首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dunkern T  Roos W  Kaina B 《Mutation research》2003,544(2-3):167-172
Agents inducing O(6)-methylguanine (O(6)MeG) in DNA, such as N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), are not only highly mutagenic and carcinogenic but also cytotoxic because of the induction of apoptosis. In CHO fibroblasts, apoptosis triggered by O(6)MeG requires cell proliferation and MutSalpha-dependent mismatch repair and is related to the induction of DNA double-strand breaks (DSBs). Furthermore, it is mediated by Bcl-2 degradation and does not require p53 for which the cells were mutated [Cancer Res. 60 (2000) 5815]. Here we studied cytotoxicity and apoptosis induced by MNNG in a pair of human lymphoblastoid cells expressing wild-type p53 (TK6) and mutant p53 (WTK1) and show that TK6 cells are more sensitive than WTK1 cells to cell killing (determined by a metabolic assay) and apoptosis. Apoptosis was a late response observed <24h after treatment and was related to accumulation of p53 and upregulation of Fas/CD95/Apo-1 receptor as well as Bax. The data indicate that MNNG induces apoptosis in lymphoblastoid cells by activating the p53-dependent Fas receptor-driven pathway. This is in contrast to CHO fibroblasts in which, in response to O(6)MeG, the mitochondrial damage pathway becomes activated.  相似文献   

2.
Many anticancer drugs are able to induce apoptosis in tumor cells but the mechanisms underlying this phenomenon are poorly understood. Some authors reported that the p53 tumor suppressor gene may be responsible for drug-induced apoptosis; however, chemotherapy-induced apoptosis can also be observed in p53 negative cells. Recently, doxorubicin (DXR) was reported to induce CD95L expression to mediate apoptosis through the CD95/CD95L system. Thus, an impairment of such a system may be involved in drug resistance. We evaluated the in vitro antitumor activity of several cytotoxic drugs on two human p53-negative T-cell lymphoma cell lines, the HUT78-B1 CD95L-resistant cell line and the HUT78 parental CD95L-sensitive cell line. We demostrated by Western blotting assay that DXR and etoposide (VP-16) were able to induce CD95L expression after 4 h of treatment. In contrast, they were unable to induce the expression of p53. DXR, at concentrations ranging from 0.001 - 1 microg/ml, and VP16, at concentrations ranging from 0.05 - 1 microg/ml, were equally cytotoxic and induced apoptosis in both cell lines as assessed by fluorescence microscopy and flow cytometry analyses. Although we observed a slightly reduced percentage of apoptotic cells in HUT78B1 when compared with the parental HUT78 cells after few hours of drug exposure, this difference was no longer evident at 48 or 72 h. Similarly, the exposure of HUT78 cells to a CD95-blocking antibody partially reduced early apoptosis (24 h) without affecting the long-term effects of the drugs including cytotoxicity. Furthermore, as observed with DXR and VP-16, both the CD95L-sensitive and the CD95L-resistant cell lines resulted equally sensitive to the cytotoxic effects of a number of different cytotoxic drugs (vincristine, camptothecin, 5-fluorouracil and methotrexate). The treatment with the Caspase-3 tetrapeptide aldehyde inhibitor, Ac-DEVD-CHO, did not affect the DXR-induced apoptosis whereas it only modestly inhibited apoptosis and cytotoxicity of VP-16, while Z-VAD.FMK, a Caspase inhibitor that prevents the processing of Caspase-3 to its active form, was able to block DXR-induced apoptosis at 24 h but not at 48 h. Thus, our results do not confirm a crucial role for the CD95/CD95L system in drug-induced apoptosis and suggest the involvement of alternative p53-independent pathways at least in this experimental model system.  相似文献   

