共查询到20条相似文献,搜索用时 0 毫秒
1.
MAIKO KAWAJIRI TOMOYUKI KOKITA KAZUNORI YAMAHIRA 《Biological journal of the Linnean Society. Linnean Society of London》2009,97(3):571-580
Heterochrony is believed to have played important roles in macroevolutionary morphological changes. However, few studies have focused on intraspecific heterochrony, although interspecific differences ultimately originated from variation within ancestral species. We have demonstrated heterochrony in fin development between two latitudinal populations of the medaka, Oryzias latipes . Comparisons of fin length (anal and dorsal) among wild individuals revealed that fins are shorter with respect to body length in the northern population, indicating that they are 'paedomorphic' compared with the southern population. Observations of fin ray formation and subsequent fin growth in the laboratory revealed that the timing of pterygiophore development occurs later, and that fins start to elongate later with respect to body length in the northern fish, indicating that fin growth is 'post-displaced' compared with the southern population. In addition, the rate of fin growth with respect to body length was lower in the northern males, indicating 'neoteny'. Given that all Oryzias except O. latipes are distributed in the tropics, it is likely that higher-latitude fish have evolved post-displacement and neoteny during northern extension of their geographic range. The delayed development in higher-latitude fish is probably a trade-off for faster body growth, which has evolved as an adaptation to seasonally time-constrained environments. © 2009 The Linnean Society of London, Biological Journal of the Linnean Society , 2009, 97 , 571–580. 相似文献
2.
Marcelo R. Sánchez‐Villagra Hendrik Müller Christopher A. Sheil Torsten M. Scheyer Hiroshi Nagashima Shigeru Kuratani 《Journal of morphology》2009,270(11):1381-1399
We investigated the development of the whole skeleton of the soft‐shelled turtle Pelodiscus sinensis, with particular emphasis on the pattern and sequence of ossification. Ossification starts at late Tokita‐Kuratani stage (TK) 18 with the maxilla, followed by the dentary and prefrontal. The quadrate is the first endoskeletal ossification and appears at TK stage 22. All adult skull elements have started ossification by TK stage 25. Plastral bones are the first postcranial bones to ossify, whereas the nuchal is the first carapacial bone to ossify, appearing as two unstained anlagen. Extensive examination of ossification sequences among autopodial elements reveals much intraspecific variation. Patterns of ossification of cranial dermal elements are more variable than those of endochondral elements, and dermal elements ossify before endochondral ones. Differences in ossification sequences with Apalone spinifera include: in Pelodiscus sinensis the jugal develops relatively early and before the frontal, whereas it appears later in A. spinifera; the frontal appears shortly before the parietal in A. spinifera whereas in P. sinensis the parietal appears several stages before the frontal. Chelydrids exhibit an early development of the postorbital bone and the palatal elements as compared to trionychids. Integration of the onset of ossification data into an analysis of the sequence of skeletal ossification in cryptodirans using the event‐pairing and Parsimov methods reveals heterochronies, some of which reflect the hypothesized phylogeny considered taxa. A functional interpretation of heterochronies is speculative. In the chondrocranium there is no contact between the nasal capsules and planum supraseptale via the sphenethmoid commissurae. The pattern of chondrification of forelimb and hind limb elements is consistent with a primary axis and digital arch. There is no evidence of anterior condensations distal to the radius and tibia. A pattern of quasi‐ simultaneity is seen in the chondrogenesis of the forelimb and the hind limb. J. Morphol. 2009. © 2009 Wiley‐Liss, Inc. 相似文献
3.
