid-base stress was studied by using 10% CO2 ventilation. Hypothermic rats showed a larger fall in brain pHi (0.145 +/- 0.01 U, 7.15-7.01) with 10% CO2 than normothermic rats (0.10 +/- 0.02 U, 7.06-6.96). Similarly ventilated rats had a larger fall in arterial pH with 10% CO2 at hypothermia (0.36 +/- 0.04 U) than normothermia (0.24 +/- 0.01 U), so the delta brain pH/delta arterial pH was the same at both temperatures. The brain PCr-to-Pi ratio decreased approximately 20% during 10% CO2 breathing in both hypothermic and normothermic animals. Brain pHi and metabolite ratios returned to base line 30-50 min after CO2 washout in both groups. In summary, lowering body temperature while maintaining constant ventilation leads to changes in brain pHi and metabolites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
IL-1 activates the Na+/H+ antiport in a murine T cell   总被引:1,自引:0,他引:1  
One of the early events following growth factor exposure is elevation of intracellular pH, a process mediated by the Na+/H+ antiport. We studied the effects of human rIL-1 alpha (HrIL-1 alpha) on intracellular pH (pHi) and calcium ([Ca2+]i) in a murine T cell line (MD10 cells), which proliferates in response to IL-1 alone. By using the intracellularly trapped fluorescent dyes (2(1),7(1)-bis-2-carboxyethyl)-5(and -6) carboxyfluorescein) and indo-1, we monitored immediate to early changes of pHi and [Ca2+]i in response to HrIL-1 alpha. Exposure to HrIL-1 alpha (120 pM) leads to an early, sustained intracellular alkalinization (delta pH = + 0.09 +/- 0.03) that plateaus within 20 min. Lower concentrations of the monokine (12 pM, 1.2 pM) have a positive but not statistically significant effect on pHi. These effects parallel the degree of MD10 IL-1R saturation predicted by the KD (49 pM) as assessed by 125I-HrIL-1 alpha binding by MD10 cells (Bmax = approximately 1300). Both the MD10 IL-1 receptor KD and the HrIL-1 alpha concentration required to induce early measurable alkaline pH shifts, however, exceed by three orders of magnitude the HrIL-1 alpha ED50 (50 fM) required for MD10 proliferation. The IL-1-induced rise in pHi is both sodium dependent and amiloride sensitive, indicative of activation of the Na+/H+ antiport. Additionally, PMA (100 nM) and IL-2 (2 nM) alkalinize MD10 cells, with the rise in pHi as a result of PMA exceeding the maximal IL-1 effect (delta pH = + 0.13 +/- 0.04). Furthermore, although PMA alkalinizes cells previously exposed to HrIL-1 alpha, the monokine does not alter the pHi of PMA-treated MD10 cells. Importantly, intracellular alkalinization induced by either HrIL-1 alpha or PMA is inhibited by staurosporine (1 mu iM). Finally, HrIL-1 alpha does not change MD10 [Ca2+]i, in either an acute or sustained fashion. These results indicate that IL-1 activates the Na+/H+ antiport in T cells by a mechanism that is unrelated to changes in [Ca2+]i but may involve protein kinase C activation.  相似文献   

12.
The external alkalinisation delta pHe, or the rate of oxygen evolution vO2, of a suspension of envelope-free chlorplasts was correlated with their internal acidification, estimated from the transmembrane delta pHei. Knowing the external buffer value, the concentration of the total protons moved Hi was calculated from the delta pHe, measured with a glass electrode ([Hi] was also obtained from vO2), and the free proton concentration [Hi+] was determined from delta pHei, measured with 9-aminoacridine. This gives a ratio gamma i = theta [Hi]/theta [Hi+], which is independent of the thylakoids internal volume. Within a large pHi range, scanned by varying the light intensity, gamma i was kept reasonably constant; it was hardly sensitive to pHi. This apparent invariability implies a continuous change of the internal buffer value beta i with pHi, since beta i/gamma i = -2.3.....10pHi, a relationship which inlcudes neither the total concentration of protonizable groups [Ai] nor pKi. As gamma i approximately Ki[Ai]/(Ki + [Hi+i]2, to keep gamma i constant when pHi drops, pKi and [Ai] must increase. This may be achieved by a progressive unmasking of anionic functions, initially inaccessible in the membrane. The relative slowness of this process may explain why gamma i calculated from the initial kinetics was sometimes smaller in high than in low light, where it always equalled that measured from the steady-state amplitude at all intensities. A small deficit of [Hi+] deduced from what could have been expected from delta pHe may reflect a limited binding of protons in the membrane itself, about 1 H+ for 30--130 chlorophylls (gamma i could be between 70 and 240, more frequently around 100); these numbers varied depending on the samples, but were constant for a given preparation.  相似文献   