3.
Reactivation of mutant p53 in tumours is a promising strategy for cancer therapy. Here we characterise the novel p53 rescue compound P53R3 that restores sequence-specific DNA binding of the endogenously expressed p53(R175H) and p53(R273H) mutants in gel-shift assays. Overexpression of the paradigmatic p53 mutants p53(R175H), p53(R248W) and p53(R273H) in the p53 null glioma cell line LN-308 reveals that P53R3 induces p53-dependent antiproliferative effects with much higher specificity and over a wider range of concentrations than the previously described p53 rescue drug p53 reactivation and induction of massive apoptosis (PRIMA-1). Furthermore, P53R3 enhances recruitment of endogenous p53 to several target promoters in glioma cells bearing mutant (T98G) and wild-type (LNT-229) p53 and induces mRNA expression of numerous p53 target genes in a p53-dependent manner. Interestingly, P53R3 strongly enhances the mRNA, total protein and cell surface expression of the death receptor death receptor 5 (DR5) whereas CD95 and TNF receptor 1 levels are unaffected. Accordingly, P53R3 does not sensitise for CD95 ligand- or tumour necrosis factor alpha-induced cell death, but displays synergy with Apo2L.0 in 9 of 12 glioma cell lines. Both DR5 surface induction and synergy with Apo2L.0 are sensitive to siRNA-mediated downregulation of p53. Thus this new p53 rescue compound may open up novel perspectives for the treatment of cancers currently considered resistant to the therapeutic induction of apoptosis.  相似文献   

4.
Vanadium is a metal widely distributed in the environment. Although vanadate-containing compounds exert potent toxic effects on a wide variety of biological systems, the mechanisms controlling vanadate-induced adverse effects remain to be elucidated. The present study investigated the vanadate-induced p53 activation and involvement of reactive oxygen species (ROS) in p53 activation as well as the role of p53 in apoptosis induction by vanadate. Exposure of mouse epidermal JB6 cells to vanadate led to transactivation of p53 activity in a time- and dose-dependent manner. It also caused mitochondrial damage, apoptosis, and generated ROS. Scavenging of vanadate-induced H(2)O(2) by N-acetyl-l-cysteine (a general antioxidant) or catalase (a specific H(2)O(2) inhibitor), or the chelation of vanadate by deferoxamine, resulted in inhibition of p53 activation and cell mitochondrial damage. In contract, an increase in H(2)O(2) generation in response to superoxide dismutase or NADPH enhanced these effects caused by vanadate. Furthermore, vanadate-induced apoptosis occurred in cells expressing wild-type p53 (p53+/+) but was very weak in p53-deficient (p53-/-) cells. These results demonstrate that vanadate induces p53 activation mainly through H(2)O(2) generation, and this activation is required for vanadate-induced apoptosis.  相似文献   

5.
Human 8-oxoguanine DNA glycosylase (hOGG1) is the main defense enzyme against mutagenic effects of cellular 7,8-dihydro-8-oxoguanine. In this study, we investigated the biological role of hOGG1 in DNA damage-related apoptosis induced by hydrogen peroxide (H(2)O(2))-derived oxidative stress. The down-regulated expression of hOGG1 by its small interfering RNA prominently triggers the H(2)O(2)-induced apoptosis in human fibroblasts GM00637 and human lung carcinoma H1299 cells via the p53-mediated apoptotic pathway. However, the apoptotic responses were specifically inhibited by hOGG1 overexpression. The p53-small interfering RNA transfection into the hOGG1-deficient GM00637 markedly inhibited the H(2)O(2)-induced activation of p53-downstream target proteins such as p21, Noxa, and caspase-3/7, which eventually resulted in the increased cell viability. Although the cell viability of hOGG1-knockdown H1299 p53 null cells was similar to that of the hOGG1 wild-type H1299, after the overexpression of p53 the hOGG1-knockdown H1299 showed the significantly decreased cell viability compared with that of the hOGG1 wild-type H1299 at the same experimental condition. Moreover, the array comparative genome hybridization analyses revealed that the hOGG1-deficient GM00637 showed more significant changes in the copy number of large regions of their chromosomes in response to H(2)O(2) treatment. Therefore, we suggest that although p53 is a major modulator of apoptosis, hOGG1 also plays a pivotal role in protecting cells against the H(2)O(2)-induced apoptosis at the upstream of the p53-dependent pathway to confer a survival advantage to human fibroblasts and human lung carcinomas through maintaining their genomic stability.  相似文献   