Mark W. Hamrick 《Journal of morphology》1999,239(3):283-296
This study addressed the question of how the epiphyses of growing mammals change their external shape and internal architecture during postnatal development. Ontogenetic transformations in the external form and internal structure of the fore‐ and hindlimb epiphyses were examined in a mixed cross‐sectional sample of Didelphis virginiana using two methods: morphometric analysis of linear epiphyseal dimensions and histological staining of serially sectioned epiphyses. Metric data indicate that Virginia opossums are born with relatively short hindlimbs and long forelimbs, but by the time they are weaned their hindlimbs are longer than their forelimbs. Functional integration of the locomotor system in D. virginiana involves a decoupling of fore‐ and hindlimb growth rates so that between birth and weaning, femoral length, diaphyseal cross‐sectional area, and articular surface area increase at a significantly faster rate than the corresponding humeral dimensions. Histological results demonstrate that these differences in growth rate are reflected in morphology of the humeral and femoral growth plate and epiphyseal cartilages. The humeral cartilages exhibit a level of cellular organization characteristic of more mature limb elements at earlier developmental stages compared to the femoral cartilages, which assume this anisotropic structure relatively later in postnatal development. Results presented here also reveal that the formation of articular cartilage and the initiation of epiphyseal ossification in D. virginiana are both correlated with the development of independent positional behaviors prior to weaning. These histological data, therefore, suggest that mechanical loading associated with the postnatal onset of locomotor and postural development may provide an important stimulus for the progression of ossification and the formation of articular cartilage in the epiphyses of growing mammals. J. Morphol. 239:283–296, 1999. © 1999 Wiley‐Liss, Inc. 相似文献
4.
Spence R Gerlach G Lawrence C Smith C 《Biological reviews of the Cambridge Philosophical Society》2008,83(1):13-34
The zebrafish Danio rerio, is an important model organism in developmental genetics, neurophysiology and biomedicine, but little is known about its natural ecology and behaviour. It is a small, shoaling cyprinid, native to the flood-plains of the Indian subcontinent, where it is found in shallow, slow-flowing waters. Zebrafish are group spawners and egg scatterers, although females are choosy with respect to sites for oviposition and males defend territories around such sites. Laboratory studies of zebrafish behaviour have encompassed shoaling, foraging, reproduction, sensory perception and learning. These studies are reviewed in relation to the suitability of the zebrafish as a model for studies on cognition and learning, development, behavioural and evolutionary ecology, and behavioural genetics. 相似文献
5.
Hautier L Stansfield FJ Allen WR Asher RJ 《Proceedings. Biological sciences / The Royal Society》2012,279(1736):2188-2195
We provide here unique data on elephant skeletal ontogeny. We focus on the sequence of cranial and post-cranial ossification events during growth in the African elephant (Loxodonta africana). Previous analyses on ossification sequences in mammals have focused on monotremes, marsupials, boreoeutherian and xenarthran placentals. Here, we add data on ossification sequences in an afrotherian. We use two different methods to quantify sequence heterochrony: the sequence method and event-paring/Parsimov. Compared with other placentals, elephants show late ossifications of the basicranium, manual and pedal phalanges, and early ossifications of the ischium and metacarpals. Moreover, ossification in elephants starts very early and progresses rapidly. Specifically, the elephant exhibits the same percentage of bones showing an ossification centre at the end of the first third of its gestation period as the mouse and hamster have close to birth. Elephants show a number of features of their ossification patterns that differ from those of other placental mammals. The pattern of the initiation of the ossification evident in the African elephant underscores a possible correlation between the timing of ossification onset and gestation time throughout mammals. 相似文献
6.
The tiger salamander,Ambystoma tigrinum, is a geographically widespread, morphologically variable, polytipic species. It is among the most variable species of salamanders
in morphology and life history with two larval morphs (typical and cannibal) and three adult morphs (metamorphosed, typical
branchiate, cannibal branchiate) that vary in frequency between subspecies and between populations within subspecies. We report
morphometric evidence suggesting that branchiate cannibals arose through intraspecific change in the onset or timing of development
resulting in the wider head and hypertrophied tooth-bearing skull bones characteristic of this phenotype. We also quantified
bilateral symmetry of gill raker counts and abnormalities, then evaluated fluctuating asymmetry as a measure of the developmental
stability of each morph. There was a significant interaction between fluctuating asymmetry of developmental abnormalities
in cannibals and typicals and the locality where they were collected, suggesting that relative stability of each phenotype
could vary among populations. While altered timing of developmental events appears to have a role in the evolution and maintenance
of morphs, novel phenotypes persist only under favorable ecological conditions. Predictability of the aquatic habitat, genetic
variation, kinship, body size, intraspecific competition and predation all affect expression and survival of the morphs inA. tigrinum. This taxon provides an excellent model for understanding the diversity and complexity of developmental and ecological variables
controlling the evolution and maintenance of novel phenotypes. 相似文献
7.