13.
Arterial blood acid-base status of unanesthetized, unrestrained nutria was studied during exposure to 5, 10 and 14.5% CO2 for 6 hr. Control values, pH = 7.426 +/- 0.037, PaCo2 = 36.5 +/- 3.1 mmHg and [HCO-3] = 24.3 +/- 2.5 mM/1 (n = 24), are within the normal range reported for other mammals. Values after 6 hr of exposure to 10% CO2 were: pH = 7.355 +/- 0.043, PaCO2 = 71.0 +/- 3.6 mmHg and [HCO-3] = 38.0 +/- 4.1 mM/l (n = 5). Arterial blood buffer slopes, obtained from the in vitro titration curve, did not show any pattern of adaptation to hypercapnia. Whole body buffer slopes, calculated from the in vivo CO2 titration curve, showed significantly higher values for the nutria than for the rat, dog and man, under comparable conditions [beta(delta HCO-3/delta pH)] = 57.0 slykes for nutria, 32.6 for rat and 11.8 for man. delta H+/delta PaCO2 = 0.38. mM/l/mmHg for nutria, 0.55 for rat and 0.76 for man. The results suggest that the nutria possesses an efficient metabolic mechanism for regulation of pH level during exposure to hypercapnic conditions.  相似文献   

14.
M Ritter  E W?ll  D H?ussinger  F Lang 《FEBS letters》1992,307(3):367-370
BCECF fluorescence has been applied to determine intracellular pH (pHi) in NIH 3T3 fibroblasts expressing the Ha-ras oncogene (+ras) and otherwise identical cells not expressing the oncogene (-ras). In +ras cells, pHi is significantly more alkaline (6.79 +/- 0.03 n = 12) than in -ras cells (6.64 +/- 0.02, n = 8). Bradykinin (100 nmol/l) leads to intracellular alkalinization in both +ras (to 6.96 +/- 0.04, n = 12) and -ras cells (to 6.85 +/- 0.02, n = 8). The effect of bradykinin is completely abolished in the presence of dimethylamiloride (100 mumol/l), which does not modify pHi in the absence of bradykinin. Similar to bradykinin, cell shrinkage by addition of 15 mmol/l NaCl to the extracellular fluid leads to intracellular alkalinization (by 0.08 +/- 0.01, n = 15). Cell volume is significantly greater in +ras cells (2.7 +/- 0.4 pl, n = 15) than in -ras cells (2.2 +/- 0.4 pl, n = 15). Bradykinin leads to cell shrinkage in both +ras cells (by 7 +/- 1%, n = 17) and -ras cells (by 5 +/- 1%, n = 15). The effect of bradykinin on cell volume can be reversed by the reduction of extracellular NaCl concentration by 15 mmol/l NaCl in +ras cells and by 7 mmol/l NaCl in -ras cells. This maneuver completely abolishes (in -ras cells) or blunts (in +ras cells) the alkalinizing effect of bradykinin. In conclusion, +ras cells are more alkaline than -ras cells. Bradykinin leads to further intracellular alkalinization by activation of the Na+/H(+)-exchanger, at least in part secondary to hormone-induced cell shrinkage.  相似文献   