6.
7.
8.
Lithium exerts neuroprotective actions that involve the inhibition of glycogen synthase kinase-3beta (GSK-3beta). Otherwise, recent studies suggest that sustained GSK-3beta inhibition is a hallmark of tumorigenesis. In this context, the present study was undertaken to examine whether lithium modulated cancer cell sensitivity to apoptosis induced by chemotherapy agents. We observed that, in different human cancer cell lines, lithium significantly reduced etoposide- and camptothecin-induced apoptosis. In HepG2 cells, lithium repressed drug induction of CD95 expression and clustering at the cell surface as well as caspase-8 activation. Lithium acted through deregulation of GSK-3beta signaling since (1) it provoked a rapid and sustained phosphorylation of GSK-3beta on the inhibitory serine 9 residue; (2) the GSK-3beta inhibitor SB-415286 mimicked lithium effects by repressing drug-induced apoptosis and CD95 membrane expression; and (3) lithium promoted the disruption of nuclear GSK-3beta/p53 complexes. Moreover, the overexpression of an inactivated GSK-3beta mutant counteracted the stimulatory effects of etoposide and camptothecin on a luciferase reporter plasmid driven by a p53-responsive sequence from the CD95 gene. In conclusion, we provide the first evidence that lithium confers resistance to apoptosis in cancer cells through GSK-3beta inhibition and subsequent repression of CD95 gene expression. Our study also highlights the concerted action of GSK-3beta and p53 on CD95 gene expression.  相似文献   

9.
Hsu TH  Chu CC  Jiang SY  Hung MW  Ni WC  Lin HE  Chang TC 《FEBS letters》2012,586(9):1287-1293
Recent studies indicated that the RIG1 (RARRES3/TIG3) plays an important role in cell proliferation, differentiation, and apoptosis. However, the regulatory mechanism of RIG1 gene expression has not been clearly elucidated. In this study, we identified a functional p53 response element (p53RE) in the RIG1 gene promoter. Transfection studies revealed that the RIG1 promoter activity was greatly enhanced by wild type but not mutated p53 protein. Sequence specific mutation of the p53RE abolished p53-mediated transactivation. Specific binding of p53 protein to the rig-p53RE was demonstrated using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay. Further studies confirmed that the expression of RIG1 mRNA and protein is enhanced through increased p53 protein in HepG2 or in H24-H1299 cells. In conclusion, our results indicated that RIG1 gene is a downstream target of p53 in cancer cell lines.  相似文献   

10.
The death receptor CD95 (APO-1/Fas) mediates apoptosis induction upon ligation by its cognate ligand CD95L. Two types of CD95 signaling pathways have been identified, which are characterized by the absence (Type I) or presence (Type II) of mitochondrial involvement. Micro(mi)RNAs are small noncoding RNAs that negatively regulate gene expression. They are important regulators of differentiation processes and are found frequently deregulated in many human cancers. We recently showed that Type I cells express less of the differentiation marker miRNA let-7 and, hence, likely represent more advanced tumor cells than the let-7 high expressing Type II cells. We have now identified miR-34a as a selective marker for cells that are sensitive to CD95-mediated apoptosis. Both CD95 and miR-34a are p53 target genes, and consequently, both the sensitivity of cancer cells to CD95-mediated apoptosis and the ability to respond to p53 mediated DNA genotoxic stress are linked. Interestingly, while miR-34a was found to positively correlate with the ability of cells to respond to genotoxic stress, let-7 was negatively correlated. The expression level of CD95 inversely correlated with the expression of let-7 suggesting regulation of let-7 expression by CD95. To test a link between p53 and miR-34a, we altered the expression of CD95. This affected the ability of cells to activate p53 and to regulate miR-34a. Our data point to a novel regulatory network comprising p53, CD95, let-7, and miR-34a that affects cancer cell survival, differentiation, and sensitivity to apoptotic signals. The possible relevance of this regulatory network for cancer stem cells is discussed.  相似文献   

11.
12.
Youn CK  Jun JY  Hyun JW  Hwang G  Lee BR  Chung MH  Chang IY  You HJ 《DNA Repair》2008,7(11):1809-1823
Although the accumulation of 8-oxo-dGTP in DNA is associated with apoptotic cell death and mutagenesis, little is known about the exact mechanism of hMTH1-mediated suppression of oxidative-stress-induced cell death. Therefore, we investigated the regulation of DNA-damage-related apoptosis induced by oxidative stress using control and hMTH1 knockdown cells. Small interfering RNA (siRNA) was used to suppress hMTH1 expression in p53-proficient GM00637 and H460 cells, resulting in a significant increase in apoptotic cell death after H(2)O(2) exposure; however, p53-null, hMTH1-deficient H1299 cells did not exhibit H(2)O(2)-induced apoptosis. In addition, hMTH1-deficient GM00637 and H460 cells showed increased caspase-3/7 activity, cleaved caspase-8, and Noxa expression, and gamma-H2AX formation in response to H(2)O(2). In contrast, the caspase inhibitors, p53-siRNA, and Noxa-siRNA suppressed H(2)O(2)-induced cell death. Moreover, in 8-week (long-term) cultured H460 and H1299 cells, hMTH1 suppression increased cell death, Noxa expression, and gamma-H2AX after H(2)O(2) exposure, compared to 3-week (short-term) cultured cells. These data indicate that hMTH1 plays an important role in protecting cells against H(2)O(2)-induced apoptosis via a Noxa- and caspase-3/7-mediated signaling pathway, thus conferring a survival advantage through the inhibition of oxidative-stress-induced DNA damage.  相似文献   