Yvonne M Bradford Ceri E Van Slyke Leyla Ruzicka Amy Singer Anne Eagle David Fashena Douglas G Howe Ken Frazer Ryan Martin Holly Paddock Christian Pich Sridhar Ramachandran Monte Westerfield 《Genetics》2022,220(4)
The Zebrafish Information Network (zfin.org) is the central repository for Danio rerio genetic and genomic data. The Zebrafish Information Network has served the zebrafish research community since 1994, expertly curating, integrating, and displaying zebrafish data. Key data types available at the Zebrafish Information Network include, but are not limited to, genes, alleles, human disease models, gene expression, phenotype, and gene function. The Zebrafish Information Network makes zebrafish research data Findable, Accessible, Interoperable, and Reusable through nomenclature, curatorial and annotation activities, web interfaces, and data downloads. Recently, the Zebrafish Information Network and 6 other model organism knowledgebases have collaborated to form the Alliance of Genome Resources, aiming to develop sustainable genome information resources that enable the use of model organisms to understand the genetic and genomic basis of human biology and disease. Here, we provide an overview of the data available at the Zebrafish Information Network including recent updates to the gene page to provide access to single-cell RNA sequencing data, links to Alliance web pages, ribbon diagrams to summarize the biological systems and Gene Ontology terms that have annotations, and data integration with the Alliance of Genome Resources. 相似文献
8.
Vera Weisbecker Christian Mitgutsch 《Journal of Zoological Systematics and Evolutionary Research》2010,48(4):332-347
Most anurans have a biphasic life cycle, which includes metamorphosis from a tadpole stage to an adult frog. This process involves extensive transformations of the cranial skeleton, which have been of long‐standing interest with respect to anuran skeletal evolution and taxonomy. In this study, large‐scale patterns of anuran skeletal ossification are assessed by collecting the most comprehensive data set on anuran cranial ossification to date from the literature, including data for 45 anuran and one caudate outgroup species. Ossification sequences were translated into event‐pair matrices for explorative phylogenetic analysis and phylogenetically informed parsimony search for heterochrony using the Parsimov algorithm. Rank variability of single bones across species was also analysed. Little phylogenetic signal was retrieved from a parsimony‐based phylogenetic analysis of event‐pairs, and only a few species that are generally agreed to be closely related are placed close to each other (e.g. some Pipidae and Costata). Parsimov analysis revealed some clade‐specific heterochrony in anuran clades of varying inclusiveness. Our results show that relating heterochronic changes in anuran cranial ontogeny to parameters such as direct development or miniaturization is problematic because of the high evolvability of cranial ossification sequences. Rank variation analysis suggests that anuran cranial bones are highly variable in their sequence positioning, possibly because tadpole and adult cranial morphology do not co‐evolve. Elements which are lost in some species ossify at the end of the sequence, providing evidence for the notion that failure of anuran cranial elements to ossify is due to processes of paedomorphosis. 相似文献
9.