15.
Microcalorimetry has been used to determine enthalpy changes for the hydrolysis of a series of oligosaccharides. High-pressure liquid chromatography was used to determine the extents of reaction and to check for any possible side reactions. The enzyme glucan 1,4-alpha-glucosidase was used to bring about the following hydrolysis reactions: (A) maltose(aq) + H2O(liq) = 2D-glucose(aq); (B) maltotriose(aq) + 2H2O(liq) = 3D-glucose(aq); (C) maltotetraose(aq) + 3H2O(liq) = 4D-glucose(aq); (D) maltopentaose(aq) + 4H2O(liq) = 5D-glucose(aq); (E) maltohexaose(aq) + 5H2O(liq) = 6D-glucose(aq); (F) maltoheptaose(aq) + 6H2O(liq) = 7D-glucose(aq); (G) amylose(aq) + nH2O(liq) = (n + 1) D-glucose(aq); and (H) panose(aq) + 2H2O(liq) = 3D-glucose(aq); (J) isomaltotriose(aq) + 2H2O(liq) = 3D-glucose(aq). The enzyme beta-fructofuranosidase was used for the reactions: (K) raffinose(aq) + H2O(liq) = alpha-D-melibiose(aq) + D-fructose(aq); and (L) stachyose(aq) + H2O(liq) = o-alpha-D-galactopyranosyl-(1----6)- alpha-o-D-galactopyranosyl-(1----6)-alpha-D-glucopyranose + D-fructose(aq). The results of the calorimetric measurements (298.15 K, 0.1 M sodium acetate buffer, pH 4.44-6.00) are: delta H0A = -4.55 +/- 0.10, delta H0B = -9.03 +/- 0.10, delta H0C = -13.79 +/- 0.15, delta H0D = -18.12 +/- 0.10, delta H0E = -22.40 +/- 0.15, delta H0F = -26.81 +/- 0.20, delta H0H = 1.46 +/- 0.40, delta H0J = 11.4 +/- 2.0, delta H0K = -15.25 +/- 0.20, and delta H0L = -14.93 +/- 0.20 kJ mol-1. The enthalpies of hydrolysis of two different samples of amylose were 1062 +/- 20 and 2719 +/- 100 kJ mol-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
The high non-bicarbonate buffer capacity of brown bullhead (Ameiurus nebulosus) plasma was postulated to function as an alternative mechanism for the protection of red blood cell (RBC) intracellular pH (pHi) in the absence or attenuation of a RBC adrenergic response. The requirement for protecting RBC pHi arises from the presence of a Root effect haemoglobin in bullhead. In support of this hypothesis, bullhead RBCs incubated in vitro with isoproterenol (10(-8)-10(-5) mol l(-1)) or forskolin (10(-4) mol l(-1)) exhibited significant cyclic AMP accumulation, but failed to exhibit cell swelling or significant Na(+) or Cl(-) accumulation; plasma pH (pHe) was also unaffected. Similarly, no significant effect on RBC water content, Na(+) or Cl(-) concentration, or pHe was detected in bullhead blood incubated with 8-bromo cyclic AMP (10(-4)-10(-2) mol l(-1)) in vitro. These results suggest that while bullhead RBCs possess a beta-adrenoreceptor linked to cyclic AMP formation, stimulation of this adrenergic receptor does not result in measurable activation of a Na(+)/H(+) exchanger.  相似文献   

17.
Buffer power and intracellular pH of frog sartorius muscle.   总被引:2,自引:1,他引:1       下载免费PDF全文
Intracellular pH (pHi) and buffer power of frog muscle were measured using pH-sensitive microelectrodes under conditions used previously in energy balance experiments because pH strongly influences the molar enthalpy change for phosphocreatine splitting, the major net reaction during brief contractions. The extracellular pH (pHe) of HEPES buffered Ringer's solution influenced pHi, but change in pHi developed slowly. Addition or removal of CO2 or NH3 from the extracellular solution caused a rapid change in pHi. The mean buffer power measured with CO2 was 38.4 mmol.l-1.pH unit-1 (+/- SEM 2.1, n = 49) and with NH3 was 36.2 (+/- SEM 5.5, n = 4) at 20-22 degrees C. At 5 degrees C, in experiments with CO2 the mean buffer power was 40.3 (+/- SEM 2.6, n = 3). For pHi values above approximately 7.0, the observed buffer power was greater than that expected from the values in the literature for the histidine content of intracellular proteins, carnosine and inorganic phosphate in the sarcoplasm. The measured pHi values were similar to those assumed in energy balance calculations, but the high measured buffer power suggests that other buffering reactions occur in addition to those included in energy balance calculations.  相似文献   