13.
We have studied the effects of different concentrations of H(2)O(2) on the proliferation of PC-3 prostate carcinoma cells. Since this cell line lacks functional p53, we sought to characterize whether apoptotic response to the oxidative insult was altered such that, unlike in cells containing functional p53 apoptosis may be reduced and replaced by other mechanisms of cellular arrest and death. We did not observe necrosis in PC-3 cells treated with H(2)O(2) concentrations of up to 500 microM. In the presence of 50 microM H(2)O(2), arrest was observed in the G2-phase of the cell cycle, along with p53-independent apoptosis. In the presence of 500 microM H(2)O(2), addition of l-buthionine sulfoximine increased the percentage of apoptotic cell death. Senescence-associated cell arrest was never observed. Moreover, some of the treated cells seemed to be resistant to oxidative damage. These cells re-entered the cell cycle and proliferated normally. Analysis of the expression of p21(waf1) and of p21 protein levels, as well as the activity of caspase-3 and caspase-8, allowed us to characterize some aspects of the arrest of PC-3 cells in G2 and the apoptotic response to oxidative stress in the absence of functional p53.  相似文献   

14.
Within the last two decades, 4-hydroxynonenal has emerged as an important second messenger involved in the regulation of various cellular processes. Our recent studies suggest that HNE can induce apoptosis in various cells through the death receptor Fas (CD95)-mediated extrinsic pathway as well as through the p53-dependent intrinsic pathway. Interestingly, through its interaction with the nuclear protein Daxx, HNE can self-limit its apoptotic role by translocating Daxx to cytoplasm where it binds to Fas and inhibits Fas-mediated apoptosis. In this paper, after briefly describing recent studies on various biological activities of HNE, based on its interactions with Fas, Daxx, and p53, we speculate on possible mechanisms through which HNE may affect a multitude of cellular processes and draw a parallel between signaling roles of H(2)O(2) and HNE.  相似文献   

15.
为探讨p53上调凋亡调制物(p53 up-regulated modulator of apoptosis, PUMA)在大鼠心肌细胞缺氧/复氧(hypoxia/reoxygenatio, H/R)损伤中的作用,本 研究将靶向PUMA的siRNA(si-PUMA)转染大鼠心肌细胞以建立PUMA沉默表达模型,观察其对心肌细胞H/R损伤的影响.RT-PCR和Western印迹结果表明,最适转染浓度50 nmol/L si-PUMA能靶向抑制H/R损伤心肌细胞的PUMA表达;MTT法检测心肌细胞存活率及培养基乳酸脱氢酶(lactate dehydrogenase, LDH)活性测定结果发现,si-PUMA 组细胞存活率较H/R 6 h模型组明显提高,培养液中LDH活性显著降低(P<0.01);分光光度法及Annexin V-FITC/PI联合染色流式细胞凋亡检测结果显示,si-PUMA组caspase-3活性较H/R 6h组明显下调,细胞凋亡率明显降低(P <0.01);RT-PCR结果 提示,与H/R 6 h组相比,si-PUMA组Bax及Bcl-2表达分别出现显著下调及上调(P <0.05).以上结果表明,靶向PUMA的siRNA转染能明显增强心肌细胞耐受H/R损伤的能力,对心肌细胞具有较好的保护作用;PUMA介导H/R诱导的心肌细胞凋亡,是心肌缺血/再灌注损伤基因治疗的一个潜在靶点.  相似文献   