Weisbecker V 《Evolution; international journal of organic evolution》2011,65(5):1323-1335
The developmental differences between marsupials, placentals, and monotremes are thought to be reflected in differing patterns of postcranial development and diversity. However, developmental polarities remain obscured by the rarity of monotreme data. Here, I present the first postcranial ossification sequences of the monotreme echidna and platypus, and compare these with published data from other mammals and amniotes. Strikingly, monotreme stylopodia (humerus, femur) ossify after the more distal zeugopodia (radius/ulna, tibia/fibula), resembling only the European mole among all amniotes assessed. European moles also share extreme humeral adaptations to rotation digging and/or swimming with monotremes, suggesting a causal relationship between adaptation and ossification heterochrony. Late femoral ossification with respect to tibia/fibula in monotremes and moles points toward developmental integration of the serially homologous fore- and hindlimb bones. Monotreme cervical ribs and coracoids ossify later than in most amniotes but are similarly timed as homologous ossifications in therians, where they are lost as independent bones. This loss may have been facilitated by a developmental delay of coracoids and cervical ribs at the base of mammals. The monotreme sequence, although highly derived, resembles placentals more than marsupials. Thus, marsupial postcranial development, and potentially related diversity constraints, may not represent the ancestral mammalian condition. 相似文献
10.
Heterochrony, differences in the timing of developmental events between descendent species and their ancestors, is a pervasive evolutionary pattern. However, the origins of such timing changes are still not resolved. Here we show, using sequence analysis, that exposure to predator cues altered the timing of onset of several developmental events in embryos of two closely related gastropod species: Radix balthica and Radix auricularia. These timing alterations were limited to certain events and were species-specific. Compared with controls, over half (62%) of exposed R. auricularia embryos had a later onset of body flexing and an earlier occurrence of the eyes and the heart; in R. balthica, 67 per cent of exposed embryos showed a later occurrence of mantle muscle flexing and an earlier attachment to, and crawling on, the egg capsule wall. The resultant developmental sequences in treated embryos converged, and were more similar to one another than were the sequences of the controls for both species. We conclude that biotic agents can elicit altered event timing in developing gastropod embryos. These changes were species-specific, but did not occur in all individuals. Such developmental plasticity in the timing of developmental events could be an important step in generating interspecific heterochrony. 相似文献
11.
We have examined the inheritance of a transgene locus in the zebrafish, Daniorerio and demonstrated that its methylation is af fected by the sex of the parent contributing the allele. This parent-of-origin effect on the zebrafish transgene appears to be identical to imprinting as seen in mammals except that in zebrafish, passage of the locus through a female tended to decreased its methylation, whereas passage through a male increased it. Methylation of the transgene in gametic tissues differed from somatic tissue with the locus being hypomethylated in sperm and hypermethylated in the unfertilized egg. The potential identification of imprinting in the zebrafish has important ramifications with respect to the evolution of the process as well as for understanding the role of imprinting in mammals. © 1995 Wiley-Liss, Inc. 相似文献
12.
Lionel Hautier Nigel C. Bennett Hermien Viljoen Lauren Howard Michel C. Milinkovitch Athanasia C. Tzika Anjali Goswami Robert J. Asher 《Evolution; international journal of organic evolution》2013,67(7):1994-2010
Consensus on placental mammal phylogeny is fairly recent compared to that for vertebrates as a whole. A stable phylogenetic hypothesis enables investigation into the possibility that placental clades differ from one another in terms of their development. Here, we focus on the sequence of skeletal ossification as a possible source of developmental distinctiveness in “northern” (Laurasiatheria and Euarchontoglires) versus “southern” (Afrotheria and Xenarthra) placental clades. We contribute data on cranial and postcranial ossification events during growth in Afrotheria, including elephants, hyraxes, golden moles, tenrecs, sengis, and aardvarks. We use three different techniques to quantify sequence heterochrony: continuous method, sequence‐ANOVA (analysis of variance) and event‐paring/Parsimov. We show that afrotherians significantly differ from other placentals by an early ossification of the orbitosphenoid and caudal vertebrae. Our analysis also suggests that both southern placental groups show a greater degree of developmental variability; however, they rarely seem to vary in the same direction, especially regarding the shifts that differ statistically. The latter observation is inconsistent with the Atlantogenata hypothesis in which afrotherians are considered as the sister clade of xenarthrans. Interestingly, ancestral nodes for Laurasiatheria and Euarchontoglires show very similar trends and our results suggest that developmental homogeneity in some ossification sequences may be restricted to northern placental mammals (Boreoeutheria). 相似文献
13.