18.
The cytoplasmic pH (pHi) was determined in isolated rat intestinal cells with four methods. The pHi of cells in physiological saline buffered with Hepes (pH 7.3) at 37 degrees C was close to 7.0. The most reliable method, using the fluorescent pH indicator 2',7'-bis(carboxyethyl)-5(6)-carboxyfluorescein (BCECF), furnished a mean value of 7.03 +/- 0.05 (n = 42). The buffering capacity of intestinal cells determined with this fluorescent indicator was 62 +/- 5 mmol.l-1.pH-1. The mechanism governing the control of cytoplasmic pH was also investigated with BCECF, varying the Na+ concentration inside and outside the cells. When intestinal cells were suspended in a sodium-free medium in the presence or absence of ouabain, they became acidified. The process was reversed when Na+ was added to the incubation medium. An identical phenomenon occurred when the cells were artificially acidified with NH4Cl. Additional experiments led to the conclusion that isolated rat intestinal cells have an Na+/H+ exchanger independent of Cl- and inhibited by amiloride. This exchanger plays an important but not exclusive role in the control of pHi. The presence of other exchangers and the high buffering power of the cells explains the high stability of pHi noted in this study.  相似文献   

19.
Heat shock caused significant changes in intracellular pH (pHi) and intracellular free calcium concentration [( Ca2+]i) which occurred rapidly after temperature elevation. pHi fell from a resting level value at 25 degrees C of 7.38 +/- 0.02 (mean +/- standard error of the mean, n = 15) to 6.91 +/- 0.11 (n = 7) at 35 degrees C. The resting level value of [Ca2+]i in single Drosophila melanogaster larval salivary gland cells was 198 +/- 31 nM (n = 4). It increased approximately 10-fold, to 1,870 +/- 770 nM (n = 4), during a heat shock. When salivary glands were incubated in calcium-free, ethylene glycol-bis(beta-aminoethyl ether)-N,N',N'-tetraacetic acid (EGTA)-buffered medium, the resting level value of [Ca2+]i was reduced to 80 +/- 7 nM (n = 3), and heat shock resulted in a fourfold increase in [Ca2+]i to 353 +/- 90 nM (n = 3). The intracellular free-ion concentrations of Na+, K+, Cl-, and Mg2+ were 9.6 +/- 0.8, 101.9 +/- 1.7, 36 +/- 1.5, and 2.4 +/- 0.2 mM, respectively, and remained essentially unchanged during a heat shock. Procedures were devised to mimic or block the effects of heat shock on pHi and [Ca2+]i and to assess their role in the induction of heat shock proteins. We report here that the changes in [Ca2+]i and pHi which occur during heat shock are not sufficient, nor are they required, for a complete induction of the heat shock response.  相似文献   

20.
According to recent observations ADP stimulates platelets via activation of Na+/H+ exchange which increases cytosolic pH (pHi). This event initiates formation of thromboxane A2 (via phospholipase A2) and, thereafter, inositol 1,4,5-trisphosphate (via phospholipase C) which is known to mobilize Ca2+ from intracellular storage sites. We investigated changes in pHi and cytosolic free Ca2+, [Ca2+]i, activating platelets with ADP and the thromboxane mimetic U 46619. We found that ADP (5 microM) increased pHi from 7.15 +/- 0.08 to 7.35 +/- 0.04 (n = 8) in 2'-7'-bis-(carboxyethyl)-5,6-carboxyfluorescein-loaded platelets, whereas thromboxane A2 formation was inhibited by indomethacin. ADP also induced a dose-dependent Ca2+ mobilization in fura2-loaded platelets which again was not affected by indomethacin. [Ca2+]i increased by 54 +/- 10 nM (n = 8) at 1 microM and by 170 +/- 40 nM (n = 7) at 10 microM ADP above the resting value of 76 +/- 12 nM (n = 47). Inhibition of Na+/H+ exchange by ethylisopropylamiloride (EIPA) reduced ADP-induced Ca2+ mobilization by more than 65% in indomethacin-treated platelets. This inhibition could be completely overcome by artificially raising pHi using either NH4Cl or the Na+/H+ ionophore monensin. We found that U 46619 increased pHi by 0.18 +/- 0.05 at 0.1 microM and by 0.29 +/- 0.07 (n = 7) at 1.0 microM above the resting value via an EIPA-sensitive mechanism. In conflict with the proposed role of the Na+/H+ exchange we found that U 46619 raised [Ca2+]i via a mechanism that for more than 50% depended on intact Na+/H+ exchange. Again, artificially elevating pHi restored U 46619-induced Ca2+ mobilization despite the presence of EIPA. Thus, our data show that Na+/H+ exchange is a common step in platelet activation by prostaglandin endoperoxides/thromboxane A2 and ADP and enhances Ca2+ mobilization independently of phospholipase A2 activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号