16.
17.
18.
Lithium exerts neuroprotective actions that involve the inhibition of glycogen synthase kinase-3β (GSK-3β). Otherwise, recent studies suggest that sustained GSK-3β inhibition is a hallmark of tumorigenesis. In this context, the present study was undertaken to examine whether lithium modulated cancer cell sensitivity to apoptosis induced by chemotherapy agents. We observed that, in different human cancer cell lines, lithium significantly reduced etoposide- and camptothecin-induced apoptosis. In HepG2 cells, lithium repressed drug induction of CD95 expression and clustering at the cell surface as well as caspase-8 activation. Lithium acted through deregulation of GSK-3β signaling since (1) it provoked a rapid and sustained phosphorylation of GSK-3β on the inhibitory serine 9 residue; (2) the GSK-3β inhibitor SB-415286 mimicked lithium effects by repressing drug-induced apoptosis and CD95 membrane expression; and (3) lithium promoted the disruption of nuclear GSK-3β/p53 complexes. Moreover, the overexpression of an inactivated GSK-3β mutant counteracted the stimulatory effects of etoposide and camptothecin on a luciferase reporter plasmid driven by a p53-responsive sequence from the CD95 gene. In conclusion, we provide the first evidence that lithium confers resistance to apoptosis in cancer cells through GSK-3β inhibition and subsequent repression of CD95 gene expression. Our study also highlights the concerted action of GSK-3β and p53 on CD95 gene expression.  相似文献   

19.
Trichloroethylene (TCE) and perchloroethylene (PERC) are volatile organic compounds (VOCs) that are primarily inhaled through the respiratory system. The aim of this study was to elucidate the role of glutathione (GSH) and p53 in TCE- and PERC-induced lung toxicity. Human lung adenocarcinoma cells NCI-H460 (p53-wild-type) have constitutively lower levels of GSH than NCI-H1299 (p53-null) cells. The results showed that exposure to vapor TCE and PERC produced a dose-dependent and more pronounced accumulation of H(2)O(2) in p53-WT H460 than p53-null H1299 cells. The accumulation of H(2)O(2) was accompanied by severe cellular damage, as indicated by the significant increase of lipid peroxidation and apoptosis in p53-WT H460 cells, but not p53-null H1299 cells. Cotreatment of p53-WT H460 cells with free radical scavengers, such as D-mannitol, uric acid, and sodium selenite, significantly attenuated the TCE- or PERC-induced lipid peroxidation. In contrast, depletion of GSH in p53-null H1299 cells enhanced TCE- or PERC-induced lipid peroxidation. The levels of p53 and Bax proteins were elevated, while Bcl-2 protein was downregulated in TCE- or PERC-treated p53-WT H460 cells. Activity of caspase 3, the apoptotic executioner, was also significantly enhanced in TCE- or PERC-treated cells. These data suggest that, in human lung cancer cells, GSH plays a vital role in the protection of TCE- and PERC-induced oxidative stress and apoptosis, which may be mediated through a p53-dependent pathway.  相似文献   

20.
The natural metabolic byproduct of estradiol, 2-methoxyestradiol (2-MeOE2), induces apoptosis in human lung cancer cells by a p53-dependent mechanism. The expression of wild-type p53 isoforms was investigated in H1299 non-small cell lung carcinoma cells induced into apoptosis by 2-MeOE2. H1299 cells lack endogenous p53 and undergo predominantly a G1 arrest when infected with a recombinant wild-type p53 adenovirus. However, when H1299 cells transfected with p53 were treated with 2-MeOE2, they underwent rapid and extensive apoptosis. H1299 cells expressing mutant his273 p53 were unaffected by 2-MeOE2, indicating a dependence of 2-MeOE2-mediated apoptosis on the presence of a functional p53. Analysis of wild-type p53 phosphoisoforms in H1299 cells by two-dimensional gel electrophoresis revealed that 2-MeOE2 induced a unique group of acidic p53 isoforms. Although most of the wild-type p53 in untreated H1299 cells migrated as at least five diffuse species with isoelectric points from pH 5.5–6.3, as many as nine additional forms migrating toward the acidic region with pI values from 4.4–5.3 were detected in 2-MeOE2-treated apoptotic cells. Two other agents known to induce apoptosis, vinblastine and actinomycin D, induced a similar pattern of acidic p53 species as that observed for 2-MeOE2. The results indicated that the induction of apoptosis in H1299 cells by 2-MeOE2 is dependent on the upregulation of specific p53 isoforms. Identification of the specific p53 phosphoisoforms induced by MeOE2 will be an important step in understanding the regulation and function of p53 in apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号