Genetic variation among the isolates of Fusarium oxysporum f. sp. ciceris, the causal agent of chickpea wilt worldwide, was analysed using pathogenicity tests and molecular markers – random amplified polymorphic DNA (RAPD) and inter‐simple sequence repeat (ISSR) polymorphism. Hundred and eight isolates were obtained from diseased chickpea plants in 13 different provinces of Turkey, out of which 74 isolates were assessed using 30 arbitrary decamer primers and 20 ISSR primers. Unweighted pair‐grouped method by arithmetic average cluster analysis of RAPD, ISSR and RAPD + ISSR datasets provided a substantially similar discrimination among Turkish isolates and divided into three major groups. Group 1, 2 and 3 consisted of 41, 18 and 15 isolates, respectively. These methods revealed a considerable genetic variation among Turkish isolates, but no correlation with regard to the clustering of isolates from different geographic regions. Analysis of molecular variance confirmed that most genetic variability resulted from the differences among isolates within regions. Our results also indicated that the low‐genetic differentiation (FST) and high gene flow (Nm) among populations had a significant effect on the emergence and evolutionary development of F. oxysporum f. sp. ciceris. This is the first report on genetic diversity and population structure of F. oxysporum isolates on chickpea in Turkey. 相似文献
14.
A bioenergetics model was developed from observed consumption, respiration and growth rates for zebrafish Danio rerio across a range (18–32° C) of water temperatures, and evaluated with a 50 day laboratory trial at 28° C. No significant bias in variable estimates was found during the validation trial; namely, predicted zebrafish mass generally agreed with observed mass. 相似文献
15.
Su Wang Dongrui Ji Qingyun Yang Mingyue Li Zengyu Ma Shicui Zhang Hongyan Li 《Journal of cellular physiology》2019,234(7):11208-11218
Neurofilament light chain (NEFL), a subunit of neurofilament, has been shown to play an important role in pathogenic neurodegenerative disease and in radial axonal growth. However, information remains largely lacking regarding the function of NEFL in early development to date. In this study, we demonstrated the presence of two nefl genes, nefla and neflb, in zebrafish, generated by fish-specific third round genome duplication. These duplicated nefl genes were predominantly expressed in the nervous system with an overlapping and distinct expression pattern. Both gene knockdown and rescue experiments show that it was neflb rather than nefla that played an indispensable role in nervous system development. It was also found that neflb knockdown resulted in striking apoptosis of the neurons in the brain and spinal cord, leading to morphological defects such as brain structure disorder and trunk bending. Thus, we report a previously uncharacterized role of NEFL that NEFLb impairs the early development of zebrafish nervous system via regulation of the neuron apoptosis in the brain and spinal cord. 相似文献
16.
Three populations of Pratylenchus coffeae and two of P. brachyurus, each originating from a single female, were maintained on Citrus spp. or Solanum nigrum L. for several years under greenhouse conditions. Nematodes were extracted from roots, and adult female specimens were killed, fixed, and mounted in glycerine for microscopic study. Variables measured were distance between vulva and anus and lengths of the stylet, posterior uterine sac, and tail. The mean data and coefficients of variability suggest that styler length had the least variability, and length of posterior uterine sac the most. When males and distinct spermathecae are not evident in P. coffeae populations, the species can he distinguished from P. brachyurus by a shorter mean stylet length, longer mean posterior uterine sac length, and much longer distance between the vulva and anus. 相似文献
17.
Luca Racca Andrea Villa Lukardis C. M. Wencker Marco Camaiti Hugues-Alexandre Blain Massimo Delfino 《Journal of morphology》2020,281(7):808-833
The skull osteology of Hierophis viridiflavus is here described and figured in detail on the basis of 18 specimens. The sample includes specimens from the ranges of both H. viridiflavus viridiflavus and H. viridiflavus carbonarius as well as specimens not identified at sub-specific level. The main characters that define H. viridiflavus in comparison to the parapatric congeneric species Hierophis gemonensis are wide maxillary diastema, basioccipital crest well distinct in three lobes and basioccipital process well marked. The foramina of the otoccipital and prootic, and the basioccipital process of the basioccipital are among the most ontogenetically variable characters, as indicated by two juvenile specimens included in the sample. A specimen-level phylogenetic analysis including H. gemonensis and other outgroups (overall 6 species, 26 specimens, 64 skull characters) recovered all H. viridiflavus specimens in one clade, indicating the presence of a clear phylogenetic signal in the applied characters. However, the resolution within the H. viridiflavus clade is poor the monophyly of H. viridiflavus carbonarius was retrieved, but not that of Hierophis v. viridiflavus. Probably due to the relatively high variability, the skull morphology does not support the recently proposed specific status of the two subspecies. 相似文献
18.
Holtmeier CL 《Evolution; international journal of organic evolution》2001,55(2):330-338
Variation in ontogeny can produce phenotypic variation both within and among species. I investigated whether changes in timing and rate of growth were a source of phenotypic variation in a putative incipient species group of pupfish (Cyprinodon spp.). On San Salvador Island, Bahamas, sympatric forms of pupfish differ in morphology but show only partial reproductive isolation in the laboratory. Offspring from two forms and two geographical areas and their hybrids were bred in the laboratory, and ontogenetic trajectories of their feeding morphology were followed until maturity. In the Bahamian pupfish the two forms grow along similar size but not shape trajectories. Two heterochronic parameters, onset and rate of growth, alter shape trajectories in the Bahamian pupfish. Similar forms from different geographical areas (Florida and the Bahamas) grow along parallel shape trajectories, differing only in one heterochronic parameter, the onset shape. Hybrids within and between the pupfish forms produced intermediate feeding morphologies that were influenced by their maternal phenotype, suggesting that maternal effects may be a source of phenotypic variation in shape that can persist to maturity. In Cyprinodon, small changes in multiple heterochronic parameters translate into large phenotypic differences in feeding morphology. 相似文献
19.
《Journal of morphology》2017,278(6):750-767
Miniaturization, the evolution of extremely small adult body size, is widespread amongst animals and commonly associated with novel ecological, physiological, and morphological attributes. The phenotypes of miniaturized taxa are noteworthy because they combine reductions and structural simplifications with novel traits not developed in their larger relatives. Previous research on miniature cyprinid fishes (focused predominantly on South and South East Asian taxa of a single subfamily) has identified two distinct classes of miniature taxa: proportioned dwarves and developmentally truncated miniatures. Miniaturization has also occurred independently in the subfamily Cyprininae, particularly in African lineages. We investigate the skeletal anatomy of Barboides , a genus of miniature African cyprinids that includes Africa's smallest known species of vertebrates, to assess whether miniaturization has resulted in similar organismal outcomes in different lineages of the Cyprinidae. The skeleton of Barboides is characterized by the complete absence of a number of dermal and endochondral ossifications, and marked reduction in size and/or complexity of other skeletal elements, particularly those of the dermatocranium. Absent skeletal elements in Barboides include those which develop relatively late in the ossification sequence of the non‐miniature African relative ‘Barbus ’ holotaenia suggesting that their absence in Barboides can be explained by a simple scenario of developmental truncation. In contrast to this theme of loss and reduction, the os suspensorium of Barboides is enlarged and the outer arm distally trifid and associated with a novel bulbous muscle in males. An evaluation of the skeleton of Barboides provides further evidence for a link between developmental truncation and evolutionary morphological novelty in Cyprinidae. In the spectrum of miniature cyprinids ranging from proportioned dwarves with few bones missing to highly progenetic taxa with dozens of missing bones, the two species of Barboides range roughly in the middle showing that the extremes are connected by intermediate levels of truncatedness. 相似文献